ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

GIORGIO L. OLCESE

Sul comportamento magnetico del Cerio nei composti intermetallici. - II. I sistemi Ce-Zn, Ce-Cd, Ce-Hg

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **35** (1963), n.1-2, p. 48–52. Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLINA_1963_8_35_1-2_48_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Chimica. — Sul comportamento magnetico del Cerio nei composti intermetallici. — II. I sistemi Ce—Zn, Ce—Cd, Ce—Hg ^(*). Nota di Giorgio L. Olcese, presentata ^(**) dal Socio G. B. Bonino.

La preparazione dei composti dei sistemi Ce—Zn, Ce—Cd e Ce—Hg è stata effettuata con la tecnica già descritta in una precedente Nota [1].

I metalli usati sono Cerio Lindsay 99,9%; Zinco al 99,99%; Cadmio Fluka 99,9%; Mercurio commerciale purificato.

IL SISTEMA CERIO-ZINCO.

Il diagramma di stato di questo sistema, dovuto a J. Schramm [2] mostra l'esistenza delle seguenti fasi intermedie : CeZn, $CeZn_2$, $CeZn_5$, $CeZn_9$, $CeZn_{11}$. La loro preparazione è stata fatta per fusione dei due elementi in quantità stechiometriche. Dopo fusione, CeZn, $CeZn_2$ e $CeZn_9$ sono stati raffreddati lentamente ; $CeZn_5$ e $CeZn_{11}$ (a massimo nascosto) sono stati temprati da 900° C e successivamente ricotti per sette giorni a 800° C e 700° C rispettivamente.

I prodotti sono leghe di colore argenteo, dure, fragili, non alterabili all'aria ad eccezione di CeZn.

L'analisi chimica è stata effettuata separando il Cerio come idrato e determinandolo poi come ossido. Lo Zinco è stato determinato come pirofosfato. I risultati sono mostrati dalla Tabella I.

I fotogrammi delle polveri hanno confermato per CeZn la struttura tipo CsCl con a=3.713 Å in accordo con i dati della letteratura [3], che riporta a=3.704 Å.

CeZn₅ presenta una struttura esagonale tipo CaCu₅, similmente a quanto avviene per LaZn₅ [4], con a=5,391 Å, c=4,271 Å, c/a=0,7919. È interessante notare che anche lo studio micrografico di questa lega induce a concludere che la formula da attribuire ad essa sia effettivamente CeZn₅ e non CeZn₆ come era stato anche proposto. La struttura di CeZn₉ non è stata determinata. CeZn₁₁ è tetragonale con costanti in accordo con quelle della letteratura [5]: a=10,662 Å, c=6,855 Å, c/a=0,6429. Tutti questi composti seguono la legge di Curie–Weiss, nell'intervallo di temperature fra +200°C e -200°C, e, come la Tab. I ed il grafico di fig. I mostrano, essi presentano valori della suscettività e del momento magnetico vicini a quelli corrispondenti allo ione Ce³+.

^(*) Lavoro eseguito nell'Istituto di Chimica fisica dell'Università di Genova, con il contributo finanziario del C.N.R. La ricerca riportata è stata in parte finanziata dall'Office Chief of Research and Development, U. S. Departement of the Army, tramite il suo ufficio europeo di ricerca.

^(**) Nella seduta del 13 giugno 1963.

TABELLA I.

$ \begin{array}{c} \text{Composto} \\ \text{Ce}_{\pmb{x}} \mathbf{M}_{\pmb{y}} \end{array} $	% Ce trov. (teor.)		% M trov. (teor.)		Composizione effettiva	X_{M}^{298} Io^{6} $u.e.m.$	$\mu_{ m B}$	θ _C °K
							-	
CeZn	68,05	(68,17)	31,95	(31,83)	CeZn	2530	2,48	5
$CeZn_2$	48,37	(51,73)	51,12	(48,27)	CeZn _{2,26}	2762	2,72	38
$CeZn_5$	29,59	(30,00)	69,90	(70,00)	CeZn _{5,04}	2353	2,54	-44
$CeZn_9$	19,27	(19,23)	80,08	(80,77)	CeZn8,91	2940	2,64	0
$CeZn_{II}$	16,39	(16,30)	83,94	(83,70)	CeZn _{II}	2959	2,54	+26
CeCd	56,00	(55,50)	43,40	(44,50)	CeCdo,97	2439	2,35	+14
$CeCd_2$	37,78	(38,40)	61,62	(61,60)	CeCd ₂	1587	2,18	 75
CeCd ₃	31,24	(29,35)	68,76	(70,65)	CeCd ₂ , ₇₄	2246	2,44	29
$\operatorname{CeCd}_{\mathtt{II}}$	9,77	(10,18)	89,50	(89,82)	CeCd ₁₁	2899	2,47	+32
СеНд	41,50	(41,13)	58,10	(58,87)	CeHg	2841	2,73	-32
CeHg ₂	26,13	(25,89)	73,43	(74,11)	CeHg _{1,97}	2781	2,73	-33
$CeHg_3$	18,71	(18,89)	81,02	(81,11)	CeHg ₃	3077	2,93	—53
CeHg ₄	14,46	(14,87)	85,50	(85,13)	CeHg _{4,13}	3225	3,03	—55
СеНд5	12,13	(12,26)	87,53	(87,74)	CeHg ₅ , _{o4}	2958	2,70	_ 8

IL SISTEMA CERIO-CADMIO.

Il diagramma di stato di questo sistema è ignoto. Nella preparazione dei composti ci si è basati sullo studio micrografico e röntgenografico di A. Iandelli e R. Ferro [6].

I composti CeCd e CeCd₂ sono stati preparati portando a fusione (1000° C e 900° C rispettivamente) trucioli dei due elementi compressi in pastiglie, dentro crogiolino di pythagoras chiuso sotto vuoto in quarzo, ed effettuando poi un raffreddamento lento. CeCd₃ e CeCd₁₁ sono invece stati preparati facendo prima avvenire una reazione fra le polveri di Ce ed i vapori di Cd, durante un trattamento di circa tre giorni con progressivo aumento della temperatura fino a 550° C. Scomparsa così ogni traccia di Cadmio, la sostanza è stata compressa in pastiglie, che, chiuse in crogiolo di pythagoras dentro quarzo sotto vuoto, sono state portate a fusione (800° C circa), e poi raffreddate lentamente. La ragione del più cauto trattamento usato per la preparazione di questi ultimi composti sta nel fatto che essi facilmente si decompongono, distillando Cadmio.

^{4. —} RENDICONTI 1963, Vol. XXXV, fasc. 1-2.

L'aspetto delle leghe ottenute è di blocchetti di fusione, compatti, di colore argenteo, duri, non molto fragili, specie i più ricchi in Cd.

L'analisi chimica è stata effettuata separando come solfuro il Cd, determinato poi come solfato, e determinando il Ce come ossido. I risultati sono riuniti nella Tabella I.

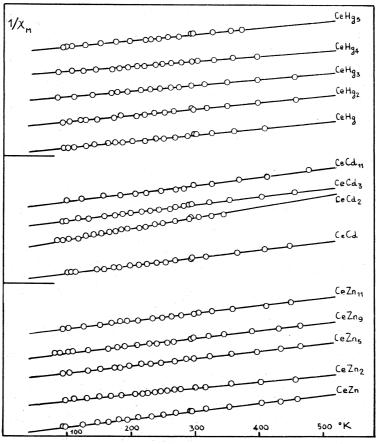


Fig. 1.

I fotogrammi delle polveri, effettuati con la radiazione K_{α} del Cu, hanno mostrato, in buon accordo con [6], per CeCd₂ una struttura esagonale tipo CdI₂ con a=5,077 Å, c=3,447 Å, c/a=0,679; per CeCd₃ una struttura c.f.c. tipo BiLi₃ con a=7,218 Å; per CeCd₁₁ struttura cubica tipo BaHg₁₁ con a=9,319 Å.

Le misure di suscettività magnetica fra $+200^{\circ}$ C e -200° C hanno fornito i dati mostrati dalla figura I e dalla Tabella I.

Mentre i momenti magnetici presentati da CeCd₃ e CeCd₁₁ sono vicini a quello corrispondente allo stato trivalente del Cerio, CeCd e CeCd₂ mostrano momenti abbastanza minori. Ciò potrebbe attribuirsi alla presenza in queste fasi d'una certa percentuale di ioni Ce⁴⁺.

IL SISTEMA CERIO-MERCURIO.

Questo sistema, di cui non è noto il diagramma di Stato, è stato oggetto di uno studio da parte di A. Iandelli e R. Ferro [7], cui si è fatto riferimento per la preparazione dei composti corrispondenti alle formule: CeHg, CeHg₂ CeHg₃, CeHg₄, CeHg₅.

Per CeHg, CeHg₂ e CeHg₃ la reazione di combinazione fra i due elementi è stata fatta avvenire dentro un crogiolino di pythagoras, saldato sotto argon in crogiolo di ferro. Dopo un primo riscaldamento fino a 1000°C, si sono sottoposte le varie leghe a raffreddamento molto lento (100° al giorno). Per CeHg₂ è stata necessaria una prolungata ricottura (15 giorni) a 200°C.

Nel caso delle amalgame più ricche di mercurio, la preparazione è stata effettuata in fiala di vetro infusibile sotto vuoto. Il trattamento termico è consistito, per CeHg₄, d'un riscaldamento fino a 400°C, seguito da ricottura a 280°C per 8 giorni; per CeHg₅ di un prolungato riscaldamento a 100°C.

Le amalgame ottenute sono di colore argenteo, estremamente alterabili all'aria (mentre si possono conservare a lungo sotto CO₂), di durezza decrescente all'aumentare del tenore in Hg; in ogni caso ben cristallizzate.

L'analisi chimica è stata fatta separando il Mercurio come solfuro e determinandolo come tale. Il Cerio è stato determinato come ossido. La Tabella I ne riporta i dati.

Dallo studio dei fotogrammi X delle polveri, è risultato:

- CeHg cubico centrato con a=3,808 Å in ottimo accordo con la letteratura [7], (a=3,808 Å).
- CeHg₂ esagonale tipo AlB₂ con a=4,942 Å , c=3,540 Å , c/a=0,7163 in accordo con [8], (a=4,946 ; c=3,545 Å).
- CeHg₃ esagonale compatto tipo Mg₃Cd con a=6,760 Å, c=4,941 Å, c/a=0,7308 in accordo con [8], (a = 6,755 Å; c/a=0,7338).
- CeHg₄ cubico centrato con a = 10,932 Å, similmente a quanto riporta [8], (a = 10,934 Å).
- CeHg₅ struttura non risolta. È isomorfo con LaHg₅ [6].

I dati magnetici sono mostrati dal grafico di fig. I e dalla Tabella I. Come si vede i valori delle suscettività e dei momenti magnetici sono, per ogni lega, elevati rispetto ai valori corrispondenti allo ione trivalente del Cerio. La dipendenza dal campo dei valori di X_M fa pensare che ciò sia dovuto alla separazione nelle varie leghe di ferro metallico derivante dal Cerio di partenza (0,012 % Fe).

Per l'interpretazione dei grafici di fig. 1, si veda la Nota in [1].

BIBLIOGRAFIA.

- [I] G. L. OLCESE, «Atti Acc. Naz. Lincei», Rend. Classe Sc. fis. mat. e nat., XXXIV, fasc. 6, 642 (1963).
- [2] J. SCHRAMM, «Z. Metallk.», 33, 358 (1941).
- [3] A. IANDELLI e E. BOTTI, «Gazz. chim. ital. », 67, 638 (1937).
- [4] H. NOWOTNY, «Z. Metallk.», 34, 247 (1942).
- [5] M. J. SANDERSON e N. C. BAENZIGER, «Acta Cryst.», 6, 627 (1953).
- [6] A. IANDELLI e R. FERRO, «Gazz. chim. ital. », 84, 463 (1954).
- [7] A. IANDELLI e R. FERRO, « Atti Acc. Naz. Lincei », Rend. Classe Sc. fis. mat. e nat., X, 48 (1951).
- [8] A. IANDELLI, Paper N° 3 F, pp. 3 F in *The Physical Chemistry of Metallic Solutions and Intermetallic Compounds* Her Majesty's Stationery Office, London, (1949).