ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

ALDO ANDREOTTI, EDOARDO VESENTINI

Disuguaglianze di Carleman sopra una varietà complessa

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.6, p. 431–434. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_6_431_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

NOTE PRESENTATE DA SOCI

Matematica. — Disuguaglianze di Carleman sopra una varietà complessa. Nota di Aldo Andreotti e Edoardo Vesentini (*), presentata (**) dal Corrisp. G. Zappa.

Sia P(x, D) un operatore differenziale a coefficienti C^{∞} , definito su un aperto Ω di R^n . Supponiamo che per ogni funzione u, di classe C^{∞} su Ω e tale che P(x, D) u abbia supporto compatto in Ω , valga una disuguaglianza del tipo

$$\int_{\Omega} e^{\tau p} |u|^2 dx \leq c \int_{\Omega} e^{\tau p} |P(x, D)|^2 dx,$$

per ogni $\tau > \tau_o$, p essendo una funzione positiva di classe C^∞ su Ω , e c una costante positiva. Segue da tale disuguaglianza – in virtù della presenza del fattore peso $e^{\tau p}$ – che, sul supporto di u, p non supera il massimo di p sul supporto di P(x, D).

Muovendo da un'osservazione di questo tipo – che, nella forma indicata, risale a T. Carleman [5, 7] – abbiamo ottenuto un criterio generale per l'annullamento della coomologia a supporti compatti, a valori in un fascio analitico localmente libero sopra una varietà complessa.

Abbiamo esposto tale criterio, insieme ad alcune applicazioni alle varietà q-complete, q-convesse e q-concave, nelle nostre lezioni al Corso C.I.M.E. sulle « Funzioni e varietà complesse », tenuto a Varenna nel luglio 1963. I dettagli dimostrativi appariranno in un lavoro attualmente in corso di redazione. Nella presente Nota enunciamo, senza dimostrazione, alcuni dei risultati ottenuti.

I. CRITERIO D'ANNULLAMENTO DELLA COOMOLOGIA A SUPPORTI COMPATTI. — Sia dato sopra una varietà complessa (paracompatta) X un fibrato vettoriale olomorfo E. Sia Ω^r (E) il fascio dei germi delle r-forme olomorfe a valori in E. Una metrica sulle fibre di E è individuata da un prodotto scalare hermitiano h(v,w), definito positivo, operante sulle coppie di elementi v,w appartenenti alla stessa fibra E_x di E, e dipendente in modo C^∞ dal punto $x \in X$. Fissiamo una metrica h = h(v,w) sulle fibre di E ed una metrica hermitiana completa in X. È noto [3, 4] che, se E è $W^{r,s}$ -ellittico rispetto alle metriche fissate, l'applicazione naturale

$$H_{k}^{s}(X,\Omega^{r}(E)) \rightarrow H^{s}(X,\Omega^{r}(E))$$

della coomologia a supporti compatti nella coomologia a supporti chiusi, è l'applicazione nulla.

^(*) Supported in part by AF-EOAR Grant 63-29.

^(**) Nella seduta del 9 novembre 1063.

Sia $p: X \to R$ una funzione C^{∞} su X, e sia $\tau = \tau(t)$ una funzione C^{∞} non decrescente e convessa su \mathbf{R} . Il prodotto hermitiano $e^{\tau(p)} h(v, w)$ definisce una nuova metrica sulle fibre di E. Sia $\mathfrak{D}^{r,s}(X, E)$ lo spazio vettoriale complesso delle (r, s)-forme C^{∞} a valori in E ed a supporto compatto in X.

TEOREMA. – Sia E W^{r,s}-ellittico rispetto ad una metrica hermitiana completa in X e rispetto alla metrica $e^{\tau(p)}$ h (v,w) sulle fibre di E, con lo stesso coefficiente di W^{r,s}-ellitticità per ogni scelta della funzione reale, C^{∞} , convessa e non decrescente $\tau = \tau(t)$ $(t \in \mathbf{R})$. In tale ipotesi, per ogni forma $\varphi \in \mathfrak{D}^{r,s}(X, E)$ tale che $\tilde{c}\varphi = 0$, e per ogni $\varepsilon > 0$, esiste una (r, s - 1)-forma C^{∞} , ψ , a valori in E, tale che

$$\psi \ \phi = \overline{6} \ \psi$$

Supp
$$\psi \subset \{x \in X \mid p(x) < \sup_{\text{Supp } \varphi} p + \epsilon\}.$$

Se inoltre i) la funzione p è tale che, per ogni $c \in \mathbb{R}$, l'insieme $\{x \in X \mid p(x) < c\}$ è relativamente compatto in X, dal teorema precedente segue che

$$H_{k}^{s}(X, \Omega^{r}(E)) = o.$$

Infine, nelle stesse ipotesi, l'immagine di $\mathfrak{D}^{r,s}(X,E)$ nell'applicazione $\overline{\mathfrak{d}}: \mathfrak{D}^{r,s}(X,E) \to \mathfrak{D}^{r,s+1}(X,E)$ è un sottospazio chiuso dello spazio $\mathfrak{D}^{r,s+1}(X,E)$, munito della topologia di L. Schwartz, sicché $H_k^{s+1}(X,\Omega^r(E))$ è dotato di una struttura di spazio separato.

2. CONDIZIONI SUFFICIENTI PER LA W-ELLITTICITÀ. – Sia Θ il fibrato olomorfo tangente a X. Fissate la metrica completa in X e la metrica sulle fibre di E, introduciamo l'operatore di Laplace Beltrami $\square: \mathfrak{D}^{r,s}(X,E) \to \mathfrak{D}^{r,s}(X,E)$ (cfr. ad esempio [3, 4, 6]) e l'operatore di derivazione covariante $\nabla: \mathfrak{D}^{r,s}(X,E) \to \mathfrak{D}^{r,s}(X,E)$ definito dalle connessioni associate alla metrica hermitiana sulle fibre di E, alla metrica hermitiana in X ed alla metrica riemanniana soggiacente a quest'ultima. Le curvature di queste connessioni permettono di definire un operatore hermitiano $\times: \mathfrak{D}^{r,s}(X,E) \to \mathfrak{D}^{r,s}(X,E)$, che è stato introdotto per la prima volta da K. Kodaira in [8]. Sia infine (φ,ψ) il prodotto scalare hermitiano definito in $\mathfrak{D}^{r,s}(X,E)$ dalle metriche indicate, e sia $\|\varphi\| = (\varphi,\varphi)^{r/2}$ la norma corrispondente.

Per ogni $\varphi \in \mathfrak{D}^{r,s}(X, E)$ (s > 0) vale la disuguaglianza

$$\|\overline{\nabla}\varphi\|^2 + s(\varkappa\varphi,\varphi) \leq (\Box\varphi,\varphi).$$

Se è possibile scegliere la metrica completa in X e la metrica sulle fibre di E in guisa che esista una costante positiva c tale che per ogni $\varphi \in \mathfrak{D}^{r,s}(X, E)$ risulti

$$(\varkappa \varphi, \varphi) \geq c \| \varphi \|^2$$

dalla disuguaglianza precedente segue che

$$s c \parallel \phi \parallel^2 \leq (\square \phi, \phi)$$

per ogni $\varphi \in \mathfrak{D}^{r,s}(X, E)$, onde E è $W^{r,s}$ -ellittico.

3. Teoremi d'annullamento sulle varietà q-complete. – Qualora X sia una varietà q-completa ($1 \le q \le n$), possiamo supporre che la funzione p soddisfacente alle ipotesi del teorema ed alla condizione i) del n. I, sia fortemente q-pseudoconvessa in X. In tal caso si dimostra che, qualunque sia il fibrato olomorfo E, si può scegliere la metrica completa in X e la metrica h = h(v, w) sulle fibre di E in guisa che E sia $W^{r,s}$ -ellittico per r = 0, I, ..., $n = \dim_{\mathbf{C}} X$, e $s \ge q$, rispetto alla metrica $e^{-\tau(p)} h(v, w)$, qualunque sia la funzione C^{∞} , convessa e non decrescente $\tau = \tau(t)$ ($t \in \mathbf{R}$), con coefficiente di W-ellitticità indipendente da τ . Passando al fibrato duale E^* , scegliendo sulle fibre di quest'ultimo la metrica $e^{\tau(p) \cdot t} h^{-\tau}(v, w)$, ed applicando i risultati del n. I, si ottiene il

TEOREMA. – Sulla varietà q-completa X, di dimensione complessa n, i gruppi di coomologia $H_k^s(X, \mathbb{F})$ a supporti compatti ed a valori in un qualsiasi fascio analitico localmente libero \mathbb{F} , sono nulli per $s \leq n-q$. Inoltre $H_k^{n-q+1}(X, \mathbb{F})$ ha una struttura di spazio separato.

4. TEOREMI DI FINITEZZA SULLE VARIETÀ q—CONVESSE E q—CONCAVE. — Il teorema precedente è stato ottenuto, con tutt'altro metodo, in [2], come conseguenza di un teorema di finitezza di certi gruppi di coomologia su X, a valori in \mathfrak{F} . D'altra parte, applicando i risultati dei numeri precedenti ad opportune famiglie di sottovarietà q—complete di X, ed utilizzando un classico teorema di L. Schwartz [9], è possibile riottenere i teoremi di finitezza citati, mostrando precisamente che

TEOREMA. – Sia X una varietà complessa, di dimensione complessa n, fortemente

- a) q-pseudoconvessa,
- b) q-pseudoconcava,

e sia F un fascio analitico localmente libero su X. Risulta

$$dim_{\mathbf{C}} \ \mathrm{H}^{s}\left(\mathrm{X}\;,\;\mathfrak{F}\right)<+\infty$$
 $per\;s\geq q\;nell'ipotesi\;\mathrm{a}\;,$
 $per\;s< n-q\;nell'ipotesi\;\mathrm{b}^{(x)}.$

Il fatto che la nostra dimostrazione utilizzi sistematicamente la coomologia a supporti compatti permette di evitare il ricorso al teorema di approssimazione, che è invece uno dei punti essenziali della dimostrazione di [2]. Inoltre, per le varietà q-concave, mostriamo che lo spazio $H^{n-q}(X, \mathbb{F})$ ha la topologia di uno spazio di Fréchet (separato).

⁽¹⁾ Questo teorema è stato ottenuto in [2] nel caso più generale in cui X è uno spazio (e non necessariamente una varietà) q-completo, ed $\mathcal F$ è un qualsiasi fascio analitico coerente su X. Seguendo i metodi sviluppati in [4] è tuttavia possibile trasportare i nostri risultati, relativi ai fasci analitici localmente liberi su una varietà complessa, agli spazi complessi ed ai fasci analitici coerenti.

BIBLIOGRAFIA.

- [1] A. Andreotti, Coomologia sulle varietà complesse, II, Corso C.I.M.E. su «Funzioni e varietà complesse», Varenna, Estate 1963; Edizioni Cremonese, Roma (in corso di stampa).
- [2] A. Andreotti-H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, « Bull. Soc. Math. France », 90, 193-259 (1962).
- [3] A. ANDREOTTI-E. VESENTINI, Sopra un teorema di Kodaira, « Ann. Sc. Norm. Sup. Pisa », (3) 15, 283-309 (1961).
- [4] A. ANDREOTTI-E. VESENTINI, Les théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, Séminaire Ehresmann, IV, 1-31 (1962-1963); Paris Sécretariat Mathématique.
- [5] T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, «Ark. Mat. Astr. och Fys. », 26 B, No. 17, 1-9 (1939); Édition complète des articles, Malmö, 1960, 497-505.
- [6] F. HIRZEBRUCH, Neue topologische Methoden in der algebraischen Geometrie, Berlin, Springer, 1956.
- [7] L. HÖRMANDER, On the uniqueness of Cauchy problem, «Math. Scand. », 6, 213-225 (1958).
- [8] K. Kodaira, On a differential geometric method in the theory of analytic stacks, « Proc. Nat. Acad. Sci. U.S.A. », 39, 1268–1273 (1953).
- [9] L. SCHWARTZ, Homomorphismes et applications complètement continues, «C. R. Acad. Sci. », 236, 2472-2473 (1953).
- [10] E. VESENTINI, Coomologia sulle varietà complesse, I, Corso C.I.M.E. su « Funzioni e varietà complesse », Varenna, Estate 1963; Edizioni Cremonese, Roma (in corso di stampa).