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Matematica. — A canonical decomposition of additive Sunctors
of modules. Nota di ALEXANDRU SoLiaN, presentata dal Socio
B. SEGrE.

Suppose T is a covariant functor from one category of modules to ano-
ther and that for any A of the first category there is given a Z—-homomorphism
A—T (A), so that these homomorphisms satisfy a natural condition of making
commutative certain diagrams; in this case the functor is provided with
an additional structure which, by definition, makes it a functor atomized
by the given class. The canonical decomposition mentioned in the title refers
to the process of passing from arguments to values of T and is made in
terms of successive passing to values of covariant functors atomized by a
canonical class of homomorphisms, of functors Hom (L, )or Hom ( ,L)
and to inverse values of functors of the first type. The complete result
is given by the Principal Theorem. In the construction made enters as
an essential fact the possibility of associating to every ring-module its addi-
tive group structure and also the isomorphism Homy (A, A) ~ A

In what follows A , I, etc. will represent associative rings with an iden-
tity element; by Z we shall denote the ring of integers. 9, will mean the
category of (unitary) A-modules and A-homomorphisms in which it will
be determined but unspecified whether question runs about right or left
A-modules. In general, the employed terminology will be that of [1] but
we shall make some references also to [3].

1. Let T be a covariant functor defined on 9, with values in 9 ; sup-
pose that together with T there is given a class {¢,} of Z-homomorphisms
¢, A =T (A), where A is any object of 9, so that if /€ Homy (A, C),
the diagram

A 1. ¢

(1) %A %c
A

T(A) L, T ()

is commutative; in this case we say T is an atomized functor by the class
{9,} of Z-homomorphisms. :

Thus, the class {cpA} provides T with an additional structure. As an
example of the manner in which the structure of T is affected by the class
{0,} we glve the following proposition :

(*) Nella seduta dell’8 febbraio 1964.
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PROPOSITION 1. — Let T be a covariant functor from O, to Oy whick is

atomized by the class {¢,}; if all o, are epimorphisms, then T is an additive
Junctor.

Proof. —Let f, g2 A—C be A-homomorphisms and let x €T (A); if x=¢, a,
a € A, then we have

T+ @ =T(f+9e,a=9.(f+ga=9.fa+ o.ga=T (f) o, a+
+ T (9o a=(T()+ T ()~

Remark. — The class {¢,} which occurs in the above definition determi-
nes in the general case, a natural transformation of two functors; indeed,
let us denote by I, the functor 9T, — 9, which associates to a A—module A
the Z-module A; then {0, } determines a natural transformation of I, into I T.

2. Let T be an additive covariant functor defined on 91T, with values
in Oy, which is atomized by the class {o,}; if /: A>C,A,C€M,, then
since the diagram (1) is commutative, there exist uniquely determined
Z-homomorphisms

S Ker 9, —— Ker ¢,

f2:Coim ¢, —— Coim g,

Sy Im @, & Im Pc>

J4:Coker ¢, —— Coker g,
which render commutative the diagram

Ker (PA _— A R — C01m CPA ~ Im (pA —= T (A) ——_>‘ Coker o,

(2) Jx

f] 2 2
+ + ¥

v
Ker ¢. —— C —— Coim ¢, ~ Im ¢, —— T (C) — Coker o

T 4 A
+ +

where horizontal arrows represent canonical maps.

PROPOSITION 2. — By passing from A to Ker @, , Coim o, , Im o, , Coker ¢,
respectively and from f to [y, f. , f5 , J, respectively, there are defined covariant
additive functors from Oy to M. :

These functors will be called respectively the kernel, the coimage, the
tmage, and the cokernel of T with respect to {¢,} and will be denoted respec-
tively by Ker (T, {¢,}), Coim (T, {9,}), Im (T, {,}) and Coker (T, {¢,}-

The proof of Proposition 2 may be accomplished by simple verification.

From the commutative character of (2) it may be seen that

Coim (T, {9,}), Im (T, {,}), Coker (T, {p,}) are atomized by the class of
respective canonical maps.

3. EXAMPLES. - 1) Let A be an abelian group and let F (A) represent
its maximal torsion subgroup. Let T (A) be-the factorgroup A/F (A) and
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let T (f), where f: A—C, be the map AJF (A)—C/F (C) induced by f. Then
T is a covariant additive functor from 91 to 9z. Denoting by ¢, the natural
epimorphism A — A/F (A), we obtain that T is atomized by the class {o,}

- We note that Ker (T, {¢,}) is the functor which associates to A, the sub-
group F (A), Aed,.

2) Let S be a multiplicatively closed subset of the commutative ring A,
such that 1 €S, 0¢S®. If A€, and if Ag is the module of fractions
of A with respect to S, then by passing from A to Ag and from f: A—C to
the A-homomorphism Ags—Cs for which [a/s] — [fa/s] (where a € A, s € S,
and [a/s] is the class containing the formal quotient a/s) we obtain a cova-
riant additive functor T: 9K, — O, . Let ¢, be the homomorphism A — Ag
for which ¢, a = [a/1]. Then T is atomized by the class {¢,}.

Moreover, T may be interpreted as a functor from 9, to ?)I”CA:, which
is atomized by the same class {o,}.

3) The following example does not enter in the limits of our theory
but is illustrative as a generalization :

Let § be the category of all groups and group homomorphisms. Denote
by [G, G] the commutator subgroup of the group G. Then a covariant
functor T:¢—9R; may be defined by letting T (G) be the factor-group
G/[G,G] and T(f), where f:G—H, the homomorphism G/[G,G] —
H/[H, H] induced by f. If ¢, is the natural epimorphism G- G/[G, G]
then for any f:G — H, the diagram

G ——H

¢
G/[G,G] — HJ[H, H]

is commutative.

4. 'Let T be an additive functor defined on 9, with values in 9 (the
variance of T is not yet specified). It is known @ that if A €91, then
there exists a well-determined A—is‘omorphismg

Myt A ~ Hom, (A ,Zi) ;

which maps a € A into that fa € Homy (A, A), for which 7, (1) = a.

- Let us suppose that T is a covariant functor. Then T associates to
faitA—A, a€A, the "~homomorphism T (%) € Homp (T (A), T (A)). The
functor U defined from M, to Iz by

U@) =Homr (TA), T(A) , U@ =Hom(@rw,T W)

) See [3], § 8. 6.
)

(1
(2) See [1], IT §§ 2, 3.
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(where ¢: A —C and 1) is the identity mapping of T (A)) is covariant and
additive. Moreover, the mapping ¢, : A — Homr (T (A), T (A) defined by

(3) (PAaZT(f) ’ a€A ’ AE@KA:
is a Z-homomorphism ; indeed, by the additive character of T, we have
cPA (dr + az) = T (fa1+dz = T (fﬂx +f“2) = T (fal) + T (‘/;12) = QPA a‘ + <PA 02’

where a, , a, € A.
Let ¢:A—C be a A-homomorphism, then U (¢): U (A) - U (C) and
we have

U () g, @=Hom (0, TW) T(A)=TWT(£) =T ¢ 1)
o ba =T (f,)

for any a € A; but ¢ £, (1) = ¢ a and £, (1) = Ya. Hence, U is an atomized
functor by the class {¢,}, defined in (3).

Suppose now that T is contravariant; the T associates to f, the '~homo-
morphism T (f,) € Homp (T (A), T (A)). The functor U defined from 91,
to 9z by

U @A) =Homr (T(A), TA) , U =Hom(T{),srw)

is anew covariant and additive. Let us define the class of mappings
¢, A=>U(A), A €Iy, by the same relations (3); the Z-homomorphism
character of ¢, may be proved exactly as before.

If $: A—C is now a homomorphism of the category 91, , then we have

U () g2 = Hom (T @), 4 )T () =T (£)T @) =T (¢ £)
o ba=T(,)

and exactly as before in the covariant case, it results that U is atomized
by the class {o,}.

5. At the previous point 4, we have associated to every additive functor
T:9T) - 9My, an addltlve covarlant functor U : 9, — M, defined by

Homr (T (A), T(A)), if T is covariant

U (A) =
@ @ =1 Homp (T @A), T (A)), if T is contravariant

such that, additionally U is atomized by the class {¢ ,} of Z-homomorphisms,
defined by (3) ®. We shall call U, the afomistical part of T and we shall
denote it by P (T). '

From relations (4) it may be seen, that in order to pass from the va-
lues of P (T) to those of T, there must be ‘taken some (well-determined)

(3) Such functors and similar homomorphisms were considered also by DoLD [2], but
in another connexion. )
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inverse images of the former by the functor Ry defined from 9%p to o,
by the formulas .

| Hom_ (K,C) if T is covariant
® Rr(@ =] o0F - |
| Hom (C, K) if T is contravariant

where C € 9r and K = T (A). Rris consequently a functor Homyp (K, )
or Homr ( , K). ‘

Hence we have

THEOREM 1. — % order to obtain values (modules and homomorphisms)
of an additive Junctor T : Oy — Oy, one must obtain the values of its atomi-
stical part P (T): 9y — My and then pass to well-determined inverse ima-
ges of the latter under the functor Ry defined from My to Oy by for-
mulas (5).

6. We remark that every covariant functor T defined from a category
of modules to a category of modules is an atomized functor by the class
{O,} of the null mappings A —T (A). This makes the problem raise whether
the additional structure of atomizing class of homomorphisms constitutes
effectively something new and whether it may not be the trivial class. To
this problem it may be answered, in the first place, by recalling that the
class {¢,} constructed at point 4. is canonical and not arbitrary; in the
second place, to the question in what case this canonical class is the null
class, by the following

PROPOSITION 3. — Let T be an additive Sunctor from Oy to OMp; the
class {9} defined in (3) is the class of null homomorphisms if and only tf
T ) =

Proof. — 1If ¢, is the null mapping A — (P (T)) (A) then e, (1) =T (,)
(where 7, is the identity mapping of A) is as well the O of Hom_ (T (A),T (A))
and the identity mapping of T (A); so T(A)=0. The 'converse is
obvious.

Proposition 3 shows that if the class {¢,} is trivial then P (T) is the null
functor and consequently all the theory looses its significance ; but this
is a very particular casé.

7. If the inverse way to that described in Theorem 1 is pursued, we
obtain ‘

THEOREM 2. — Let T be an additive functor from O to My . In order
to pass from values of T to their inverse images (modules and homomor phisms)
under T one must apply to the former the functor RT defined at point 5, and then
pass from the obtained values to well-determined inverse images of these under
the atomzstzcal part P (T) of T.

In this connexion we can make following remarks : Suppose that V:
Oy — My is atomized by the class {o s} of Z-homomorphisms. The module
A whose imagé under V is V (A) is an extension of Ker ¢, by Im ¢, and

10. — RENDICONTI 1964, Vol. XXXVI, fasc. 2.
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¢:A—C whose image under V is V () must render commutative the
diagram

A%, cC
\ v ¥
Im.p, Im ¢,
where the vertical maps are induced by ¢, and . and where ¢* is induced
by V (¢). This remark could be useful for the construction of inverse

images of a functor atomized by a class of homomorphisms when glvmg the
kernels and images of these homomorphisms.

8. In particular, we can apply Theorem 2 for obtaining the way in
which one must pass from values of the functor Ry defined at point 5 by
formulas (5), to their inverse values.

Now, since Rris defined from 9N to 9%, the functor Rr, is defined
from 9y to 9z and namely by formulas

Homz (L, D) if Ry is covariant

6 Rr; (D)=
©) rp (D) Homz (D, L) if Ry is contravariant

where D € 9% and L = Rr (). But from (5) we see that Rr is covariant-
contravariant if T is, so that formulas (6) may be transcripted in the form

Hémz (L, D) where L = Homr (K, I if T is covariant

Rr, (D) =
@ rr (D) Homz (D, L) where L = Homp (I', K) if T is contravariant

where D € 9L; and K =T (A).

Combining Theorems 1 and 2 we obtain

THEOREM 3. — (Principal Theorem). Let T be an additive functor defined
from the category My to the category ONr . [n order to obtain values (modules
and homomorphisms) of T one must apply the atomistical part P (T) of T,
P (T): Oy — Iy, then the functor Ry, : Mg — My defined by formulas (7) and
then pass to certain (well-determined) inverse images of the obtained values under
the atomistical part P (Rr) of Ry, P (Ry) : O — 9y, where Ry: OMp — Ny,
is defined by formulas (s).

Remark. — 1t is seen that T is, in a certain sense, a « transformed functor »
of the functor Rg;, which is a functor Homy (L, ) or Homz( ,L), by
covariant functors which are atomized by canonical classes of homomor-

phisms respectively. Consequently, the variance of T is given by the variance
Of RRT .

9. If renouncing to the additional structure of atomizing class of homo-
morphisms, the Principal Theorem may be extended, as easily seen, to arbi-
trary (eventually non-additive) functors of modules and, moreover, to
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arbitrary functors defined from and to arbitrary categories. Indeed, let
T:&— ¢ be such a functor; taking instead of the atomistical part of T
the functor Homg: (T (K), T (C)) or Homg (T (C),T (K)) according as T is
covariant or contravariant, where K is an arbitrarily chosen but fixed object
of ¢ and C € &, the proof may be repeated, mutatis mutandis, in this gene-
ral case.
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