ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ENRICO BOMBIERI

Sul problema di Bieberbach per le funzioni univalenti

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.6, p. 469–471. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_6_469_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Funzioni analitiche. — Sul problema di Bieberbach per le funzioni univalenti. Nota di Enrico Bombieri (*), presentata (**) dal Corrisp. G. Ricci.

In questa Nota ci proponiamo di presentare alcuni risultati da noi ottenuti recentemente sul cosiddetto « problema di massimo locale per la funzione di Koebe ». In particolare ne viene che la congettura di Bieberbach è vera « localmente » per il coefficiente a_6 .

I. IL PROBLEMA E I RISULTATI OTTENUTI. – Sia S la famiglia delle funzioni $f(z) = z + a_2 z^2 + \cdots$ regolari ed univalenti nel cerchio |z| < 1. La ben nota congettura di Bieberbach afferma:

Ipotesi di Bieberbach: «Se $f(z) \in S$, allora $|a_n| \le n$, e vale il segno = se e soltanto se $f(z) = z/(1 - e^{i\theta} z)^2$ ».

Le funzioni $f_{\theta}(z) = z/(1 - e^{i\theta}z)^2$ sono le funzioni di Koebe, che hanno grande importanza nello studio della famiglia S.

Prenderemo in esame il seguente

Problema I: « Determinare la costante pn data dal limite

(I)
$$\lim_{\substack{\operatorname{Re}(a_2) \to 2-}} \frac{n - \operatorname{Re}(a_n)}{2 - \operatorname{Re}(a_2)} = \rho_n ...$$

È chiaro nella (I) che a_2 e a_n sono il secondo e l'ennesimo coefficiente di una medesima funzione della famiglia S.

Ora, poiché la congettura di Bieberbach è vera per n=2, 3, 4 (vedasi L. Bieberbach [1], K. Löwner [2], P. R. Garabedian e M. Schiffer [3], Z. Charzynski e M. Schiffer [4] e [5]) avremo che è $z - \text{Re}(a_z) > 0$ tranne nel caso $f(z) = z/(1-z)^2$, e quindi il significato della costante ρ_n è il seguente:

« Se $\rho_n < 0$, l'ipotesi di Bieberbach è falsa per questo n; se $\rho_n > 0$, allora Re $(a_n) \le n$ se Re $(a_2) > 2 - \sigma_n$, per una opportuna costante σ_n ».

Come si vedrà dai risultati ottenuti, la (I) è significativa solo se n è un numero pari; debbo ad una osservazione di M. Schiffer l'esatto analogo del problema (I) nel caso di n dispari:

Problema 2: « Determinare la costante θ_n data dal limite

(2)
$$\lim_{\operatorname{Re}(a_3) \to 3^{-1}} \frac{n - \operatorname{Re}(a_n)}{3 - \operatorname{Re}(a_3)} = \theta_n$$

nel caso in cui n sia dispari ».

- (*) Studio eseguito nell'ambito del Gruppo di ricerca N. 40 (1962–1963) del Comitato Nazionale per la Matematica del C.N.R.
 - (**) Nella seduta del 14 dicembre 1963.

Sfortunatamente, la trattazione del problema 2 sembra complicata, e non può essere fatta con lo stesso procedimento da noi usato nel problema 1.

Il nostro principale risultato è un teorema che collega il valore della costante ρ_n al minimo autovalore di una equazione integrale di Fredholm, data esplicitamente. Poiché l'equazione data è non singolare, si possono applicare metodi ben noti per il calcolo numerico degli autovalori di questa. Ne segue che, almeno in linea teorica, il problema I si può considerare completamente risolto.

L'enunciato del teorema si esprime con l'aiuto di alcune funzioni ausiliarie, definite nel seguente modo:

sia
$$K = \frac{z}{(1-z)^2}$$
, $U = 1 + 4u K$, $V = 1 + 4v K$

e poniamo

$$(3) F(z, u) = K^2/U$$

(4)
$$H(z, u) = 2 K^2 / \sqrt{U}$$

(5)
$$G(z, u, v) = \frac{K^3}{\sqrt{UV}} \left(3 + \begin{cases} V^{-1} & \text{se } v \leq u \\ U^{-1} & \text{se } u \leq v \end{cases} \right)$$

e siano

(6)
$$F(z, u) = \sum_{n=2}^{\infty} F_n(u) z^n$$

(7)
$$H(z, u) = \sum_{n=2}^{\infty} H_n(u) z^n$$

(8)
$$B(z, u, v) = \sum_{n=3}^{\infty} G_n(u, v) z^n$$

gli sviluppi delle funzioni F(z, u), H(z, u), G(z, u, v) in un conveniente intorno dell'origine.

Sia infine

(9)
$$\mu_n = \min_{0 \le u \le 1} F_n(u).$$

Allora vale il seguente

TEOREMA I: Si ha $\rho_n = \min(\mu_n, \lambda)$, dove λ è il più piccolo autovalore reale dell'equazione integrale di Fredholm

(10)
$$\left[\lambda - F_n(u)\right] y(u) = \int_0^{\tau} G_n(u, v) y(v) dv, \quad con \ y(u) \in L^2(0, 1).$$

Osservazione: Possono presentarsi ambedue i casi $\rho_n = \lambda < \mu_n$ e $\rho_n = \mu_n < \lambda$. Il primo, ad esempio, se n = 4 e il secondo se n = 3.

Ecco alcune conseguenze del teorema 1.

TEOREMA 2:

$$\rho_2 = I$$
 , $\rho_3 = o$, $\rho_4 > o,8o$, $\rho_5 \leqq o$, $\rho_6 > o$

e in generale $\rho_{2m+1} \leq 0$.

Siamo perciò portati alla congettura seguente:

Ipotesi 1:

$$\rho_{2m} > 0$$
 , $\rho_{2m+1} = 0$.

In ogni caso, si vede bene la differenza nel comportamento di ρ_n a seconda che n sia pari o dispari.

Nel caso n dispari, sembra che il problema 2 sia più significativo.

2. Osservazioni finali. – Dal teorema 2, e dall'osservazione riguardante il significato della costante ρ_n , ricaviamo la « proprietà di massimo locale della funzione di Koëbe per il sesto coefficiente »:

TEOREMA 3: Esiste una costante assoluta $c_0 > 0$ tale che, per ogni $f(z) = z + a_2 z^2 + \cdots \in S$ con

$$2 - c_{\rm o} < {\rm Re} (a_2) \le 2$$

sia

Re
$$(a_6) \leq 6$$
,

e vale il segno = se e soltanto se $f(z) = z/(1-z)^2$.

Una buona valutazione approssimata per c_0 darebbe la possibilità di dimostrare la congettura di Bierbebach nel caso n=6; vedasi in proposito P. R. Garabedian e M. Schiffer [3]. Infine, occorre accennare qui alla notevole ricerca di P. L. Duren e M. Schiffer [6], che presenta notevoli punti di contatto con la nostra trattazione del problema; tuttavia si deve tenere presente che i risultati ottenuti da questi due autori non sono sufficientemente generali per ricavarne risultati come il teorema 3.

BIBLIOGRAFIA.

- [1] L. BIEBERBACH, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, « Preuss. Akad. Wissen. Sitzungb. », pp. 940–955 (1916).
- [2] K. LÖWNER, Untersuchungen über schlichte konforme Abbildungen des Einhaitskreises, «I. Math. Ann.», 89, 103–121 (1923).
- [3] P. R. GARABEDIAN e M. SCHIFFER, A proof of the Bieberbach conjecture for the fourth coefficient, « Jour. Rat. Mech. Anal. », 4, 427-465 (1955).
- [4] Z. CHARZYNSKI e M. SCHIFFER, A new proof of the Bieberbach conjecture for the fourth coefficient, «Archive Rat. Mech. Anal. », 5, 187-193 (1960).
- [5] Z. CHARZYNSKI e M. SCHIFFER, A geometric proof of the Bieberbach conjecture for the fourt coefficient, «Scripta Math.», 25, 173-181 (1960).
- [6] P. L. DUREN e M. SCHIFFER, The Theory of the second variation in extremum problems for univalent functions, « Jour. d'Analyse Math. », 10, 193-254 (1962-63).