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Geometria. -— Two Intersection Formulas in Algebraic Geo­
metry. Nota di A l e x a n d r u T. L a s c u ,  presentata (#) dal Socio B. S e g r e .

As this note is a direct continuation of a previous note [9], we shall pre­
serve here all the notations of [9], without any change. Our purpose is to 
prove here two interesection formulas, related with the monoidal transform a­
tions (the theorems 1 and 2). The first one is due to B. Segre [5] and will 
be proved here for arbitrary characteristic. The second one, due to M. Noe­
ther for curves in the complex projective plane, has been extended by D. G. 
N orthcott [2] in a general context, for one-dimensional local rings. His for­
mula reduces, in algebraic geometry, to the intersection of two hypersurfaces 
on an arbitrary algebraic variety ; here is given a similar formula for the 
intersection of an hypersurface w ith a subvariety of arbitrary dimension. 
I m ust here express my heartly thanks to Prof. Gh. Galbura who kindly 
drew my attention to N oether’s formula and encouraged me during this work.

Throughout this note we deal with an (abstract) algebraic variety V, in 
the sense of A. Weil [7]. We shall adopt the terminology of [7] ; Q shall 
designate the “ universal domain ” and will be supposed of arbitrary charac­
teristic. U is a subvariety of V such that codim U >  1 and t : V ' ^ V  a bi- 
rational transform ation of V ; except in lemma 3, t is supposed to be a monoidal 
transformation of base U in the sense of [9].

D (M ,N )  shall designate the (absolute) local ring of the subvariety M 
of N and tit (M , N) the maximal ideal of £) (M , N). We shall designate, as 
in [9], the generators of the m (U , V) employed in the definition of t  by 
cp0 ,• • - , c p . I t  results th a tV 'C  V X Pr, where Pr is the projective ^-dim en­
sional space òver Q. If p : X - * X  is a birational transformation and U 
a subvariety of X, by p  [Z] and p  {Z] we shall designate respectively the 
transform and the total tranform  of Z by p\ if p  is regular at any point 
Z, then p  [Z] — p  { Z } and this variety will be designated by p  (Z).

§ 1. For the lemmas 1 and 2 below, we shall suppose that t satisfies 
the hypotheses (i) and (ii) of [9] and £> (U , V) is an U.F.D.

L emma 1. -  I f  the simple hypersurfaces o f Y ' , V  correspond biregularly by
h h I h \

l, except U ', and  9 e Q (V) , (9) =  J  a{ H , , then (<p01) =  2  a{ H) +  ( 2  ai k  U ',

where t (Hj) =  H,-, k  =  (i =  1 ,■ ■ ■, h).
Proof . By hypothesis, (cp) =  (cp01). I t  remains only to show

h
that (cpo O = .2  ai h  > which is the content of theorem 3, [9].

(*) Nella seduta del 14, dicembre 1963.
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LEMMA 2. -  Under the hypotheses of the above lemma, i f  U is simple on V
h

and  X =  2  ai H* is a divisor of V, then the cycle (X X Pr). V' is defined on
i— I

V X P’- and  (X x P")- V '=  X' +  (U , H,-)j U ', where X' =  2  ^  H i ,
t  (Hi) =  H* (z =  i , 2 , • • •, h).

Proof. By linearity, it suffices to consider the case X =  H , =  H. 
H X Pr is a simple hypersurface of V X Pr, and V' is not included in 
H X Pr because prvV ' =  V is not included in H. Hence the product 
(H X Pr). V' is defined on V X PL By the projection formula ([7], V II, 
§ 6, th. 16), prv[(H X Pr) • V'] =  H. As H ' is simple on V X Pr (because p rv H' 
is simple on V) and H 'C  (H X Pr) fYV', it follows that (H X P"). V' =  H '+ a U '. 
Since U 'C  (H X Pr)-V ' implies (projecting on V) U C H, it results a =  o 
if  U is not included in H ; as this implies m (U , H) =  o, the lemma is pro­
ved in this case. Suppose now U C H , and let epe C (U , V) be a generator 
of the ideal of H in 0 (U , V). Then H is the unique component of (9) which 
includes U and vu (9) =  1. By theorem 3 ([9]), z'u' (901) =  m  (U , H). The 
cycle (9) X Vr is the divisor of, the function <]; e Q (V X Pr) which induces 
on V' the function 9Qt. By a known theorem ([7], V III), every simple 
hypersurface H ' of V' which is simple on V X Pr appears in (90 t) with the 
same coefficient as in (4»)-V'. But U '=  U X W, with a suitable subvariety 
W of Pr ([9]). Hence U ' is simple on V X Pr, because U is simple on V  by 
hypothesis. Thus m (U , V) =  vu' (<p01) is the coefficient of U ' in (tp) - V' ■ ; 
(9) =  H +  X with U not included in supp X implies U ' not included in 
supp (X X Pr)-V ', which shows that m (U , V) is the coefficient a of U ' in 
(H x PO-V'.

Remark. -  The two lemmas above show that, if the simple hypersurfaces 
of V' , V correspond biregularly by £, .except U ', and if U is simple on V, 
theni for every 9 6 Q (V) the cycle ((9) X Pr) • V' is defined on V X Pr and

(epo 0  =  ((9) X F )  -V '=  2  h;- +  ( 2  ^  «  ( U , h o ) u ' ,
* —i \i = i J

where
h

(?) =  2 ^ h , -  , t (h;> =  H,- (* =  i
i — X

Suppose that* V is an affine variety. Let , • • •, 0 (U , V) form a
system of coordinate functions of V and let W be a subvariety of V such 
tha t U C W. Denote by f a definition field of ^  , • • •, \ s , U , W , V. Let 
C} C 0 (U , V) be a prim ary ideal for m (U , V) and u C 0  (U , V) the ideal of 
W. We shall suppose th a t uCq. Let us consider a system of generators 
9o , • • •, <pr of q defined over f and t : V' V , V' C V X Pr be the monoidal 
transform ation oLcenter q defined by means of cp0 • •,-<pr ([9])- By A we 
shall designate a set of polynomials Pe k \ f i 1 , • • •, X , , Yc , • • •, Y r] which are 
homogenenous in the inde terminates y Q, • • •, yr and such that {P (£ , 90 , • • •



A lexan d ru  T. Lascu, Two Intersection Formulas in Algebraic Geometry 437

* * •> <jpO }pga should generate u in £) (U , V). The zeros of {P}pga in VX Pr 
form an algebraic set W over f. In the above situation we have:

LEMMA 3. — 1) tr~1 [W] =■ W' is a subvariety o fV ' and is the unique irredu­
cible component of t ~ 1 [W} whose projection by t on V strictly includes U ; 2) W' 
is also the unique irreducible component of W O V' projecting by t on a subvariety 
which strictly includes U ; 3) If, fo r  every Q 6 ! [X , Y] homogeneous of degree 
h in Y0 , • • •, Y r , Q (£ , 9o , • * *, qv)6 11 > Q (5 , 9o > • • •, qv) € mq̂  implies

s

Q (5 » ?) =  2  «,• P.- (5 - 9) Q.- a  , 9), whith Pt€ A (I <  *• <  s), Q,-e f [X , Y],
t — i

h =  degree of P* Q,* in Y0 , • • •, Y r and  ai € O (U , V), then W' is the unique 
component of W O V' projecting by t on a subvariety which includes U. The 
irreducible components of t ~ 1 [U] n  W ', t~ 1 [U] O W projecting on U by t are 
the same.

Proof. The first part of the lemma is an obvious consequence of the fact 
th a t t is biregular a t every subvariety of V strictly including U.

If (pc ,y )  e V' is generic over k  , P e f [X , Y], then

(*) 9/ 0 ) P 0  ,.ya , ■ ■ ■, yr) = y l  P 0 , <p0 0 ) ,  • • • ,<?r (*)),

h =  degree of P in Y0 ,•■•*, Yr . Let ( x ',y r) e W' be a generic point over !. 
As x  is a generic point of W over ! , cpQ , * * *, cp̂ are definite and finite 
at x  and 9^ (pc) =j= o, with suitable^»; it follows y p =f= o. If P 6 A, then 
P (x , 9 (x'j) — o and (*) shows tha t P (x , y ')= o , hence W' CW . Conversely, 
if Z is an irreducible component of W fi V' with U C /(Z )  and ( x " , y f) e Z  
generic over I, then 90 , • • •, cpr are definite and finite at x n and there exists 
a p  such tha t 9^ (x") =j= o (since U =[= t  (Z)). Hence y"p =j= o and, similarly 
as above, one m ay see tha t P (xn , 9 (x") =  o for every Pe A, i.e., x n e W. 
Therefore Z C  t~~z {W}, which shows that Z =  W' (because U C  t (2)).

To conclude, it remains only to show that, under the hypotheses of 3), W' 
includes every com ponente of V' n  W for which t (C) — U-. Let (x° ,y ° ) tC  
be a generic point over ! ; t induces on W' a birational transformation 
tx : W —̂ W, and it is easy to see th a t A is a monoidal transform ation of base 
q '=  q/u. Then t f 1 (x°) is the algebraic set (x°, y), where y  is a zero of 
P (x ° ,Y )  for every P e f [ x  , y] homogeneous of degree h in Yc , • • •, Y r 
such tha t P (£', 9') e m' f h , — \ j  mod a , 9'• =  9,- mod u ([9], lemma 1).
These conditions are equivalent with P (£ , 9) 6 m C\k +  u ; hence we m ay 
write ' P (l , 9) =  R (5 , 9) +  Q (5 , .<p), * where Q (X , Y), R (X , Y) € f [X , Y] 
are hpmogeneous polynomials of degree h in Y0 , • • - , Yr , and R (£ , Y) e 
m! • , Y], Q [£ , 9) e a. We m ay suppose that Q (£ , 9) 6 tn q* ; hence, by

s

hypothesis, Q (£ , 9) — P* (? > 9) Qt (5 , -9), with suitable P* 6 A, such
Z =  I

th a t ViQi is homogeneous of degree h in Y0 , • • - , Y r and oq e O (U , V) 
(1 < i  <L s). Because R (£ , Y) e t n f , Y] and i ° e U  it results R (x°, y°) =  
=  o. C C W  implies Pi (x°,y°) =  o and C C V ' shows that Q (x°,y°) =

s

=  2  a, (x °) P* (x°> y°) Qi (x °> y°), because Q (x , y) , Pi , Qi are homoge-
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neo us polynomials of the same degree in Y0„, • • -, Yr ... Hence Q (x° , y°) =  o, 
From P (£ , <?) — R (5 , <p) +  Q (5 ,? ) , we have P (x , y) =  R (x , y) -f  Q (x . , y )  
for every generic point (x ,y)  of V' over f. By specialisation at (x°,y°), 
this shows P(x° ,y°)  =  o ; hence (x° ,y ° )  C /X r (.r'y. A s< 7 '[U ] are algebraic
over f and (x ° ,y ° ) is a generic point of C over !, it follows C C t f 1 [U], hence 
a fortiori C C W '.

PROPOSITION i. — Suppose that U is simple on V, t a monoidal transforma­
tion of base U satisfying the hypotheses (i) and iii)  of [9], by which the simple 
hyper surf aces of V , V' correspond biregularly, and U '=  U X PJ, s — codim, 
U 1. I f  X is a definition fie ld  of XI , V U 7, V7 and x° 6 U generic over f then, 
t ~ 1 (x °) =  x° X Pf . I f  E Of (U , V) and v\j> (i|/) — 1, then (<];) =  H +

+  2  ai Hr, with  U not included in H; (i =  i , 2 , • • •, h), (40 t) =  U '+ H ' +i— I 
h

+  2  ai H i, and
i —  I

(x° x  P1)- ( h '+  a% Hi) =  *° X P * - 1,

where P* 1 is a suitable sub space of PL
Proof, t- 1 (x°)  C U '= U  X P", because * °  is generic over 1 for U ; 

hence t~ 1 (x°)  C r°X  PL which, together with x ° x P s C U ', shows that 
t - 1 (x°) = r ° x P .

By theorem 2 of [9], v v. (y) 1 implies ^ £111 ( =  nt (U , V)) , 4 € nt2,
which shows that the ideal 40 is prime because O — 0 (U , V) is an unique 
factorization domain. Hence there is an unique simple hypersurface H of V 
which appears in (4) and contains U. Applying the theorem 3 of [9] it follows 
th a t vh (40 — i and ttt (U , H) =  1. Hence we may write (4) =  H -f-

h
4" 2  ai with U not icluded in H i f i  =  i , • • - , A). By lemma i, this implies

1 = i
h

(fi°t) — U '+  H '+  2 ) ai H,- ; f (V) shows that (<[>) is algebraic over f, which
1 i —x

proves that ;r° € F h , because U not included in Hi  and x°  is a generic point of 
U over f . Therefore (x°  X Pf) D H'i —  0, i.e., the intersection product (x°  X Pf) •

• ( X  ai Hi) is-defined and null on V'; x° X Ps C H ', because ;r° X P* con­
tains a generic point over f (x°) which is generic on U ' over !, H ' is alge- 
braic over ! and U 'C  H '. I t follows that the cycle (x° X Pf). H ' is defined 
on V', and to conclude we have only to show th a t ( r°x  PJ). H' =  x  X Ps~~1 
in view to explain this, we can apply lemma 3. Indeed, with the notations 
of this lemma, we may suppose that there exists, a polynomial P € f[X  , Y] 
homogeneous of degree one in Y0 , • • •, Y r such that =  P (f , <p) ==

=  (?) ?»' ; as ^ ^ ni2, it follows that mk : =  mh~ l for every h , /
with h >  /, because F (m) is an integrity domain (£> being regular). From 
this it is easy to see tha t A =  {P (X , Y)} satisfies the hypotheses of lem-
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ma 3,3). Therefore the irreducible components of U 'n H '  which cor­
respond to U by t coincide with the irreducible Components N§ of U ' 
which are zeros of P (X , Y) corresponding to U by t. Every irreducible 
component of (x° X Pf) O H' is contained in a subvariety N§ , because ;r° 
is generic on U over f, which shows that (x° X Pf) O H' C x° X Ps~ x, where 
PJ~ 1 is the subspace of zeros of P (x°, Y) in Pf. It follows (x° X Ps) •
• H =  a (x° X P*-1 ), provided that i ° X  P*-1  is simple on V'. Because 
U '= U  X Ps, x° X Ps is simple on U '; hence D (x° X PS~ I,U')  is regular. 
To prove that a:° X Ps~~1 is simple on V', it suffices to show that the ideal it 
of U ' in D ( x ° X  PS~ X;Y' )  is principal, because £) (x°X P̂  1 ; U ') =
=  D (x° X Ps~ 1 ; V ')/u. Let x e-O j(U ,V ) be another function with w* (x°t) =  L 

1
hence (x) =  L +  ^  bj L / , U C L , U is not included in Lj ( j  — 1 , • • - , /). If

P '* -1  is the subspace defined for x similarly as Ps~ z is for <];, L =J= H and 
PJ — 1 -|= P' •r — I (x can be choosen from (pi (o <C i <C rj). Then i ° X  P-5'—1 not 
included in L' shows that U ' is the unique component of yyt  containing 
r°  X P̂ ~~ fi because v\j' (x°0 — 1 > X°t generates u in £) (x° X Ps~~1 ; Y ' f

If p == then (p) =  H' +  S a{ H '— L '—- 2 bj Ly, where x° X
X P*-1  is not included in H*, L ', L), p€£) (x°X Ps~ x ; V'); hence p generates 
the ideal of H' in £) (x° X Ps ; V'). By a known intersection formula ([4] 
chap. II, § 5, no 7, b, théorème de réduction), i (x°X~Ps~ 1 , (r° X Pf) • H ') =  
— m (p O (x° X r Ps~ x ] x° X Pf), where p is the image of p by the canonical 
homomorphism O (x° X Ps~~x, V ')->  O (x°  X"Pf —1 ; x° X Ps). But p is indu­
ced by the quotient of two linear forms of ! (x°) [Y0 , • • Y r] having non-zero 
denominator on x° X Ps~ x. Hence ut (p D (x° X Ps~ x \ x °  X PJ)) —

Theorem  1 (Segre’s formula, [5]). -  Let t : V'->V a birational transforma­
tion which coincides in a neighbourhood of U zvith a monoidal transformation 
of base U. I f  U is simple on V ! a definition field  of U , V , V ', t, and 
x° 6 U a generic point over !, then ts~ x (.x °) — Ps, s =  codim U —̂ i. For any 
divisor X of Y ' linearly equivalent with U ' o n Y ' such that, U ' is not included 
in suppjX , the cycle Pf -X is defined on Y ' and

P 'X  =  — P - 1 +  (+),

where Ps~ 1 is a suitable sub space of Ps and ^ is a rational function on Pf.
Proof. In view of the local character of the theorem, we m ay replace t 

by a monoidal transform ation of base U.
If t x : V i->  V is another monoidal transformation of base U defined over 

!, then, by the rem ark 4 following lemma 1 of [9], Vi , V' correspond bire- 
gularly at any subvariety projecting on V over a subvariety which includes U. 
Therefore ^ e fi (V'), (^) =  U '—- X, and =  4)°t~ l°t1 implies (<J/i) =• U i— X x, 
where U'r =  f f 1 [U], and the components of X , X x projecting on V over a sub- 
variety which includes U correspond biregularly. I t follows that Ps • X and 
Pi • X : , where Pi :=  1 (xQ), correspond biregularly by t ~ xot1. By the remark
just quoted, the birational transformation Pi f>-Ps induced by t ~ xot1 is a pro­
jective transformation. Hence we may prove the theorem for , i.e., one
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m ay change the generators <p0 <p, of nu (U , V) employed in the definition
of t, when necessary. Taking <p0 , • • ■, <pr such that they form a regular system 
of param eters in D (U , V), we m ay suppose, owing to their analytical indepen­
dence ([8] ; theorem 21, p. 292), that t satisfies the hypotheses (i), (ii). I t  is 
easy to see tha t the hypersurfaces H of V', such that U C f(H ), correspond 
biregularly by t  to thè hypersurfaces of V including U. Therefore one may 
additionally suppose that the hypersurfaces of V', V correspond biregularly 
by t , except U \  By the proposition 1,  ̂ {x°) =  x° X P* with .j =
=  codim. U — 1.

Every point (#° , y°) e x° X PL is simple on V'. Indeed, one m ay sup­
pose V C V  X Pf ; thus, if y pffi=of it is easy to see that the ideal i of V' 
in D (( i°  , j / ° ) ,V  X Pf) is generated by yptyp — <p> (o < j  <  s J  =j*= p), 
where ryp € Cl (PJ) are the functions induced by yjjyp . As (x° , y°) is evidently 
simple on V x  P', and C ( ( z ° ,y° )  , V') =  D ( ( ^ j 0) , V x! P °)[i, this shows 
that (x° , y°) is simple on V '. Since r̂° X Pf is non-singular, two linearly 
equivalent divisors of V' cut on X Vs linearly equivalent divisors ([7], 
V III § 2, th. 4, cor. 1). Then, to prove the formula above, it suffices to find 
a divisor Y linearly equivalent with U ' on V', such that ( i ° x P J). Y ~  — / x  
X PJ —1. Indeed, if so, then (x°X  Pf). X is linearly equivalent with — i ° x  
X PJ 1 on x° X PL To conclude, it remains only to prove the existence 
of such a divisor Y. But this is an obvious consequence of prop. 1.

COROLLARY. — Under the hypotheses of theorem j ,  i f  every point of U is 
simple both on U a n d V  and the coefficients of the components C* of X such that 
* (G )D U  are all positive or negative, then the cycle U '. X is defined on V' 
and  U * X = U -f- 2  ̂ai U,- -T (p), where U " is birationally equivalent with 
U X PJ~ 1 p is a rational function on U ' and, fo r  every i, Ui is birationally 
equivalent with Ui X PJ, U* being a hyper surf ace of U.

Proof. As above, we m ay replace V by an affine variety and suppose 
th a t U '= U  X P1 and U \  V' are non-singular. By the theorem,, (x° X PJ)-

=! x ° X Pi — 1 -f Because U , is not included in supp X, the cycle
V • X is defined on V7. The hypothesis that U 7, V7 are non-singular, allows 
us to apply a theorem of [7] (VII, §6, th. 18) to the diagram of inclusions

U '-^ V '
t  t

*° X P* X

I t  follows th a t the intersection (x° X P ') (U '-X )V  is defined and equal to 
\kx ° X P1) X)V' =  — x° X P’“ 1 +  (4»), Hence, in view of the hypothesis above 
concerning t  (X) ,U  -X =  — U 7,-(- (p), where U 77 is as above and
U =  t (U,'CU). Then U( C U; X PJ shows that U, is a hvpersurface of U, and
u;- = u,-xPb

L Jemma 4. — Let f  : A'-> A be a birational transformation which is complete 
over a 'subvariety U of A. Let Ua (1 <  a < / )  be the maximal subvarieties of K  
corresponding to U by f  and suppose that dim U a =  dim U . I f  f  is regular at 
U a fo r  a =  1 , • • • , / ,  then
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« ( U , A )  =  2  '[U0 : U ] * (m D 0),
OL— 1

where
Co =  0 (Uo ,A ')  , nt =  m (U , V).

Proof. A s /  is regular at U a and/  (U0) =  U, we have 0 =  0 (U , V) C 0 d 
and 0 a dominates 0 . By using the normalization s : A ->  A, one m ay easily 
see (applying Zariski's main theorem to the birational transformation / — 
that Oa is an integral extension of 0 . Therefore, if {Za?}x<fl<i is a system 
of coordinate functions of an affine neighbourhood of U a on A' then Zaj3e £>a 
shows that £oJ} is an integral element over 0 . Therefore R =  0  - ,
K i  ) '  ' '  j  0 1 ) ■ ■ ■ > 0 * /] is a finite extensipn of 0  in Q (A) ; this shows that R 
is a semi-local ring and there exists a (non divisor of zero) p € 0  such that 
pR C 0 . Then the hypothesis about/  to be complete over U proves that the 
maximal ideals pi of R such that* dim R^. =  d im U  correspond one-to-one 
to the subvarieties U a (a =  I , • • •, /). If pa is the maximal ideal of R corre­
sponding to U a ,then it is easy to see that 0 O =  R ^  and p0 Rp is the maximal 
ideal nta of 0 a . By the extension formula ([i] or [3]), we get

'e (m) =  s  [Oa/nia : 0/m] e (nt 0 a)
But e (tn) =  m  (U , V), £)a[iva =  Q (Ua), 0/ut =  O (U).

THEOREM 2 (Noether’s formula). — Let A,B be simple subvarieties of co- 
dimv B =  1, and suppose that the cycle A • B is defined on V and U is a proper com­
ponent of A • B. Consider a monoidal transformation t of V (t : V'-> V) of base U.

I f  A ', B' are the subvarieties o f V  corresponding to A , B by t respectively 
(t.e. A '=  /—I [A] , B '=  Z 1 [B]), then the cycle A '-B ' is defined on V' and

(A • B , U ; V) =  ab c

where a =■ m (U , A) , b == m (U , B) and c is the coefficient of U in t  (A' • B'). 
Proof. Because A' is not included in U ' the cycle A ' • U ' is defined on

h
V', and we may write A' -U '=  2  ca. +  Y with t (Ua) =  U (i <  a <  h),

a= i
t (Y) == Ò. If ep is an irreducible element of the ideal u of B in £>=£) (U , V) 
then <pD =  u which shows that B is the unique component of (9) containing U. 
Owing to the local character of the theorem, one m ay suppose, as in the proof 
of theorem 1, that t satisfies (i), (ii), V'C V x  Pr, (9) =  B, and that the 
hypersurfaces of V , V' (except U ') correspond biregularly by t. Then, as U 
is simple in V, by the remark following lemma 2, (((9) X PO •V')vxPr =  
=  (9°0 =  B '+  b \ J ' . Because the subvarieties of U ' are simple both on V' 
and V x Pr, we m ay apply theorem 18 of [7] (eh. VII, § 6) to the following 
diagram of inclusions :

V '-----► V X P
t  t
A' (9) x P'

and conclude that i ((90^).A ', U„ ; V') =  i (((9) X P0 -A' ,U a ;V  X Pr) (the 
cycles ((f) X Pr)-A ')Vxpr , ((9°;“) -A')v' being defined, because A' is not
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included in U ', B', supp ((9) X Pr)). By the projection formula ([7], th. 
18, eh. V II, §6 ):

h h

2  [U« : U] i (A' • B', U„ ; V') +  b 2  [U„ : U]z (A' -U ', U a ; V') =
a=i a=i

=  i (A B ,U  ; V).
h

As c =  ^  [Ua : U] i (A' -B', U„ ; V'), it remains only to show that a =
a=i

— 2 [Ua : U] z (A' • U ', U a ; V'). To do this, we shall apply lemma 4 to the 
birational transform ation /  : A'-> A induced by t. Indeed, it is easy to see 
that the hypotheses of the lemma are satisfied. Hence, =  2 [Ua : U] • 
-e (m 0a). Let 9*• be such that 9y otfoot € 0  (Ua , V') ; y;ot e 0  (U', V') and 
generates the maximal ideal of 0 (U ',V ') by [9]. One m ay see that U ' is 
the unique component of foo t)  including U a . Indeed, because yjot foo t  € 
€ 0  (Ua , V') by lemma 2, this is equivalent to show that (9/) has no common 
components including U with (9/) for a suitable j  •=£= i. As t is independent 
of the generators 90 , • • - , 9̂  by [9] (remark 4 of lemma 1), it suffices to take 
9o, • • •, 9r irreducible in £> (U, V) and such that 92 is not divisible by 9j  for i=\=j 
(for instance, one m ay assume 90, • • •, cpr to be a regular system of parameters).

Then 920/ generates the prime ideal of U ' in 0 (Ua , V'). By a general 
theorem ([4], chap. II, § 5, no 7, b), i (A' -U', U a ; V') =  e (9• 0 a), where 9• 
is the image of 9*01 by the canonical homomorphism 0  (U« , V ') —-> 0 a =  
=  o  (Ua , A'). If g  fo o t  foo t) =  Z' j ,g fo o t)  =  9 y, then 9 y =  9* f o f o )  im­
plies 9} =  92 Cy, which shows that 92 0 a =  2  9y 0 a =  m 0 a , because 
m -  Ì  9- 0 ' where £>'= 0  (U , A). Therefore i (A' -U', U a ; V ') =  e (m 0O).

Remarks. 1) Because / :  A '->A  is a monoidal transformation of base U, 
we have [Ua : U] =  1 ; 2) One may apply the above theorem repeatedly, 
to get i (A • B , U ; V) as a sum of products of multiplicities occuring by suc­
cessive monoidal transformations ([6]).
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