ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ALEXANDRE FRODA

Sur l'irrationalité du nombre 2^e

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.6, p. 472–478. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_6_472_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Teorie dei numeri. — Sur l'irrationalité du nombre 2°. Nota di Alexandre Froda, presentata (°) dal Socio B. Segre.

Dans cette Note on s'est proposé de prouver (1) l'irrationalité de 2^e à l'aide du critère paramétrique C₁ de [1].

Soit, par définition,

$$S = \{1, 2, \dots, r, r+1, \dots\}$$

la suite croissante des nombres naturels.

En désignant la base des logarithmes naturels par

$$e = \sum_{s=0}^{\infty} \frac{1}{s!}, \qquad (s \in S),$$

on définit

$$\alpha = 2^{e-1}.$$

En vue d'appliquer à ce nombre α le critère C₁, on pose

(2)
$$y_r = 2^{\varepsilon_r}$$
 , $x_r = 1$, $\varepsilon_r = \sum_{s=1}^r \frac{1}{s!}$, $(r, s \in S)$

et, en conservant les notations de [1],

(3)
$$\alpha_r = \frac{y_r}{x_r}$$
 , $\lim_{r \to \infty} \alpha_r = \alpha$, $(r \in S)$.

On choisit une suite de paramètres q_r , définis pour tout r sous la forme

(4)
$$q_r = \frac{2^{\varepsilon_r}}{r}, \qquad (r \in S).$$

En vertu de (2)-(4), on pourra écrire

(5)
$$\frac{y_r}{q_r} = r \quad , \quad \frac{x_r}{q_r} = \frac{r}{2^{e_r}}, \quad (r \in S).$$

Le critère C_r d'irrationalité est constitué en [1] par la paire des conditions A_r , B_r , rappelées plus loin et qui – satisfaites à la fois – impliquent l'irrationalité de α , limite de la suite croissante des α_r (3), comme il a été prouvé dans le travail précédent [1] (2).

- (*) Nella seduta del 14 dicembre 1963.
- (1) L'irrationalité de 2^e est explicitement présumée en [2], § 4.2, mais la décision à ce sujet est considerée, faute d'une démonstration valide, comme une question encore ouverte.
- (2) On voit aisément que les conditions générales (4), (6) de [1], qui y sont exigées pour la validité de C_1 , sont remplies dans le cas présent. En effet, pour $r \to \infty$, on déduit de (4), qu'on a $q_r \to 0$ en décroissant et comme en (2) on a $x_r = 1$, le rapport $\frac{x_r}{q_r} \to \infty$ en croissant, tandis qu'on en tire aussi $\frac{q_{r+1}}{q_r} < \frac{x_{r+1}}{x_r} = 1$, $(r \in S)$.

On a supposé en [1] que les nombres α_r , dont la suite définit α , sont rationnels. Or, cette condition supplémentaire est superflue (3), comme il résulte de la démonstration même du critère C_1 , donnée en [1].

On va utiliser, dans ce qui suit, le critère C₁, au sens étendu, impliqué par la précédente remarque et qu'on exprime par la paire des conditions:

 A_{r} : on a, pour tout $r > r_{o}$ (assez grand), l'inégalité stricte

(6)
$$\frac{y_{r+1} - p_{r+1} y_r}{x_{r+1} - p_{r+1} x_r} > \frac{y_{r+2} - p_{r+2} y_{r+1}}{x_{r+2} - p_{r+2} x_{r+1}}, \qquad (r \in S),$$

où l'on a posé, par définition,

$$p_{r+1} = \frac{q_{r+1}}{q_r}, \qquad (r \in S);$$

 B_r : pour une suite infinie et croissante S_r d'indices $r=r_v$, on a les inégalités:

(7)
$$\xi_{r_{\nu}} \geq \xi_{r_{\nu+1}}$$
, $\eta_{r_{\nu}} \geq \eta_{r_{\nu+1}}$, $(r_{\nu} < r_{\nu+1}, \nu \in S)$,

où l'on a posé, par définition,

(8)
$$\xi_r = I - F \frac{x_r}{q_r} \quad , \quad \eta_r = F \frac{y_r}{q_r} \quad (4), \quad (r \in S)$$

On peut aussi rendre C_r sous la forme, plus commode, des quatres conditions simultanées qui suivent et dont la paire A_r . 1°, A_r . 2° implique A_r (5), tandis que la paire B_r . 1°, B_r . 2° équivaut à B_z . Voici leur énoncé:

Condition $A_{\rm I}$. I°: On a, pour tout $r > r_{\rm o}$, où $r_{\rm o}$ est assez grand, convenable, les inégalités (au sens large)

(9)
$$\frac{y_{r+1}}{q_{r+1}} - \frac{y_r}{q_r} \ge \frac{y_{r+2}}{q_{r+2}} - \frac{y_{r+1}}{q_{r+1}}, \qquad (r \in S).$$

Condition $A_1.2^\circ$: On a aussi, pour tout $r>r_\circ$, les inégalités (au sens strict)

(10)
$$0 < \frac{x_{r+1}}{q_{r+1}} - \frac{x_r}{q_r} < \frac{x_{r+2}}{q_{r+2}} - \frac{x_{r+1}}{q_{r+1}}, \qquad (r \in S).$$

Condition B_i . 1°: Pour chaque indice $r = r_v$, d'une suite infinie et croissante, convenable $S_i \subset S$, on a l'inégalité (au sens large)

$$\eta_{r_{\nu}} \geq \eta_{r_{\nu+1}} \qquad (\nu \in S, r_{\nu} < r_{\nu+1}).$$

Condition $B_r \cdot 2^\circ$: On a aussi, pour la même suite S_r d'indices $r = r_v$ de la condition précédente, l'inégalité (au sens large)

(12)
$$\xi_{r_{\mathbf{v}}} \geq \xi_{r_{\mathbf{v}+\mathbf{x}}} \qquad (\mathbf{v} \in \mathbf{S}, r_{\mathbf{v}} < r_{\mathbf{v}+\mathbf{x}}).$$

- (3) Dans le cas présent, les valeurs α_r (2), (3) sont des puissances fractionnaires (non entières) du nombre 2, donc des irrationnelles et les conditions [1] (3) inutiles pour C_r .
- (4) On designera comme en [1], pour tout μ réel, par $E\mu$ l'entier, tel qu'on ait $\mu-1<<$ $E\mu\leq\mu$ et l'on posera $F\mu=\mu-E\mu$.
 - (5) Variante possible: Interchanger \geq , <, en (9), (10)

On procède à une démonstration par l'absurde de l'irrationalité de $\alpha=2^{e-1}$, en vérifiant d'abord que les trois conditions précédentes A_{i} . I° , A_{i} . 2° , B_{i} . I° sont satisfaites, si l'on a choisi convenablement, comme ci-dessus en (4), la suite des paramètres q_{r} $(r \in S)$. Voici le détail de ces vérifications.

 A_i . 1°. – On satisfait à (9) car, l'inégalité y étant prise au sens large, il suffit en s'appuyant sur (5) de constater qu'on a, pour tout $r \in S$,

$$(r+1)-r=(r+2)-(r+1)=1.$$

En s'appuyant sur (5), on écrit la condition (10), sous la forme des inégalités strictes

$$0 < \frac{r+1}{2^{\varepsilon_{r+1}}} - \frac{r}{2^{\varepsilon_r}} < \frac{r+2}{2^{\varepsilon_{r+2}}} - \frac{r+1}{2^{\varepsilon_{r+1}}}, \qquad (r \in S).$$

On vérifie directement (13) pour les valeurs numériques 1, 2 de r, car la formule (2) donne

et il suffit de constater qu'on a

(I5)
$$0 < \frac{2}{2^{3/2}} - \frac{1}{2} < \frac{3}{2^{5/3}} - \frac{2}{2^{3/2}} < \frac{4}{2^{41/24}} - \frac{3}{2^{5/3}}.$$

En ce qui concerne les valeurs $r \ge 2$, on vérifie la formule (13) en procédant comme il suit.

On multiplie par $2^{\epsilon_{r+1}}$ en (13) et l'on obtient son équivalent, qu'on peut écrire

$$2 < \frac{r+2}{r+1} \cdot \frac{1}{2^{\varepsilon_{r+2}-\varepsilon_{r+1}}} + \frac{r}{r+1} \cdot 2^{\varepsilon_{r+1}-\varepsilon_{r}}.$$

Or, en invoquant (2), on a

(16)
$$\varepsilon_{r+1} - \varepsilon_r = \frac{1}{(r+1)!}, \qquad (r \in S)$$

et l'équivalent précédent de (13) s'écrit encore sous la forme

(17)
$$2 < \frac{r+2}{r+1} \cdot \frac{1}{\frac{1}{2^{(r+2)!}}} + \frac{r}{r+1} \cdot 2^{\frac{1}{(r+1)!}}, \qquad (r \in S).$$

Par multiplication de cette inégalité par $\frac{r+1}{r}$ on en tire encore un équivalent de (13)

(18)
$$2 + \frac{2}{r} < \left[\frac{1}{2^{\frac{1}{(r+2)!}}} + 2^{\frac{1}{(r+2)!}} \right] + \left[2^{\frac{1}{(r+1)!}} - 2^{\frac{1}{(r+2)!}} \right] + \frac{1}{r} \cdot 2^{\frac{1}{r-\frac{1}{(r+2)!}}},$$

qu'on prouve de la manière suivante. L'inégalité

(19)
$$2 < \frac{1}{2^{\frac{1}{(r+2)!}}} + 2^{\frac{1}{(r+2)!}},$$

s'obtient directement (6) de

$$u > 1$$
, $\frac{1}{u} + u > 2 \longleftrightarrow u^2 - 2 u + 1 > 0 \longleftrightarrow (u - 1)^2 > 0$,

lorsqu'on y remplace u par le premier terme de l'inégalité

$$2^{\frac{1}{(r+2)!}} > 1,$$

qui résulte du fait que 2^{λ} est une fonction croissante de λ réel.

On obtiendra donc (18) comme conséquence de (19) et de l'inégalité

(21)
$$\frac{2}{r} < 2^{\frac{1}{(r+1)!}} - 2^{\frac{1}{(r+2)!}} + \frac{1}{r} \cdot 2^{1-\frac{1}{(r+2)!}},$$

qui reste à démontrer. En divisant par $2^{\frac{r}{(r+2)!}}$ en (21), on obtient son équilent

(22)
$$\frac{1}{r} \cdot 2^{1 - \frac{1}{(r+2)!}} \left[2^{\frac{1}{(r+2)!}} - 1 \right] < 2^{\frac{1}{(r+1)!} - \frac{1}{(r+2)!}} - 1.$$

Or, pour $r \geq 2$, on a

(23)
$$0 < \frac{1}{r} \cdot 2^{1 - \frac{2}{(r+2)!}} < 1,$$

puisque 2^{λ} est croissante et qu'on a donc $2^{\frac{1}{r-\frac{2}{(r+2)!}}} < 2$, tandis que $\frac{1}{r} \leq \frac{1}{2}$. Or, le produit membre à membre des deux dernières inégalités implique (23). Il suffira de montrer encore qu'on a, pour $r \geq 2$, l'inégalité

(24)
$$2^{\frac{1}{(r+2)!}} - 1 < 2^{\frac{1}{(r+1)!} - \frac{1}{(r+2)!}} - 1.$$

car en multipliant (23), (24) on aura a fortiori (22) \longleftrightarrow (21). Or de (19), (21) on obtient par addition (18).

Comme on a déjà vérifié (15) et qu'on a démontré les équivalences (13) \longleftrightarrow (17) \longleftrightarrow (18), on vérifie A_1 . 2° en prouvant encore (24). Cette inégalité sera déduite de la suite d'inégalités successives équivalentes

$$2^{\frac{1}{(r+2)!}} < 2^{\frac{1}{(r+1)!} - \frac{1}{(r+2)!}} \longleftrightarrow \frac{1}{(r+2)!} < \frac{1}{(r+1)!} - \frac{1}{(r+2)!},$$

dont la dernière revient, après multiplication par (r+1)! à $\frac{2}{r+2} < 1$ et donc à r > 0, ce qui achève la vérification de l'énoncé de $A_1 \cdot 2^{\circ}$ dans le cas de α défini en (1).

 B_{1} . 1° . – En vertu de (5), on a, pour tout r,

$$\eta_r = F \frac{y_r}{q_r} = Fr = 0$$

(6) On introduit les symboles logiques d'implication → et d'équivalence ← →.

et donc la condition (II) est satisfaite par l'égalité $\eta_{r_v} = \eta_{r_{v+1}}$, quelle que soit la suite $S_{\tau} \subset S$ et $r = r_v \in S_{\tau}$, pour $v \in S$. La condition B_{τ} . I° est donc aussi satisfaite.

On reprend la démonstration de l'irrationalité de α , en admettant – par absurde – l'hypothèse de la rationalité de 2^{e-1} . On pose donc

$$(25) 2^{e-1} = \frac{u}{u},$$

où u, v sont des nombres naturels, premiers entre eux.

On pose

(26)
$$\delta_r = \frac{r+1}{2^{\varepsilon_{r+1}}} - \frac{r}{2^{\varepsilon_r}}, \qquad (r \in S)$$

et l'on démontre, qu'on a

(27)
$$0 < \delta_r < \frac{1}{2^{\varepsilon_r}} < 1, \qquad (r \in S).$$

On peut écrire, en effet, en vertu de (16), l'égalité (26) sous la forme

(28)
$$\delta_r = \frac{1}{2^{\varepsilon_r}} \left[\frac{1}{\frac{1}{2^{(r+1)!}}} (r+1) - r \right]$$

et remarquer qu'on a déjà eu $\delta_r > 0$ en (13). Or, puisque 2^{λ} croît avec λ réel et que (1), (2) entraînent l'inégalité $\varepsilon_r < e - 1$, on a

(29)
$$2^{\frac{1}{r!}} > 1$$
 , $2^{\epsilon_r} < 2^{\epsilon - 1}$,

ce qui implique la seconde inégalité de (27), la paranthèse en (28) ayant une valeur inférieure à 1.

En invoquant (13), (27), pour tout $r \in S$ et en y passant à la limite, on aura, en vertu de la transitivité

(30)
$$0 < \delta_1 < \delta_2 < \cdots < \delta_r < \delta_{r+1} < \cdots < \frac{1}{2^{\ell-1}} < 1.$$

De (26), (27), (29), (30) on tire 2^{ε_r} tend vers $2^{\varepsilon_{r-1}}$ en croissant

(31)
$$0 < \delta_r < \frac{r+1}{2^{\epsilon_{r+1}}} - \frac{r}{2^{\epsilon_{-1}}} \le 1.$$

En considérant les valeurs u, v de (25), ainsi que les indices v'=1, 2, ..., on posera

$$(32) r_{v'} = v' \cdot u, (v' \in S).$$

Les inégalités (31) donnent, par suite de (25), (32)

$$(33) \qquad 0 < \delta_{r_{\mathbf{v}'}} < \frac{1 + r_{\mathbf{v}'}}{2^{\varepsilon_{(\mathbf{I}} + r_{\mathbf{v}'})}} - \mathbf{v}' \cdot v \le \mathbf{I}, \qquad (\mathbf{v}' \in \mathbf{S}).$$

En introduisant les indices notés $r'_{\nu'}(\nu' \in S)$ et définis par l'égalité

$$(34) r = r'_{v'} = 1 + r_{v'}$$

on voit que ces indices vont en croissant ave $v' \in S$, en vertu de (32).

On écrira donc (33) sous la forme

$$0 < \delta_{r_{\mathbf{v}'}} < \frac{r'_{\mathbf{v}'}}{2^{\varepsilon_{r'_{\mathbf{v}'}}}} - \mathbf{v}' \cdot \mathbf{v} \le \mathbf{I}, \qquad (\mathbf{v}' \in \mathbf{S}).$$

Comme $v' \cdot v$ est un entier, l'inégalité (35) implique (7)

(36)
$$0 < \delta_{r_{\mathbf{v}'}} < F \frac{r'_{\mathbf{v}'}}{2^{\varepsilon_{r'_{\mathbf{v}'}}}} \qquad (\mathbf{v}' \in S)$$

et, en invoquant (8) pour la définition générale des ξ_r ($r \in S$), on obtient

(37)
$$\xi_{r'_{\mathbf{v}'}} = \mathbf{I} - \mathbf{F} \frac{r'_{\mathbf{v}'}}{2^{\varepsilon_{r'_{\mathbf{v}'}}}} < \mathbf{I} - \delta_{r_{\mathbf{v}'}}, \qquad (\mathbf{v}' \in \mathbf{S}).$$

On désigne par Z' l'ensemble des valeurs $\xi_{r'_{\nu}}$, $(\nu' \in S)$ et l'on y choisit un sous-ensemble $Z \subset Z'$ de valeurs désignées par $\xi_{r_{\nu}} \in Z$, en procédant comme il suit.

À chaque nombre v=1, 2,... on attachera une valeur de l'indice $r=r_v$, croissant avec v, ce qui revient à effectuer un numérotage des valeurs ξ_r choisies en Z', en posant – par définition –

(38)
$$\xi_{r_{v}} = \inf_{v' < v} \{ \xi_{r'_{v'}} \}, \qquad (v \in S, \xi_{r'_{v'}} \in Z').$$

Il est clair, d'une part, que $\xi_{r_v} \in Z'$, car en (38) v' n'y prend qu'un nombre fini de valeurs $v' \leq v$ et qu'il existe donc un nombre v' bien déterminé, pour lequel le minimum parmi les $\xi_{r_v'}$ est atteint en (38). Et d'autre part, lorsque v' parcourt S, on a (30) ce qui implique entre les seconds membres des inégalités (37), les inégalités

(39)
$$1 - \delta_{r_{v'}} > 1 - \delta_{r_{v'+1}}.$$

On peut remarquer que, malgré (37), cela n'implique pas les inégalités

$$\xi_{r_{\mathbf{v}'}} \geq \xi_{r_{\mathbf{v}'+1}},$$
 $(\mathbf{v}' \in \mathbf{S}),$

de sorte qu'on est dans la nécéssité d'opérer d'abord le choix défini en (38). Cela fait, on aura donc

(40)
$$\xi_{r_{v}} \in Z \longleftrightarrow \xi_{r_{v}} = I - F \frac{r_{v}}{2^{\epsilon_{r_{v}}}}, \qquad (v \in S)$$

et la suite S_r des indices r_v appartenant aux ξ_{r_v} choisis en (38) est infinie, car ν parcourt S et r_v croît avec ν . Or, en (38), ξ_{r_v} étant le plus petit parmi les ξ_{r_v} où $\nu' \leq \nu$, il ne peut que diminuer ou conserver sa valeur, lorsque ν croît.

On obtient ainsi

$$\xi_{r_{\nu}} \geq \xi_{r_{\nu+1}}, \qquad (\nu \in S),$$

qui n'est autre que l'inégalité (12) à démontrer et montre que la condition B_1 . 2° est satisfaite.

(7) On utilise la définition de l'opérateur F donnée en bas de page, dans la note (4) ci-dessus.

Or, on a admis, par hypothèse, que α est rationnel et l'on a vérifié ainsi, qu'en ce cas, en plus des conditions A_{I} . I° , A_{I} . 2° , B_{I} . I° précédemment obtenues, B_{I} . 2° aurait aussi lieu. En somme, toutes les conditions du critère C_{I} seraient donc, en ce cas, satisfaites et l'application du critère permettrait de conclure que α devrait être irrationnel. Or cela contredit directement l'hypothèse admise.

Ce raisonnement montre donc que la supposition de la rationalité de α est absurde et cela conduit à la conclusion opposée: $\alpha = 2^{e-1}$ est irrationnel et, par suite, 2α jouit de la même propriété: 2^e est irrationnel, c.q.f.d.

BIBLIOGRAPHIE.

- [I] FRODA A., Critéres paramètriques d'irrationalité, «Mathematica Scandinavica», vol. 12, Kobenhaven 1964, sous presse.
- [2] HARDY-WRIGHT, An introduction to the theory of numbers, Oxford University Press, 3rd Ed., London 1954.