ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIORGIO SESTINI

Su un problema non lineare del tipo di Stefan

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.6, p. 518–523. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_6_518_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Fisica matematica. — Su un problema non lineare del tipo di Stefan. Nota di Giorgio Sestini (*), presentata (**) dal Socio G. Sansone.

I. INTRODUZIONE. – In recenti lavori il prof. Quilghini ([1], [2], [3]) (1) ha affrontato lo studio, per il caso lineare unidimensionale, di problemi analoghi a quello di Stefan nella ipotesi che la temperatura critica di cambiamento di fase T_c anziché costante, come la si considera in tutta la vasta letteratura in argomento (vedasi ad esempio [4]), venga supposta funzione monotona del posto, mostrando in una analisi approfondita la notevole influenza di tale ipotesi sull'andamento stesso delle ricercate soluzioni, esprimenti, come è ben noto, in un dato istante lo stato termico T(P,t) in qualsivoglia punto P di una delle due fasi e, allo stesso istante, l'ascissa x = h(t) caratteristica del fronte di separazione delle due fasi.

In questa Nota mi limiterò a mostrare come i metodi usati per i problemi unidimensionali non lineari analoghi a quello di Stefan ([5], [6]), nell'ipotesi di temperatura critica costante, possono essere impiegati ad assicurare esistenza ed unicità della soluzione degli analoghi problemi nell'ipotesi che tale temperatura sia supposta funzione continua e monotona del posto, derivabile almeno una volta.

2. RICHIAMI E TRASFORMAZIONI. – Con riferimento ad un mezzo materiale semiinfinito, termicamente isotropo, occupante un semispazio, che identificheremo con quello delle $x \geq 0$ di un sistema cartesiano ortogonale, nelle ipotesi già assunte in una mia precedente memoria ([5]), che nel seguito sarà richiamata con la lettera «M », ma limitando lo studio alla sola fase in formazione a partire dal piano x=0 e dall'istante t=0, studieremo l'esistenza e la unicità della soluzione di un problema di Stefan unidimensionale non lineare, nell'ipotesi che la temperatura critica di cambiamento di fase T_c sià funzione della ascissa x del punto considerato, continua monotona e limitata insieme alla sua derivata prima. Un tale problema si traduce in quello analitico di provare l'esistenza di una unica coppia di funzioni T=T (x, τ) e h=h (τ), regolare la prima e derivabile almeno una volta la seconda, soddi-

^(*) Comunicazione letta il 30 settembre 1963 durante il VII Congresso U.M.I.

^(**) Nella seduta del 14 dicembre 1963.

⁽¹⁾ I numeri in parentesi quadra si riferiscono alla Bibliografia posta al termine del lavoro.

sfacenti al sistema:

(I)
$$\frac{\partial}{\partial x} \left[K \left(T \right) \frac{\partial T}{\partial x} \right] = a \left(T \right) \frac{\partial T}{\partial \tau} , \qquad \tau > 0 , o < x < h \left(\tau \right);$$

$$\left[K \left(T \right) \frac{\partial T}{\partial x} \right]_{x=0} = -H \left(\tau \right), \qquad \tau > o;$$

$$T \left[h \left(\tau \right), \tau \right] = T_{\epsilon} \left[h \left(\tau \right) \right], \qquad h \left(o \right) = o, \tau > o;$$

$$\left[K \left(T \right) \frac{\partial T}{\partial x} \right]_{x=h} = c \left[h, \tau \right] - m \left(h \right) \frac{dh}{d\tau}, \qquad \tau > o.$$

Questo sistema è strutturalmente analogo ai soliti sistemi traducenti problemi unidimensionali non lineari del tipo di Stefan ([5], [6]), ma rispetto a quelli, oltre a non essere più $T(h, \tau) = 0$, presenta la notevole diversità che il coefficiente di $h = dh/d\tau$, nella condizione che dà l'equilibrio termico attraverso al fronte di separazione tra le fasi, non è più costante. Infatti essendo tale coefficiente dato dal prodotto della densità per il calore latente del mezzo, certamente funzione della temperatura che sul fronte di separazione coincide con quella critica T_c, supposta ora variabile col posto, esso risulta funzione del posto e perciò della incognita h. Il preciso significato fisico delle funzioni K (T), a (T), H (τ), m (ξ), ci consente la formulazione su di esse di ipotesi, analiticamente restrittive, ma fisicamente accettabilissime se non addirittura indispensabili. Ripetendo alcune delle ipotesi di M, supporremo ancora o < K_o \leq K (T) , o < $a_{\rm o}$ \leq a (T) limitate per qualsiasi valore di T nell'intervallo $(-\infty, +\infty)$ ed ivi continue con le loro derivate prime; H (τ) > 0 crescente, continua con la sua derivata prima per ogni τ > 0; quanto alla $m(\xi)$ faremo l'ipotesi che essa sia maggiore di una costante positiva m_0 e per qualunque $\xi \ge 0$ limitata e continua insieme alla sua derivata prima. La funzione $c(x, \tau)$ la supporremo infine positiva, continua e tale che sia $c_0 < c(x, \tau) < C$, con c_0 e C costanti.

Senza perdere in generalità supporremo poi che $T_{\varepsilon}(o)=o.$ Col cambiamento di funzione incognita:

(2)
$$V(x, \tau) = \int_{0}^{T} K(\xi) d\xi,$$

posto:

(3)
$$\beta(x) = \int_{0}^{T_{e}} K(\xi) d\xi, \qquad (4) \qquad \beta(h) = V(h, \tau) = \int_{0}^{T_{e}(h)} K(\xi) d\xi,$$

$$b(V) = \frac{a(V)}{K(V)},$$

il sistema (1) diventa:

(6)
$$\begin{cases} \frac{\partial^{2} V}{\partial x^{2}} = b(V) \frac{\partial V}{\partial \tau}, & \tau > 0, 0 < x < h; \\ \left[\frac{\partial V}{\partial x} \right]_{x=o} = -H(\tau), & \tau > 0; \\ V(h, \tau) = \beta(h), & h(0) = 0, \tau > 0; \\ \left[\frac{\partial V}{\partial x} \right]_{x=h} = c(h, \tau) - m(h) \dot{h}, & \tau > 0. \end{cases}$$

Osserveremo che, essendo $T_c(0) = 0$, si ha pure dalla (3):

$$\beta (o) = o.$$

Dalla (3) si ha anche:

$$\beta'(x) = \frac{d\beta}{dx} = K(T_c) \frac{\partial T_c}{\partial x},$$

con che è $\beta' \geqslant 0$ secondo che si ha $\frac{dT_c}{dx} \geqslant 0$.

Per x=0, essendo $T_{\epsilon}=0$, $-\beta'$ (0) rappresenta il flusso di calore nel senso delle T_{ϵ} crescenti in x=0. Se perciò è $\left(\frac{dT_{\epsilon}}{dx}\right)_{x=0} \geq 0$ tale flusso, se non è nullo, viene a sommarsi con quello H(0), creato all'istante iniziale in x=0 e non ostacola la formazione della nuova fase. Se al contrario è $\left(\frac{dT_{\epsilon}}{dx}\right)_{x=0} < 0$ il flusso $-\beta'$ (0) si oppone a quello creato per ottenere il cambiamento di fase e perciò se non è $H(0) > |\beta'(0)|$, il fenomeno non può avverarsi. Se pertanto la temperatura critica T_{ϵ} , supposta monotona, risulta decrescente per x=0, affinché il fenomeno del cambiamento di fase possa avviarsi in x=0 per t=0, occorre formulare sulla assegnata funzione $H(\tau)$ l'ulteriore ipotesi

$$H(0) > -K(0) \left(\frac{dT_c}{dx} \right)_{r=0} = |\beta'(0)|,$$

che, data la crescenza di H, porta alla disuguaglianza:

(8)
$$H(\tau) > |\beta'(o)|.$$

Con il nuovo cambiamento di funzione incognita:

(9)
$$W = W(x, \tau) = V(x, \tau) - \beta(x),$$

il sistema (6) si trasforma nell'altro:

(IO)
$$\begin{cases} \frac{\partial^{2} (W + \beta)}{\partial x^{2}} - \frac{\partial B}{\partial \tau} = 0, & \tau > 0, 0 < x < h; \\ \left[\frac{\partial (W + \beta)}{\partial x} \right]_{x=0} = -H(\tau), & \tau > 0; \\ W(h, \tau) = 0, & h(0) = 0, \tau > 0; \\ \left[\frac{\partial (W + \beta)}{\partial x} \right]_{x=0} = c(h, \tau) - m(h)\dot{h}, & \tau > 0, \end{cases}$$

dove

(11)
$$B = B(W, x) = \int_{0}^{W} b(s+\beta) ds.$$

Osserveremo subito che, essendo $W(h, \tau) = 0$, si ha dalla (11) anche:

(12)
$$B[W(h, \tau), h] = B(o, h) = o.$$

3. L'EQUAZIONE FUNZIONALE TRA LE INCOGNITE DEL PROBLEMA. – Seguendo il procedimento usato in M (vedi anche [6]), integriamo la (10₁) nel dominio $D_{h,t} \equiv \{0 \le \tau \le t \text{ , } 0 \le x \le h(t)\}$, applicando la nota formula di Green e tenendo conto di (10₂), (10₃), (10₄) e (12). Si ottiene:

$$\int_{0}^{t} m(h) \dot{h}(\tau) d\tau = \int_{0}^{t} H(\tau) d\tau + \int_{0}^{t} c(h,\tau) d\tau - \int_{0}^{h(t)} B[W(x,t),x] dx.$$

Con una integrazione per parti al primo membro, si ottiene, tenuto conto delle ipotesi formulate su $m(\xi)$,

(13)
$$h(t) = \int_{0}^{t} F_{\tau} [h(\tau), \tau, h(t)] d\tau - \int_{0}^{h(t)} F_{\tau} [W(x, t), x, h(t)] dx,$$

dove si è posto:

(14)
$$\begin{cases} F_{r}\left[h\left(\tau\right),\tau,h\left(t\right)\right] = \frac{H\left(\tau\right) + c\left(h,\tau\right) + h\left(\tau\right)\dot{h}\left(\tau\right)}{m\left[h\left(t\right)\right]}, \\ F_{2}\left[W\left(x,t\right),x,h\left(t\right)\right] = \frac{B\left[W\left(x,t\right),x\right]}{m\left[h\left(t\right)\right]}. \end{cases}$$

4. I TEOREMI DI ESISTENZA ED UNICITÀ. – Per ogni assegnata funzione $h=h\left(t\right)$ continua, monotona e derivabile con $h\left(0\right)=0$, si pensi risolto il problema ridotto:

(15)
$$\begin{cases} \frac{\partial^{2} W}{\partial x^{2}} - \overline{b} (W + \beta) \frac{\partial W}{\partial \tau} = -\beta''(x), & \tau > 0, o < x < h; \\ \left(\frac{\partial W}{\partial x}\right)_{x=0} = -H(\tau) - \beta'(0), & \tau > 0; \\ W(h, \tau) = 0, & h(0) = 0, \tau > 0, \end{cases}$$

essendo $\beta'' = \frac{d^2 \beta}{dx^2}$.

Per le ipotesi formulate sui dati e sulla h(t), classici teoremi ([7]), assicurano l'esistenza di una unica soluzione regolare per questo sistema, che indicheremo con $W_h = W(x, \tau, h)$ per mettere in evidenza la sua dipendenza

dalla h = h(t), scelta nella classe considerata. Con considerazioni analoghe a quelle del n. 6 di M, si prova la validità delle due disuguaglianze:

(16)
$$-W_{o} \leq \frac{\partial W}{\partial x} \leq o;$$

$$o \leq W(x, \tau, h) \leq N(h-x);$$

dove $w_{\rm o}$ ed N sono due costanti positive, indipendenti da h.

Se poi $\alpha(t) > \gamma(t)$ indicano due diverse determinazioni di h e si considerano le due soluzioni W_{α} e W_{γ} del problema ridotto, si ha, per $0 \le x \le \gamma(t)$, $0 < \tau \le t$:

(17)
$$o \leq W_{\alpha} - W_{\gamma} \leq \operatorname{Max} (\alpha - \gamma).$$

Ci limiteremo ad accennare alla deduzione di (16_2) . Per il sistema (15) vale il principio di massimo più volte usato in M. Pertanto essendo in ogni caso $\left(\frac{\partial W}{\partial x}\right)_{x=0} < 0$, ammettendo al più l'ipotesi (8), fisicamente necessaria nel caso di temperatura critica monotona decrescente, si ha subito che W_h non può essere negativa in $D_{h,\ell}$. Per provare la seconda parte della disuguaglianza, basta osservare che $Z = Z(x, h) = -Mx - \beta(x)$ è soluzione del sistema:

(18)
$$\begin{cases} \frac{\partial^{2} Z}{\partial x^{2}} = b(Z, x) \frac{\partial Z}{\partial \tau} - \beta''(x), & \tau > 0, \ 0 < x < h; \\ \left(\frac{\partial Z}{\partial x}\right)_{x=0} = -M - \beta'(0) = -M', & \tau > 0; \\ Z_{x=h} = -Mh - \beta(h), & \tau > 0, \end{cases}$$

essendo M una costante positiva maggiore del più grande dei due numeri $|\beta'(0)|$ e Max H (τ) in [0,t].

Posto $A_h = A(x, \tau, h) = W_h - Z = W_h + Mx + \beta(x)$, tenuto conto di (15) e (18), A_h soddisfa in $D_{h,t}$ il sistema:

(19)
$$\begin{cases} \frac{\partial^{2} A_{h}}{\partial x^{2}} = b (A_{h}, x) \frac{\partial A_{h}}{\partial \tau}; \\ \left(\frac{\partial A_{h}}{\partial x}\right)_{x=0} = M - H (\tau) > 0; \\ [A_{h}]_{x=h} = Mh + \beta (h) > 0, \end{cases}$$

con b (A_h, x) = b (A_h — Mx — β , x), dal quale, per il solito principio di massimo, discende facilmente la limitazione:

$$A_h = W_h - Z < M h + \beta (h)$$

e quindi, date le ipotesi su β, come volevamo:

$$0 \le W_h < N(h-x)$$

essendo $N = M + \max_{x} \beta'(x)$.

Nelle nostre ipotesi, valendo le (16) e (17), l'esistenza e la unicità della soluzione del nostro problema discende da considerazioni del tutto analoghe a quelle usate da Kyner ([6]), potendosi agevolmente dimostrare che la trasformazione funzionale:

(20)
$$g(t) = \int_{0}^{t} F_{1}(h, \tau) d\tau - \int_{0}^{h(t)} F_{2}(W_{h}, x, h) dx = R(h),$$

definita nell'insieme delle funzioni reali, monotone e derivabili nell'intervallo [0,t] e nulle per t=0, ammette uno ed un solo punto unito \bar{h} per il quale, essendo $\bar{h}=R$ (\bar{h}) , resta soddisfatta la (13). La funzione $h=\bar{h}$ (t) insieme alla soluzione $W_{\bar{h}}$ del problema ridotto (15), dà la ricercata soluzione del sistema (6) e quindi, attraverso alla posizione (9) e per la invertibilità della (2), la ricercata unica soluzione del problema considerato.

BIBLIOGRAFIA.

- [1] D. QUILGHINI, Su un nuovo problema del tipo di Stefan, « Annali Mat. pura e appl. », (4) LXII, 59-98 (1963).
- [2] D. QUILGHINI, Sul comportamento asintotico delle soluzioni di un problema del tipo di Stefan, «Atti Sem. Univ. Modena», 12, 107–120 (1963).
- [3] D. QUILGHINI, Un teorema di unicità per un problema del tipo di Stefan, « Boll. Un. Mat. Ital. » (3), 18, 270–278 (1963).
- [4] G. Sestini, Problemi di diffusione lineari e non lineari analoghi a quello di Stefan, Conferenze Sem. Univ. Bari, 55–56 (1960).
- [5] G. Sestini, Sul problema unidimensionale non lineare di Stefan in uno strato piano indefinito, «Annali Mat. pura e appl. », (4) 51, 203-224 (1960).
- [6] W. T. KYNER, An existence and uniqueness theorem for a nonlinear Stefan problem, «J. Math. and Mech.», 8, 483–498 (1959).
- [7] M. GEVREY, Equations aux dérivées partielles du type parabolique, « J. Math. Pures Appl. » (6), 9, 306-471 (1913).