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Matematica. — 7V/e order of a rational function at a subva-
riety of an algebraic variety. Nota di ALExANDRU T. Lascu, presen-
tata @ dal Socio B. SkGrE.

In this note we give three interpretations of a valuation arising in
Algebraic Geometry. \

The results obtained here will be used in some future applications
concerning theory of intersections for Segre’s dilations on the one hand and
structure of birational transformations on the other hand.

Let V be an abstract algebraic variety in the sense of Weil [1] over
an universal domain Q of arbitrary characteristicc U a subvariety of V
and © = 9O (U, V) the local ring of U on V. If U is a simple hypersurface
(codim U =1) O is a valuation ring. Then for every rational function ¢
of V there are:

@) an integer v (¢) (the order of ¢ at U), and
6) a rational function of U, induced by ¢ on U, provided that
vy (9) =o. »

In this note we attempt to extend the properties @) and 4) for codim
U >1. Under a suitable hypothesis (the hypothesis (¢) bellow), which is
satisfied for the simple subvarieties, we succeed in doing this for @). The
integer v, (¢) may be determined algebraically or geometrically.

Algebraically one proceeds as follows. Let m be the maximal ideal
of © and F(m) = O/ @ m/y> @ - - - the associated graded ring of m. One
supposes (the hypothesis (7)) that F (m) is an integral domain. Then v (¢) =/
if ¢=0o/8 with o ,B€D,xe€m*,xeme+:,Bem?,pem+, and f=a—20.
One knows that o; is a valuation [3]. It is evident that, if codim U =1, 7
is the valuation associated to U.

Geometrically we may get v, (¢) by means of the monoidal transformations
of Zariski [2] of V. Namely, one shows (theorem 1) that if p: V—V’ is such
a transformation of center U then ¢ blows up U to a simple hypersurface
- U’ of V'. Thus one may define v, (¢) by putting v (¢) = vy, (pop™). This
definition does not depend on the choice of ¢, for the local ring & (U’ , V")
~of U on V' is independent of p. If vy (9)=0,9 = @op—* induces a rational
function ¢ on U’ which is the residue class of ¢’ modulo the maximal ideal
m(U’, V) in O (U’,V’). Onemay extend the property &) by saying that ¢
induces the function § on U'. Let Q(V), Q (V') be respectively the func-
tions fields of V,V’ and #: Q (V) - Q(V’) the isomorphism defined by
e (for 0 € Q(V),#(a) =aop==). Then #(D)C O =0 ,V),s(m)Cm’ =
=m U, V), 9w =QU"). Hence QU) ~ #(O)),mwC O'/m and one sees

(*) Nella seduta del 20 aprile 1963,
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easily that @ nduces a rational function on U if and only if ¢’ € Q' and ¢ is
congruent modulo w' with an element of ¢ (9). In particular, this is the case if
@€ or if ¢’ induces a constant function on U’. If U is a simple hypersurface
of V, then #(9Q) =9  and the above definition reduces to the classical
one.

The summary of this note is the following. In § 1 we give some
results about monoidal transformations. We show that the transform
¢ [U] of U by a monoidal transformation g of center U is a bunch of hyper-
surfaces; ¢[U] is a simple hypersurface, provided the hypothesis (7) is
satisfied. In § 2, one shows that the geometrical definition of v, agrees with
the algebraical one. § 3 contains another characterization of the integer
v, () by means of the divisor of ¢ on V, under the additional hypothesis
that © is and U.F.D. (unique factorization domain).

The Author wants to express here his hearty thanks to Prof. Gh.
Galbura for the critical reading of the manuscript and the encouragement.

Notations. — We have adopted, with a few modifications, the termi-
nology of Weil's Foundations [1].

If A is an algebraic variety and H C Q a field of definition of A, H (A)
denotes the functions fields of A over H; Oy =90 (U, V)=9(U,V)nH (V), my
the maximal ideal of Oy and Fu () = Onjmy @ mH/‘"ﬁ @ ... is the associated
graded ring of mg. P represents the s—dimensional projective space over (2.

A rational map 7: A — B issaid to be regular (biregular) at a pointx € A,
if there is a point ¥ € B which corresponds by 7 to # and the canonical iso-
morphism 7: Q (B) — Q (A) defined by 7, maps O (¥, B) into (onto) O (x , A); ©
is complete over a subvariety B’ of B, if every place of Q (A) extending the
canonical homomorphism # (2 (B', B)) — # (O (B, B))/z (m (B’, B)) has a center
on A ([1], p. 185, [5], p. 113). One says that T is a morphism if 7 is everywhere
regular on A; a morphism 7:A —B which is complete over every point of
B is called a proper morphism. If TCAXB is the graph of v and A’ a sub-
variety of A, the total transform of A' by 7,7 {A'} is defined by T{A’} =
= pry [((A'XB)YNT]; the transform of A" ny 7, v[A’], is the bunch of those
irreducible components of A’ which correspond to A’ by ©([2]). If ¢ is a
rational function of the variety A, (¢) shall represent the divisor of ¢ on A.

§ 1. Consider a system { ¢, , - - -, ¢s } of elements of Oz which generates a pri-
mary ideal q for m in O and let ¢; be the residue class of ¢; in g/p, 4 (f=0,- - -, ).
Suppose that £ is a field of definition of U,V ,@,,---, ¢, and x €V, %°€U
are generic points over 4 of V, U respectively. Let V'CV x P® be the locus
of X (o (%), +,9s(x)) over £ and 7: V'V the birational transformation
defined over £ for which T (x X (¢, (%), -+, s (%)) = x. Consider 'the graded
ring Gz (0) = Oflu, @ Gluyg @+ @ Ofw,q ®---. Set ko= £ («°) and let
w:ko[Yo, -+, Y]—>Gs(q) be the homomorphism which extends the cano-
nical isomorphism 4, ~ £(U) to % Yo, -+, Ys] in such a way that
cu(Yi)=¢9;(:=o0,--+,5); put a =ker » and let W (»°) be the algebraic
set of zeros of a in P”.
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Lemma 1. Suppose that: (75) W (u°) = W (x°) for any x° €U generic over
k and put W =W (u°). Then © is a proper morphism and UXx W = v—1[U]
(the total transform of U).

Proof. — Since T is a projection, 7 is everywhere defined on V’. Because
P°is a complete variety and V' CVxP® = is complete over every point
of V. To conclude, it only remains to show that

(1) U'cV and 7(U)=U implies U CUXW
() UxWcV.

Let K be an extension of £, which is a definition field both of U’ and
UXW; let (x,y) €V’ ,(x°,5°) €U be generic points over K of V', U’".
Thus, by hypothesis, x° is a generic point of U over 4. Because W is a closed
set of PS in the k,— topology of Zariski, the inclusion U'CV X W is equi-

valent with y,€ W. The homogeneous ideal a of Win £, [Y,,- -, Y,] is gene-
rated by the homogeneous polynomials P(Y,,- -, Y= Zoc,- (%)M (Yo, -+, Yo)

where M;(Y,,- -, Y,) are monomials of degree » in Y,,---, Y5, € Oz and
2 M (9, , @) €m, 0. Therefore X o, M7 (o, - -, 0:)= 3 B Mi(®s, - - -, o)

for suitable B, €m,. If y2 =0, by deshomogeneizing at ¢;, we get
a,M:(f"i’..., ‘PJ>= iM’;(&)..-.)EL)
; ’ s ®; 2 P ®; )

with B:€m,. This gives

Do @M, T = BaM; (22, 22,

i

Lo BMi(yo, - 20 = X DMy, -+, 2)

By specialization at (x°,4°) it results E o ()M (32, .., 90 =0,

because B;(x°) =o. Thus 3°€ W (x°) = W and 1) is proved. To prove 2)
consider a polinomial P € £[X , Y] which is homogeneous of degree » as a
polynomial in indeterminates Y,,---, Y, and such that P (x,y) =o. This
implies P (x, ¢ (x)) = o, which shows that P(«°,Y,,---, Y)€a and so
P (u° 180,y &) =0 for every z= (é°,~ -+,2) € W. Taking the point z
generically over K for an irreducible component W, of W, (x°, 2) is a generic
point of UXW, over K. Then P («°,z) = o implies P (x°,2) = o which
shows that P is null over UX W, and thus Ux W,CV".
Remarks :

1° If {¢o, -+, 9} is a system of parameters for O then, in view
of the * analitically independence ” ([3], theorem 21, p. 292) a = o. Thus
W="Ps,s= codimU — 1.

2° If m = q then Gz (q) = Fz(m).
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3° Evidently V is independent of 2. If V" is the variety obtained
in the same way as V' from the system of generators of ¢* formed by the
monomials y,,- - -, us of degree % in ¢, ,- - -, s then V' is isomorphic to V”.
Indeed, if FC P® is the locus of (9o (%), ++, @s (%)) over £ then V' is the
graph of the rational transformation V b, F, defined over 4, which maps
(x) onto (o (%), -, ¢s(x)). Similarly if F,CP? designates the locus of
(o (%) ,- -, s (%)) over £, V" is the graph of {,:V — F,, where ¢, (x) =
= (po (%), -+, up(x)). But F,F, are isomorphic over £ by the birational
map /, for which 7, (¢, (%) ,- -, 9s (%)) = (o (%) ,- - -, pp (%)) . Thus ¢, =, 7; "
and V', V" are isomorphic over 4.

4° If 4o, -+, ¢ is another system of generators of q and 7,:V, —
— V(Vi:CVxP) the birational map defined by them, then the irreducible
components of = [U], 7, " [U] correspond one-to-one biregular by 7~ o 7, .
This is a consequence of the formulas §; = E Ai; ¢, modulo mq , ¢; = E wsi gy

modulo mq with suitable A;;, p;; € Q (U) (=j Ofm).

DEFINITION. — T/e birational map < above is called a monoidal transfor-
mation of V of center q. If @ = m then < is called a monoidal transformation of
V of center U.

LEMMA 2. — Let v be a monoidal transformation of V of center q. Every
irveductible component of v—*[U] is a hypersurface of V',

Proof ([5], p. 105). — In view of the local character of this lemma, we
may suppose that V is a subvariety of an affine space A” and replace P*
by an affine space A’ of suitable coordinates say z; = ¥:/¥o,- - -, 2 = ¥[Vo
if y,==0 on V'. Then V'CA"xXA’ =A™ is an affine variety: if K is an
extension of K,, ¥ = (%, ,- - -, %,)€V a generic point over K and z; = ¢; (x)/9, ()
({=1, --,s), then (x,5) is a generic point of V' over K. Let U’ be an
irreducible component of 7= [U] defined over K and (', ") €U’ a generic
point over K. We may suppose that ¢;(x;,---,x;) is a polynomial in
iy X (E=1,---,5); 2 €U implies ¢; (¥ )=0( =1,.--.,5). Thus U’ is
a subset of the intersection.of V' by the hypersurface H; of A™* of equation
o (X, Sy X,) =o0. Since y,==0 on V', it follows that V ¢z H, and the-
refore every irreducible component U” of V'NH, is a hypersurface of V'
(codim U” = 1). Let U” be such that U'CU"; let U” be defined over K
and («”,#’) be a generic point of U” over K. Then (x”,s") X, «,2)
and a fortiori x” ——x'. But 2 ¢, (x) = ¢; (¥) implies ¢; (") = o which
shows 'that x” € U. Therefore x” is a generic point of U 7.e. T[U"]=TU.
Thus the inclusion U"CU” implies that U =TU"i.e codim U’ = 1. g.c.d.

THEOREM 1. — Let U be a subvariety of V whick satisfies the hypothesis (7)
(t.e ¥ (m) is an integrity domain) and the hypothesis (ii) (of the lemma 2).
Then every manoidal transformation of V of center U ,©: V'V, is aproper
morphism and v+ [U] is a simple hypersurface of V'.

Proof. — By lemmas 1 and 2, v [U] is a hypersurface U’ of V'. To
show that U’ is simple on V’ we shall use the notations from the proof of
the lemma 2.
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Let O, be the transform of O by the canonical isomorphism, #: Q (V)—
—Q (V') associated to £ Let m, be the maximal ideal of £, and ¢; = #(9,)
=0, 9. If =90,V then O, is dominated by £’,7.¢9O,C 2,
m,C7’ = m (U, V"), and because ¢;/9, = {; are functions of coordinate of
V', in an affine neighborhood of U” on V’, we have { € O’. To prove that O’
is regular, it is sufficient to show only that m, O’ is the maximal ideal m’

of ©. Indeed, since m, = Ecp, O, m, = m implies ' = Z¢; Q" and then

=0, 0GE=1,---,5) shows that m" = ¢, O’. Suppose that W is defined
over £ and Fe£[X,, --,X,,Z,,--+,Z] with F(«,2) =o0. If n is the
degree of F(x,Z)€k(x)[Z] in Z,,---,Z;, by multiplying it by 9* (x) and
putting ¢, (x)Z; =Y; we get H(x,Y,,.- -, Yo)=¢" () F(x,Z,,---,Zy)
where H (x,Y,,---, Ys) is a homogeneous polynomial of degree = in
Yo, -, Ys. We have

H(x',I,z;,---,z;_)=o.

Because (¥',2") is a generic point of U’, this shows that H(x°, Y) € a. There-
fore H (x,9 (x)) = Zoc, ()M (0 (), - -, Ps (x)) with o; € O.

Thus ¢ (x) F (x , C(x)) = Zo; (¥) M7 (@ (x)) which implies
F(r,L(x) = Sa,Mj (@) 0, (%), ie,

F(x,l(x))em; O Itfollows that (m,) O, = m; and consequently m, O = m’".

Remark. — Let £ be the linear system without basic divisors defined
by the vector space L generated by ¢, .-, . over Q z.¢. the family of
divisors of V obtained from the divisors (¢) 4+ M where ¢ €L and-M = min (¢,)
after deleting the basic divisors. Let B be the set of basic points of 2. V’is

the graph of the rational map V Y, ps associated to £. Thereforeif x € Visa
normai‘ point the map V Yopis regular at x when and only when x € B
([5D). It follows that if V is a'normal variety and B = U, then 7 is bire-
gular in V—U.

§ 2. Let U be a subvariety of V which satisfies the hypotheses (2), (sz) and
consider a monoidal transformation 7: V'—>V of center U ; let 7 [U] = U’
be the total transform of U by v—* In view of remark 4 of lemma 1,V’
is uniquely determined up to a birational mapping biregular over U’. We
may therefore introduce the following

Definition. — If ¢: Q) — Q') is the canonical isomorphism defined
by v and vy, the valuation defined by U’ in Q') v, =uv,ot is called the
valuation vy assoczazed to U on V. Accordmg to the above definition, if
¢ €Q (V) we have

2y (9) = 2, (¢ (9) @ =%,
We shall call the integer v, (¢) the order of at U.
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THEOREM 2. — Let U be a subvariety of NV which satisfies the hypothesis (z).
If o=uyflv with p,veO=90U,V) and pem*,pemt: vemwl, vem?t:
then v, (9) = a—b.

Proof. — Let 7: V-~V be a monoidal transformation of 'V of center U,
defined over 4. We shall use the notations of the proof of the lemma 2 and
theorem 1. If ¢" =7(9), v, () = « implies ¢’ = ¢ * " where 3’ is a unit of
O =D,V I () = (1, 2) o (2, 9) = 52 with
A(x,Y),B(x,Y)€£[x][Y] and homogeneous of degree g in Y,,---, Y.
Moreover A (x', ") ==0, B («', ¥") == 0; thus ifa,B € £ (V) are the functions for
whicha () =A (x, @0 (%), -+, ¢ (%)),B (x)=B (x, 9o (x),- - -), then a, B €m?,
o, Bemsts. But @, €m® because ¢, €m’? as a regular parameter of O'. It

follows ¢ = cpgi with g€ met, agremet«r Bem?, B emet, in view of
the hypothesis (¢) which shows that » = a — .

§ 3. If Ais a subvariety of the variety B, we shall designate by (A, B)

the multiplicity of A on B.
THEOREM 3. — Let' U be a subvariety of V whick satisfies the kypotheses (7)), (i%)
s

and for which the local ring O (U , V) is an U.F.D. Let 9 € Q(V) and (¢) = Y,

1=1

a;H;. Then we have
5
vy (9) = Xabr,

where b; = m (U ,H:)[m (U ,V) (b =0 if V- H,),

First, we shall prove a lemma of local algebra. Let £ be a local ring
which is an U.F.D., let m be the maximal ideal of © and suppose that F (m)
is an U.F.D. Thus if K is the field of fractions of 9, the function which
associates to every element x €O the integer » = »(x) defined by xe€w’
xe¢w+* (the order of x) is the restriction at © of an uniquely determined
valuation v of K ([3]). If pis a prime ideal of O, O, represents the ring of
fractions of © with respect to p. If R is a local ring 7 (R) is the multipli-
city of R 7.e. the multiplicity of his maximal ideal.

LEMMA 3. —Letz€ K, 2 =27x,- - ~,th where ;- -+, 2, €0 are prime ele-
ments of O and v, ,---,7, are integers. If for i =Fj z: is relatively prime to
2;,G,j=1,---, k) then

v () = Xm (32 7 (D)

where p; = 2; O and m (20y;) = —m (g7 Oyp;) ¢f 7; < 0.
Progf. — Since O, is a one-dimensional regular local ring having z;
as a regular parameter and z; is relatively prime to z, for j —=7, we have
2
i =m (D). Aswv(2) = X7,v(z) it is enough to show that 7 (D) v (z,) =
=1

=m (O/z:O). But v(g,) =s implies z,€m,z; ¢m*+*. Because F(m)is an
U.F.D.,, m*: (2, Q) = m. Hence m (Ofz: O) = sm (D) ([4])-
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We can prove now the theorem 3. If in the above lemma we take
©=9U,V)and ¢ =g, it is easy to see that p =4 and, by suitable
notations, (2); = H; 4+ X;, where no component of X, contains U. Thus
a;=7;,({=1,---,p). In view of the theorem 2., vy =v. By lemma 3,
9y () = Zm (90,) 7 (Ol o But 7, = m (99y) and Dy = O (U, Hy), dce
a; =m (9Oy;) and b; = m (Dp)[m ) = m (U, Hy)/m (U , V).
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