ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Laura Cupello

Sulle costanti delle condizioni di Hölder in forma integrale

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.6, p. 460–462. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_6_460_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Sulle costanti delle condizioni di Hölder in forma integrale (*). Nota di Laura Cupello, presentata (**) dal Corrisp. G. Ricci.

Sia $\varphi(t)$ una funzione reale della variabile reale t, definita per $a \le t \le b$ e ivi sommabile, identicamente nulla fuori di questo intervallo.

Sono note le condizioni di Hölder in forma integrale di ordine α ($0 \le \alpha \le 1$). Tra i numerosi studi nei quali esse vengono utilmente applicate sono quelli riguardanti certe funzioni analitiche trascendenti definite mediante integrali. Problemi riguardanti queste funzioni sono stati trattati da G. H. Hardy-J. E. Littlewood, E. C. Titchmarsh, M. L. Cartwright ed altri.

È noto che (1)

$$\int_{a}^{b} |\varphi(t+h) - \varphi(t)| dt = o(|h|) \quad \text{per } h \to 0,$$

quando e soltanto quando esiste un numero c tale che sia $\varphi\left(t\right)=c$ quasi ovunque; mentre

$$\int_{a}^{b} |\varphi(t+h) - \varphi(t)| dt = O(|h|) \quad \text{per } h \to 0,$$

quando e soltanto quando $\varphi(t)$ è quasi ovunque uguale a una funzione a variazione finita in $a \le t \le b$.

Ci proponiamo la determinazione esplicita delle costanti e degli infinitesimi che figurano al secondo membro della condizione di Hölder sotto forma integrale in un caso particolarmente interessante.

Prendiamo in esame funzioni $\varphi(t)$ che presentano una singolarità di comportamento nell'intorno di un punto interno all'intervallo di integrazione della condizione stessa. Possiamo supporre, senza alterare la generalità del risultato, che tale intervallo sia — $\mathbf{I} \leq t \leq \mathbf{I}$ e che il punto singolare sia $t = \mathbf{0}$: più precisamente consideriamo le funzioni $\varphi(t)$ della forma $\varphi(t) = |t|^{\alpha-1} \psi(t)$. Sul comportamento di $\psi(t)$ nell'intorno del punto $t = \mathbf{0}$ vengono prese in esame successivamente varie ipotesi: validità di una condizione di W. H. Young, variazione finita, appartenenza a una classe di Hölder di ordine

^(*) Studio eseguito nell'ambito del gruppo di ricerca n. 40 (1962–63) del Comitato Nazionale per la Matematica del C.N.R.

^(**) Nella seduta del 14 dicembre 1963.

⁽¹⁾ G. H. HARDY e J. E. LITTLEWOOD, Some properties of fractional integrals, «Math. Z.», 27, 599 (1928) e A convergence criterion for Fourier series, «Math. Z.», 28,-619 (1928); E. C. TITCHMARSH, A theorem on Lebesgue integrals, «J. London Math. Soc.» 2, 36-37 (1927).

 γ , con $\alpha < \gamma < 1$; discontinuità di seconda specie in t = 0; differenziabilità di $\varphi(t)$ con la condizione $|t|^{2-\alpha} \varphi'(t) \to 0$ per $t \to 0$.

La condizione di W. H. Young è la seguente:

$$(Y)\int_{0}^{1}|d(u\psi(u))|$$
 finito, $\int_{0}^{\eta}|d(u\psi(u))|=O(\eta)$ per $\eta \to 0+$.

Indicando con $V_{\psi}(a, b)$ la variazione totale di $\psi(t)$ nell'intervallo $a \le t \le b$, poniamo, per ogni $\sigma > 0$ e $0 < \eta < 1$,

$$\begin{split} \overline{H}\ (\eta\ ,\sigma) &= \mathop{\operatorname{Sup}}_{\sigma_i < \, u \, \leq \, \eta} \, V_\psi \left(u / (\mathbf{1} \, + \, \sigma) \, , \, u \right); \\ \sigma_{\scriptscriptstyle \mathrm{I}} &= (\mathbf{1} \, + \! \sigma)^{\scriptscriptstyle \mathrm{I} \, - \, \alpha} / \{ (\mathbf{1} \, + \, \sigma)^{\scriptscriptstyle \mathrm{I} \, - \, \alpha} - \mathbf{1} \} \quad , \quad H_\sigma = \sigma_{\scriptscriptstyle \mathrm{I}} \, \lim_{\eta \, \to \, \sigma} \, \overline{H} \left(\eta\ , \, \sigma \right); \end{split}$$

 $\overline{\psi}(t) = \underset{\circ < u < t}{\operatorname{Sup}} | \psi(u) | = \text{minima maggiorante di } | \psi(t) | \text{ ridotta}$

continua dalla sinistra.

Studiamo l'andamento dell'integrale

$$I(\varphi) = \int_{0}^{1} |\varphi(t \pm h) - \varphi(t)| dt \quad , \quad \varphi(t) = |t|^{\alpha - 1} \psi(t),$$

per $h \rightarrow 0 + .$ Dai risultati ottenuti per I (ϕ) si deducono in modo ovvio quelli riguardanti l'integrale analogo

$$\int_{-1}^{1} |\varphi(t \pm h) - \varphi(t)| dt.$$

I risultati principali da noi ottenuti sono i seguenti:

TEOREMA (A). – Sia $\psi(t) \rightarrow 0$ per $t \rightarrow 0$; $\psi(t)$ verifichi in 0 < t < 1 la condizione (Y) di W. H. Young e sia priva di salti esterni; allora per $\varepsilon > 0$ e $0 \le h \le h_0(\varepsilon)$

$$I\left(\phi\right) < \left\{ K\left(\psi \; , \alpha\right) + \; \epsilon \right\} \overline{\psi}^{\tau - \alpha}\left(\lambda\right) \cdot \textbf{h}^{\alpha}$$

dove $K(\psi, \alpha) = 2/\alpha + H_{\sigma}$ e $\lambda = \text{Sup } u(\overline{\psi}(u) \cdot u \leq h)$.

TEOREMA (B). – Il teorema (A) cessa di valere se in (A_o) si sostituiscono in luogo di $K(\psi,\alpha)$ l'una o l'altra delle seguenti espressioni:

$$K(\psi,\alpha)$$
 (1 — ϵ) (ϵ > 0),

$$\mathrm{K}\;(\psi\;,\alpha)-2-\epsilon \qquad \qquad (\epsilon>0).$$

A questo teorema (B) si perviene determinando esplicitamente l'espressione di una costante $K_o < K (\psi, \alpha)$ per la quale il teorema (A) cessa di valere in generale; per una funzione $\varphi(t)$ opportunamente costruita si ottiene l'espressione $K (\psi, \alpha)$ ($I - \varepsilon$). Questo risultato mostra che la costante $K (\psi, \alpha)$ è molto significativa.

Teorema (C). – Nelle ipotesi del Teorema (A), salvo quella ottenuta sostituendo $\psi(t) \rightarrow 0$ per $t \rightarrow 0$ con $\psi(t) = c + \psi_{\tau}(t)$, $\psi_{\tau}(t) \rightarrow 0$ per $t \rightarrow 0$, risulta, per $\varepsilon > 0$ e $0 \le h \le h_0(\varepsilon)$

$$I\left(\phi\right)=C\cdot\textit{h}^{\alpha}-\textit{ch}+\vartheta\left\{ \left(K\left(\psi_{\text{\tiny I}}\right,\alpha\right)+\epsilon\right)\overline{\psi}_{\text{\tiny I}}^{\text{\tiny I}-\alpha}\left(\lambda\right)\cdot\textit{h}^{\alpha}\right\} +\textit{O}\left(\textit{h}^{2}\right)$$

dove $C = c(2^{2-\alpha} - I)/\alpha$, $-I \le \vartheta \le I$, $K(\psi_I, \alpha)$ è la costante implicata nel Teorema (A) calcolata per la funzione $\psi_I(t)$, cioè

$$\text{K}\left(\psi_{\text{\tiny I}}\,,\alpha\right)=2/\alpha+H_{\sigma}^{\text{\tiny I}}\,,\left(H_{\sigma}^{\text{\tiny I}}=\sigma_{\text{\tiny I}}\cdot\lim_{\eta\to\circ}\sup_{\circ<\varkappa\leq\eta}V_{\psi_{\text{\tiny I}}}\left(\varkappa/(\text{\tiny I}+\sigma)\;,\,\varkappa)\right)$$

e la costante implicata in $O(h^2)$ è indipendente da ε .

Teorema (D). – Nelle ipotesi del Teorema (A), salvo quella ottenuta sostituendo $\psi(t) \rightarrow 0$ per $t \rightarrow 0$ con $\psi(t)$ limitata per $0 \le t \le 1$, $\lim_{t \to 0} \psi(t) = -1$,

$$\overline{\lim_{t\to 0}} \ \psi(t) = 1$$
, risulta, per $\varepsilon > 0$ e $0 \le h \le h_{\tau}(\varepsilon)$

$$I\left(D_{o}\right) \qquad \qquad I\left(\phi\right) < \left\{K\left(\psi\right,\alpha\right) + \epsilon\right\} \cdot \mathit{h}^{\alpha}$$

dove $K(\psi, \alpha) = (3 + 2^{2-\alpha})/\alpha + H_{\sigma}$.

Nel caso in cui sia $\lim_{t\to o} \psi(t) = A < B = \overline{\lim_{t\to o}} \psi(t)$, si ricava immediatamente, in luogo della (D_o), la disuguaglianza:

$$I\left(\varphi\right) < \left\{K\left(\psi,\alpha\right) + \varepsilon\right\} \cdot h^{\alpha} - \frac{A+B}{2} \cdot h + O\left(h^{2}\right)$$

dove
$$K(\psi, \alpha) = (2^{2-\alpha} - I) B/\alpha + 2 (B - A)/\alpha + H_{\sigma}$$
.

Come si può osservare, nella composizione degli infinitesimi al secondo membro delle maggiorazioni stabilite per I (φ) nelle proposizioni sopra enunciate, concorrono simultaneamente i due aspetti di $\psi(t)$ legati all'andamento in prossimità dell'origine rispettivamente della minima maggiorante monotona di $|\psi(t)|$ e della variazione totale di $\psi(t)$. Riteniamo non prive di interesse le maggiorazioni precedenti che, oltre a condurre a quella che potrebbe dirsi la «migliore espressione» del secondo membro, ne separano le due suddette componenti.

Infine si considerano categorie di funzioni $\psi(t)$ che soddisfano ipotesi diverse dalla condizione di W. H. Young, e si ottengono risultati analoghi. Alcune di queste ipotesi (per esempio variazione finita) rientrano in quelle del Teorema (A) come casi particolari, ma i risultati cui si perviene sono un poco più precisi.