ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

Ugo Morin, Franca Busulini

Prova esistenziale della geometria generale sopra una retta

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.5, p. 269–273. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_5_269_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Matematica. — Prova esistenziale della geometria generale sopra una retta. Nota di Ugo Morin e Franca Busulini, presentata (*) dal Corrisp. G. Scorza Dragoni.

In questa Nota (1) si considera una *retta s*, dotata di un ordinamento totale e di un *gruppo di congruenze* che godono di tutte le proprietà classiche, tranne quella della *invertibilità* del segmento (cioè che ogni coppia di punti AB della *s* sia coppia involutoria di una congruenza).

Le lunghezze a, b, \cdots dei segmenti della s, definite canonicamente, costituiscono un gruppo additivo G. Indicata con a la lunghezza di un segmento AB e con \bar{a} quella del segmento BA la mappa $\omega: a \to \bar{a}$ risulta un antiautomorfismo involutorio [8]

$$\overline{a+b} = \overline{b} + \overline{a}$$
 , $\overline{a} = a$,

tale che [2, 3]

$$a \neq 0 \Rightarrow \bar{a} \neq -a.$$

Con riferimento ad un verso positivo della s, il gruppo G contiene un sistema G^+ di lunghezze positive tale che:

I) Ogni lunghezza soddisfa ad una ed una sola delle seguenti tre relazioni

$$a = 0$$
 o $a \in G^+$ o $-a \in G^+$;

- II) $a, b \in G^+ \Rightarrow a + b \in G^+$;
- III) $a \in G^+ \Rightarrow \bar{a} \in G^+$;

che contiene in particolare la (1).

Poiché, in contrasto con la teoria classica dei gruppi ordinati, non risulta direttamente che G⁺ sia *invariante*, mediante le convenzioni

$$-x + y \in G^+ \iff x <_s y,$$
$$y - x \in G^+ \iff x <_d y$$

si ottengono due *ordinamenti diversi* di G, detti rispettivamente a *sinistra* o a *destra*, compatibili con la struttura di gruppo a sinistra o a destra [8, 6, 4].

Inoltre dalle proprietà ordinali attribuite alla s risulta che:

IV) L'ordinamento di G è denso e due classi di lunghezze, contigue a sinistra oppure a destra, ammettono una lunghezza di separazione.

Si è verificato [8] che le seguenti tre proprietà:

 ω è l'identità; G è abeliano; una lunghezza non è mai uguale ad una sua parte,

sono equivalenti.

- (*) Nella seduta del 9 novembre 1963.
- (1) Eseguita nell'ambito dell'attività dei gruppi di ricerca matematica del C.N.R.

Una di queste tre proprietà, generalmente la prima, si assume in geometria elementare come postulato.

Si è presentata allora la questione se è possibile sviluppare una geometria della retta, nella quale le tre predette proprietà non siano vere [9].

A questa domanda, cui si è già data risposta affermativa per una retta parzialmente ordinata [3], si dà in questa Nota risposta positiva anche per un ordinamento totale.

Poiché sia dall'ipotesi che G^+ sia invariante, sia da quella che gli ordinamenti ad esso associati siano archimedei, segue che l'antiautomorfismo ω è l'identità, si tratterà di una geometria *non archimedea* in cui il sistema degli elementi positivi *non è invariante*. La prima condizione è naturalmente necessaria, laddove la seconda risulta anche sufficiente [8].

I. Indichiamo con Z l'insieme dei numeri interi e con $a_{\rm I}=(m_{\rm I},m_{\rm o}),$ $b_{\rm I}=(n_{\rm I},n_{\rm o})$, \cdots elementi di $G_{\rm I}=Z\times Z$. Mediante la convenzione

$$(m_{\rm I}, m_{\rm o}) + (n_{\rm I}, n_{\rm o}) = (m_{\rm I} + n_{\rm I}, (-1)^{n_{\rm I}} m_{\rm o} + n_{\rm o})$$

si definisce in G_r una legge di composizione, rispetto alla quale esso è un gruppo non abeliano.

Ciò risulta sia da semplici calcoli, sia osservando che G_r è una somma semi-diretta del gruppo additivo Z mediante Z, [7].

La mappa

$$\omega$$
: $a_{\rm I} \to \bar{a}_{\rm I} = (m_{\rm I}, (-1)^{m_{\rm I}} m_{\rm O})$

è un antiautomorfismo involutorio di G.

Infatti, che ω sia biettiva e involutoria è immediato. Inoltre

$$\overline{a_1 + b_1} = (m_1 + n_1, (-1)^{m_1 + n_1} ((-1)^{n_1} m_0 + n_0)) =$$

$$= (n_1 + m_1, (-1)^{m_1 + n_1} n_0 + (-1)^{m_1} m_0) = \bar{b}_1 + \bar{a}_1.$$

L'insieme G_r⁺ degli elementi a_r di G_r per cui è

$$m_1 > 0$$
 oppure $m_1 = 0$, $m_0 > 0$

soddisfa alle proprietà I e II considerate nella introduzione.

Inoltre è immediato che è soddisfatta la III:

$$a_{\scriptscriptstyle \rm I} = (m_{\scriptscriptstyle \rm I}, m_{\scriptscriptstyle \rm O}) \in {\rm G}_{\scriptscriptstyle \rm I}^+ \Rightarrow \bar{a}_{\scriptscriptstyle \rm I} = (m_{\scriptscriptstyle \rm I}, (-{\scriptscriptstyle \rm I})^{m_{\scriptscriptstyle \rm I}} m_{\scriptscriptstyle \rm O}) \in {\rm G}_{\scriptscriptstyle \rm I}^+.$$

2. Per dare la risposta preannunciata nella introduzione, si costruirà ora un gruppo G più generale di quello considerato al n. precedente, che soddisfa, come vedremo, a diverse esigenze geometriche [5].

Inoltre il suddetto gruppo G si può, in modo naturale, interpretare come gruppo delle lunghezze dei segmenti di una retta, dotata di un gruppo di congruenze [8, n. 5].

3. Indicati con m_i , n_i , p_i , \cdots $(i = 1, \cdots, r)$ elementi del gruppo additivo Z degli interi, con m_0 , n_0 , p_0 , \cdots elementi di un gruppo additivo abeliano G_0 semplicemente ordinato, consideriamo gli elementi

$$a_r = (m_r, m_{r-1}, \dots, m_1, m_0),$$
 $b_r = (n_r, n_{r-1}, \dots, n_1, n_0),$
 $c_r = (p_r, p_{r-1}, \dots, p_1, p_0),$
 \dots

In G_r , insieme degli elementi a_r , b_r , c_r , \cdots , sia

(2)
$$a_r + b_r = (m_r + n_r, (-1)^{n_r} m_{r-1} + n_{r-1}, (-1)^{n_r+n_{r-1}} m_{r-2} + n_{r-2}, \cdots, (-1)^{n_r+n_{r-1}} m_0 + n_0).$$

Si verifica che, rispetto alla (2), G_r è un gruppo non abeliano. Infatti, l'addizione (2) è associativa:

$$(a_{r} + b_{r}) + c_{r} =$$

$$= (m_{r} + n_{r}, (-1)^{n_{r}} m_{r-1} + n_{r-1}, \cdots, (-1)^{n_{r} + \cdots + n_{1}} m_{0} + n_{0}) + (p_{r}, p_{r-1}, \cdots, p_{0}) =$$

$$= (m_{r} + n_{r} + p_{r}, (-1)^{n_{r} + p_{r}} m_{r-1} + (-1)^{p_{r}} n_{r-1} + p_{r-1}, \cdots$$

$$\cdots, (-1)^{n_{r} + p_{r} + \cdots + n_{1} + p_{1}} m_{0} + (-1)^{p_{r} + \cdots + p_{1}} n_{0} + p_{0});$$

$$a_{r} + (b_{r} + c_{r}) =$$

$$= (m_{r}, m_{r-1}, \cdots, m_{0}) + (n_{r} + p_{r}, (-1)^{p_{r}} n_{r-1} + p_{r-1}, \cdots, (-1)^{p_{r} + \cdots + p_{1}} n_{0} + p_{0}) =$$

$$= (m_{r} + n_{r} + p_{r}, (-1)^{n_{r} + p_{r}} m_{r-1} + (-1)^{p_{r}} n_{r-1} + p_{r-1}, \cdots$$

$$\cdots, (-1)^{n_{r} + p_{r} + \cdots + n_{1} + p_{1}} m_{0} + (-1)^{p_{r} + \cdots + p_{1}} n_{0} + p_{0}).$$

Lo $o = (o, o, \dots, o)$ è elemento identico dell'operazione addizione, l'opposto di un elemento a_r è :

(3)
$$-a_r = -(m_r, m_{r-1}, \cdots, m_o) =$$

$$= (-m_r, (-1)^{m_r+1} m_{r-1}, \cdots, (-1)^{m_r+\cdots+m_1+1} m_o).$$

4. Definiamo entro G_r un automorfismo ρ_r ponendo

$$\rho_r(a_r) = (-m_r, -m_{r-1}, \cdots, -m_o).$$

Consideriamo ora l'antiautomorfismo ω_r che si ottiene come prodotto di ρ_r per l'antiautomorfismo canonico di G_r

(4)
$$\omega_r(a_r) = \bar{a}_r = -\rho_r(a_r) = \rho_r(-a_r) = (m_r, (-1)^{m_r} m_{r-1}, \cdots, (-1)^{m_r+\cdots+m_1} m_0).$$

Poiché ρ_r è un automorfismo involutorio ed è permutabile con l'antiautomorfismo canonico di G_r , ne segue che ω_r è un antiautomorfismo involutorio.

Dal confronto delle (3), (4) si ha:

$$a_r \neq 0 \Rightarrow \bar{a}_r \neq -a_r$$
.

Diremo che $a_r = (m_r, m_{r-1}, \dots, m_o) \neq 0$ appartiene a G_r^+ se il primo elemento non nullo tra gli m_r, m_{r-1}, \dots, m_o è positivo. Il sistema G_r^+ soddisfa alle proprietà I e II della introduzione.

Inoltre è immediato che è soddisfatta la III:

$$a_r \in G_r^+ \Rightarrow \rho_r(a_r) \notin G_r^+,$$

quindi $\omega_r(a_r) = -\rho_r(a_r) \in G_r^+$.

Infine se il gruppo G_o considerato al n. precedente è denso e continuo (ad esempio G_o è il gruppo additivo dei reali) l'ordinamento, sia a sinistra che a destra di G_r , soddisfa alla proprietà IV dell'introduzione.

5. Gli elementi di G_r del tipo (o, m_{r-1}, \dots, m_o) costituiscono ovviamente un sottogruppo normale di G_r isomorfo a G_{r-1} . Pertanto interpreteremo G_{r-1} stesso come sottogruppo di G_r ; e così di seguito.

Si verifica direttamente che ogni elemento di G_{r-1} è infinitesimo attuale, sia sinistro che destro, di un elemento $a_r \in G_r$ con $m_r > 0$; e viceversa: ogni infinitesimo attuale di a_r appartiene a G_{r-1} .

Ne segue la compatibilità dell'assioma sugli infinitesimi attuali

$$\varepsilon \ll_s a \iff \varepsilon \ll_d a$$
.

dato nella Nota [4].

Si osservi inoltre che [8]:

$$a_r \in G_r \Rightarrow -\bar{a}_r + a_r \in G_{r-1}$$
.

Nelle applicazioni geometriche interessa il caso in cui l'insieme degli ordini di magnitudine degli elementi del gruppo G delle lunghezze (cfr. introduzione), non è dotato di massimo [4, 5].

Ricordato che $G_1 \subset G_2 \subset \cdots \subset G_r \subset \cdots$, ciò accade se come gruppo delle lunghezze si assume il gruppo

$$G = \bigcup_r G_r$$
 $(r = 1, 2, 3, \cdots),$

 $\operatorname{con} G^+ = \bigcup_r G_r^+.$

In particolare acquista una immediata verifica il teorema 6, 4º della [4] enunciato nel seguente modo

$$(a, b \in G^+, a + b = b + a + \varepsilon) \Rightarrow (\varepsilon \leqslant a + b)$$
.

Basta infatti operare nel più piccolo G_r che contiene sia a che b.

6. Per ottenere un gruppo di lunghezze Γ parzialmente ordinato [1, 3], nel quale le lunghezze non confrontabili con lo zero siano infinitesimi attuali rispetto ad ogni lunghezza positiva, si può definire Γ come somma diretta del gruppo G e di un gruppo (additivo) H. Quindi gli elementi di Γ sono del tipo $\alpha = (a, h), \quad \alpha_{\rm r} = (a_{\rm r}, h_{\rm r}), \cdots; \quad a, a_{\rm r} \in G; \quad h, h_{\rm r} \in H; \quad {\rm e} \quad \alpha + \alpha_{\rm r} = (a + a_{\rm r}, h + h_{\rm r}).$

Diremo che $\alpha = (a, h) \in \Gamma^+$ se $a \in G^+$; il sistema Γ^+ soddisfa alla proprietà II dell'introduzione. Il sistema degli elementi del tipo (o, h) sono inconfrontabili con lo zero di Γ e costituiscono un sottogruppo invariante di Γ .

Ne segue la compatibilità dell'assioma sugli elementi inconfrontabili dato nella Nota [4].

La mappa

$$\omega: \quad \alpha = (a, h) \rightarrow \bar{\alpha} = (\bar{a}, h)$$

è un antiautomorfismo involutorio di Γ , che oltre alla proprietà III dell'introduzione soddisfa anche alla proprietà algebrica (I).

Nota. - Il n. 1 è stato redatto da U. MORIN, i successivi da F. BUSULINI.

BIBLIOGRAFIA.

- [1] BUSULINI F., Sopra una retta elementare parzialmente ordinata, « Atti Acc. Patavina di Sc., Lett. ed Arti », 72 (1959-60).
- [2] BUSULINI F., Contributi alla geometria della retta, «Ann. Univ. Ferrara», 9 (1960-61).
- [3] BUSULINI F., Sopra un antiautomorfismo del gruppo delle lunghezze, « Rend. Sem. Mat. Univ. Padova », 31 (1961).
- [4] BUSULINI F., Sui gruppi non regolarmente ordinati, « Rend. Sem. Mat. Univ. Padova », 33 (1963).
- [5] BUSULINI F., Sopra una geometria generale del piano, « Rend. Sem. Mat. Univ. Padova », 33 (1963).
- [6] CONRAD P., Right-ordered groups, «Michigan Mat. Journal», 6 (1959).
- [7] HALL M., JR., The theory of groups. The Macmillan Comp. New Jork (1959).
- [8] MORIN U.-BUSULINI F., Alcune considerazioni sopra una geometria generale, «Atti Ist. Veneto di Sc., Lett. ed Arti», 107 (1959).
- [9] MORIN U., Geometria elementare e teoria dei gruppi, «Atti Convegno sulla teoria dei gruppi finiti, Firenze 1960», Cremonese, Roma (1960).