ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

FULVIA SKOF

Sull'attenuazione delle condizioni tauberiane

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.6, p. 466–468. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_6_466_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Funzioni analitiche. — Sull'attenuazione delle condizioni tauberiane. Nota di Fulvia Skof (*), presentata (**) dal Corrisp. G. Ricci.

I. Sia
$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$
 convergente per $|z| < 1$;
$$s_n(z) = \sum_{k=0}^{n} a_k z^k (z = re^{i\theta}); \quad s_n(1) = s_n.$$

È ben noto che

(I) Da
$$n \mid a_n \mid = O(1)$$
, $f(r) \rightarrow 0$ per $r \rightarrow 1$ — segue $s_n \rightarrow 0$

(J. E. Littlewood, [2]).

(II) Da
$$s_v - s_u > -\sigma$$
 per $u_o \le u < v \le u$ (I + ω) ($\sigma > 0$, $\omega = \omega$ (σ), $u_o = u_o$ (σ)) e $f(r) \to 0$ per $r \to I$ segue $s_n \to 0$

(R. Schmidt [3]-T. Vijayaraghavan [6]).

Sia (\mathfrak{C}) la classe delle serie f(z) continue per $|z| \leq \mathfrak{I}$, cioè tali che per ogni θ ($0 \leq \theta < 2\pi$) esiste finito il limite radiale $\lim_{r \to \mathfrak{I}} f(re^{i\theta}) = g(\theta)$ uniforme rispetto a θ , e si conviene di porre $f(e^{i\theta}) = g(\theta)$.

L'attenuazione della condizione tauberiana (contenuta in (I) oppure in (II)) può condurre a s_n divergente anche con $f(r) \to 0$. Come è noto, esistono $f(z) \in (\mathfrak{C})$ per le quali s_n diverge (L. Fejér [1]-P. Turán [5]) e queste f(z) non verificano alcuna condizione sufficiente tauberiana; tutt'al più potranno per esempio verificare condizioni analoghe a quelle in (I) e in (II), ottenute da esse introducendovi qualche attenuazione. È stato anche stabilito (E. C. Titchmarsh [4]), che se $f(z) \in (\mathfrak{C})$ risulta $s_n = o(\log n)$.

Quanto e come le attenuazioni accennate possono influire sull'andamento di s_n ? Questo è il tema trattato nella presente Nota, con la quale si comunicano risultati le cui dimostrazioni verranno pubblicate altrove.

P. Turán [5] ha dimostrato che, assegnata $\psi(t) \to +\infty$ (lentamente quanto si vuole) esistono $f(z) \in (\mathfrak{C})$ per le quali $n \mid a_n \mid \leq \psi(n)$, $s_n = O(1)$.

Si perviene a tre teoremi, e precisamente: (A), attenuando (I) secondo il punto di vista di P. Turán e non imponendo condizioni a priori alla successione s_n ; (B), attenuando (II) e non imponendo alcuna condizione a priori ad a_n ; (C), attenuando (I) e (II) simultaneamente col porre così condizioni a priori ad a_n e s_n (tauberiane attenuate).

In ciascuno dei tre casi si stabilisce l'esistenza di successioni parziali n_h lungo le quali s_n è limitato dal di sotto: in questo modo si pone in rilievo

^(*) Studio eseguito nell'ambito del Gruppo di ricerca N. 40 (1962–1963) del Comitato nazionale per la Matematica del C.N.R.

^(**) Nella seduta del 14 dicembre 1963.

quanto, in accordo con la relazione $s_n = o(\log n)$, l'ordine di s_n si stacchi da quello di $\log n$.

2. Il seguente teorema precisa il risultato di P. Turán:

TEOREMA (A). – Assegnate due funzioni $\psi(t) > 0$, $\varepsilon(t) > 0$, che per $t \to +\infty$ verificano le condizioni : $\varepsilon(t) \to 0$, $\psi(t) \to +\infty$ monotona, $\psi(t)|t \to 0$ monotona, esiste $f(z) \in (\mathfrak{C})$ con le seguenti proprietà:

- i) $|a_n| \leq \psi(n)/n$;
- ii) esiste una successione n_h lungo la quale si ha

$$|a_{n_h}| = \psi(n_h)/n_h$$
, $|s_{n_h}| > \varepsilon(n_h) \log \psi(n_h)$.

Come corollario si ottiene il risultato di L. Féjer-E. C. Titchmarsh [4]: «Assegnata $\varepsilon(t) > 0$, con $\varepsilon(t) \to 0$ per $t \to +\infty$, esiste $f(z) \in (\mathfrak{C})$ per la quale sono verificate le seguenti proprietà:

- i) $a_n \rightarrow 0$;
- ii) lungo una successione n_h risulta $|s_{n_h}| > \varepsilon(n_n) \log n_h$ ».

La classica condizione presentata in (II) può essere attenuata col richiedere la sua validità per intervalli $u_o \le u < v \le u + \chi(u)$ essendo $\chi(u) = o(u)$; nessuna condizione a priori viene imposta ad a_n .

TEOREMA (B). – Assegnati un numero $\sigma > 0$ e due funzioni $\varepsilon(t) > 0$, $\chi(t) > 0$, che verificano le condizioni:

$$\begin{cases} \varepsilon(t) \to 0, \ \chi(t) \to +\infty, \ \chi(t) = o(t) \ per \ t \to +\infty \\ \chi(t) \ e \ \chi(t)/t \ monotone, \end{cases}$$

esiste $f(z) \in (\mathfrak{C})$ per la quale sono verificate le seguenti proprietà:

- i) esiste $u_0 = u_0(\sigma; \chi, \varepsilon) > 0$ tale che $s_v s_u \ge -\sigma \text{ per } u_0 \le u < v \le u + \chi(u)$
- ii) lungo una successione n_h risulta

$$|s_{n_h}| > \varepsilon(n_h) \log(n_h/\chi(n_h)).$$

3. Rimane da affrontare la ricerca di funzioni $f(z) \in (\mathbb{C})$ per le quali sia maggiorata la successione dei coefficienti, attenuando la condizione in (I), e sia contratto l'intervallo $u < v \le u$ (I + ω), attenuando la condizione in (II). Si perviene al seguente

TEOREMA (C). – Assegnati un numero $\sigma > 0$, e tre funzioni $\varepsilon(t) > 0$, $\chi(t) > 0$, $\psi(t) > 0$ che verificano le condizioni

$$\left\{ \begin{array}{l} \varepsilon\left(t\right) \rightarrow 0 \ , \ \chi\left(t\right) \rightarrow + \infty \ , \ \psi\left(t\right) \rightarrow + \infty \ , \ \chi\left(t\right) \cdot \psi\left(t\right) = o\left(t\right) \ \ \mathrm{per} \ \ t \rightarrow + \infty \, ; \\ \chi\left(t\right) \ , \ \psi\left(t\right) \ , \ \psi\left(t\right) / t \ , \ \chi\left(t\right) \cdot \psi\left(t\right) / t \ \ monotone, \end{array} \right.$$

esiste $f(z) \in (C)$ per la quale sono verificate le seguenti proprietà:

i)
$$|a_n| \leq \psi(n)/n$$
;

ii) esiste
$$u_o = u_o (\sigma ; \chi \psi) > 0$$
 tale che
$$s_v - s_u > -\sigma \text{ per } u_o \le u < v \le u + \chi(u);$$

iii) lungo una successione n_h risulta

$$|a_{n_h}| = \psi(n_h)/n_h$$
 , $|s_{n_h}| > \varepsilon(n_h) \log \psi(n_h)$.

Osservazione. – Si richiama l'attenzione sulla forma dell'ipotesi $\chi(t)$ $\psi(t) = o(t)$, la quale esprime chiaramente in qual modo l'attenuazione ottenuta con $\psi(t)$ e quella ottenuta con $\chi(t)$ siano fra loro mutuamente vincolate.

BIBLIOGRAFIA.

- [I] FEJÉR L., Ueber gewisse Potenzreihen an der Konvergenzgrenze, «Sitzungsb. d. math. phys. Kl. d. Akad. Wiss.», München 1910, 3 Abh., 17 pp.
- [2] LITTLEWOOD J. E., The converse of Abel's theorem on power series, « Proc. London Math. Soc. », (2) 9, 434-448 (1911).
- [3] SCHMIDT R., Ueber divergente Folgen und lineare Mittelbildungen, «Math. Zeitschr. », 22, 89–152 (1925).
- [4] TITCHMARSH E. C., The theory of functions, 2 ed., London (1960), p. 418.
- [5] Turán P., On a point in the theory of power series, (in ungherese), «Matem. Lapok », 10, 278–283 (1959).
- [6] VIJAYARAGHAVAN T., A Tauberian theorem, « Journ. London Math. Soc. », 1, 113-120 (1926).