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Matematica. —■ The order o f a rational function at a subva
riety o f an algebraic variety. N o ta  di A l e x a n d r u  T. L a s c u ,  p re s e n 
t a t a  n  dal Socio B. S e g r e .

In  this no te we give three in terp re ta tions of a valuation arising in 
A lgebraic Geom etry.

T he results ob tained here will be used in some fu tu re  applications 
concerning theory  of in tersections for Segre’s dilations on the one hand and 
stru c tu re  of b irational transform ations on the o ther hand.

L et V be an ab s trac t algebraic varie ty  in the sense of Weil [1] over 
an universal dom ain O of a rb itra ry  characteristic, U  a subvarie ty  of V 
and 0  =  0  (U , V) the local ring of U  on V. If  U  is a simple hypersurface 
(codim U  =  1) 0  is a valuation  ring. Then for every ra tiona l function 9 
of V  there are :

a) an in teger vv (9) (the order of 9 a t U), and
b) a ra tiona l function of U , induced by 9 on U , provided th a t

(?) ^  o.
In  this no te we a ttem p t to extend the properties a) and b) for codim 

U > i .  U nder a suitable hypothesis (the hypothesis (/) bellow), which is 
satisfied for the simple subvarieties, we succeed in doing this for a). The 
integer vu ( 9) m ay be determ ined algebraically or geom etrically.

A lgebraically one proceeds as follows. L et m be the m axim al ideal 
of 0 and F  (m) =  0 /m © m/ma © • • • the associated graded ring of m. One 
supposes (the hypothesis (i)) th a t F  (m) is an integral domain. T hen vv (9) — /  
if 9 =  a/P w ith  a , p 6 0  ,' a 6 mfl , a e ma+I , p e vd , p € m0+I , and /  =  a —  b. 
One knows th a t vv is a valuation [3]. I t  is evident th a t, if codim U  =  1 , vv 
i(s the valuation associated to U .

G eom etrically we m ay get vv (9) by m eans of the m onoidal transform ations 
of Zariski [2] of V. Nam ely, one shows (theorem  1) th a t if p : V -^ V ' is such 
a transform ation  of center U  then p blows up U  to a simple hypersurface 
U ' of V '. T hus one m ay define vv (9) by p u ttin g  vv (9) =  vv , (<?°P~1)- This 
definition does no t depend on the choice of p, for the local ring 0  (U ' , V ;) 
of U ' on V ' is independent of p. If  vv (cp)>'o , 9' — 909—1 induces a rational 
function ^ on U ' which is the residue class of 9' modulo the m axim al ideal 
m ( U ' , V ') in 0  (U ' , V'). One m ay extend the p roperty  b) by saying th a t 9 
induces the function  ^ on U '. L e t Q (V) , Q (V') be respectively the func
tions fields of V  , V ' and t  : £2 (V) -> O (V') the isom orphism  defined by 
p (for ; oc € Q (V) , t  (oc) =  aop—I). Then t (0 ) C 0 ' =  O (U ' , V ') , t (m) C ni =  
=  m (U ', V ') , ©'/ni' =  O (U '). Hence Q (U) ^  /  (0 )/r(m) C O'/nt and one sees (*)

(*) Nella seduta del 20 aprile 1963.
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easily th a t 9 induces a rational function on U  i f  and only i f  f  e O' and  9' is 
congruent modulo m' with an element of t(£)). In particular, this is the case if 
cpe£) or if 9' induces a constan t function on U \  If  U  is a simple hypersurface 
of V, then t  (£>) =  O' and the above definition reduces to the classical 
one.

T he sum m ary of this note is the following. In  § 1 we give some 
results abou t m onoidal transform ations. We show th a t the transform  
p [U] of U  by  a m onoidal transform ation  p of center U  is a bunch of hyper
surfaces ; p [U] is a simple hypersurface, provided the hypothesis (Y) is 
satisfied. In  § 2, one shows th a t the geom etrical definition of vv agrees w ith 
the algebraical one. § 3 contains ano ther characterization of the integer 
vv (9) by  m eans of the divisor of 9 on V, under the additional hypothesis 
th a t  D is and U .F .D . (unique factorization domain).

T he A u th o r w ants to express here his h earty  thanks to Prof. Gh. 
G albura  for the critical reading of the m anuscrip t and the encouragem ent.

Notations. — W e have adopted, w ith  a few m odifications, the term i
nology of W eil’s Foundations [1].

If  A  is an algebraic varie ty  and H C O a  field of definition of A , H (A) 
denotes the functions fields of A over H ; D h = D h (U  , V ) = 0 ( U  ,V )f ìH  (V ), mn 
the m axim al ideal of Oh and F H (m) — Dh/dih © ^Wm2 © • • • is the associated 
graded ring of uih • P represents the s-dim ensional projective space over £Ì .

A  rational m ap t  : A  -> B is said to be regular (biregular) a t a point x  e A , 
if there is a po int y  € B which corresponds by t  to x  and the canonical iso
m orphism  t  : O (B).-> Q (A) defined by  t ,  m aps O (y  , B) into (onto) O (x , A) ; t  
is complete over a subvarie ty  B' o f B, if every place of O (A) extending the 
canonical hom om orphism  t  (D (B', B)) t (0 (B', B))/£(m (B', B)) has a center 
on A  ([1], p. 185, [5], p- i 13). One says th a t t  is a morphism if t  is everywhere 
regular on A; a m orphism  t  : A  B which is complete over every po int of 
B is called a proper morphism. If  t q A x B  is the graph o f t  and A ' a sub- 
variety  of A, the total transform of A ' by  t  , t  {A '} is defined by t{ A '}  — 
— prB [(A' x B ) n T ]  ; the transform of Al ny t  , t  [A'], is the bunch of those 
irreducible coipponents of A ' which correspond to A ' by ^([2]). If  9 is a 
ra tiona l function of the varie ty  A , (9) shall represent the divisor of 9 on A.

§ 1. C onsider a system  { 90 , • • •, 9* } of elem ents of Ok which generates a pri
m ary  ideal q fqr m in Ok and let 9\ be the residue class of (p- in .q/m̂ q (i= o  , • • •, s). 
Suppose th a t k  is a field of definition of 15 , V , 90 , • • •, 9* and x  e V , u° e U  
are generic points over k of V , U  respectively. L e t V ' c V  x  PS be the locus 
of xxfWo Cx) ,■•••, 9 s (x)) over k and t  : V '->V  the birational transform ation 
defined over k for which t  (^X  (9o (x) , • • •, 9j (x)) =  x. Consider the graded 
ring G^ (q) =  iO/mk © q/ul̂  © • • • © c]rlmk$r © • • • • Set k0 =  h (u°) and let 
u : k 0 [Y0 , • • •, iYs] -> Gk (q) be the homomorphism which extends the cano
nical isom orphism  kQ k (U) to kQ [Y0 , • • - , Yf] in such a w ay th a t 
u(Y i)  =  f i ( i  =  o , • • - , s) ; p u t a =  ker u and let W  (u°) be the algebraic 
set of zeros of a in Ps.
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Lemma 1. Suppose that: (it) W  (u°) =  W  (x°) fo r  any x° eXJ generic over 
k and pu t  W  =  W  (u°). Then t is a proper morphism and  U  X W  =  1 [U]
(the to tal transform  of U).

Proof. — Since t is a projection, t is everywhere defined on V '. Because
S • s 'P is a com plete varie ty  and V ' c V x P  , t is com plete over every point 

of V. To conclude, it  only rem ains to show th a t

(1) U 'c V ' and t (U ') =  U  implies U ' c U x W

(2) U x W c V ' .

L et K be an extension of k 0 which is a definition field bo th  of U' and 
U x W ; let (x , y)  e V' , (x° , y°) e U' be generic points over K of V' , U'. 
Thus, by  hypothesis, .x° is a generic point of U over k. Because W is a closed 
set of P s in the kQ —  topology of Zariski, the inclusion U 'c V x W  is equi
valent w ith  y Qe W. T he homogeneous ideal a of W in k 0 [Yc , • • - , Y*] is gene
ra ted  by the homogeneous polynom ials P ( Y c , • • -,Y ,) =  2 a*(^o)M;(Y0, • • - , Y S)

i
where M j(Y 0 , • • •, Y s) are monom ials of degree r  in Y 0 , • • •, Y s , oq e Ok and 

2 « ;M ? (9 o ,-  , <p,) e m* q'. Therefore 2  < * , • OPo, • • •>?*)= 2  P '^ O P o , • • -, <P*)i i i
for suitable p. 6 . If  y°.-\- o, by  deshomogeneizing a t <py, we get

w ith  p* e mk . This gives

t \ X j
i.e.t

9* =  2  p* m
r (
l  \  y  y
' 9 i

l) = 2P*(*)Mf ' i
r ( JYo

~yj

9 s
9 j

2 <*-i (x ) M X y o , ■ ■ -,ys) =  X P ' W M X t o  ,• • -,ys) ■i i

By specialization a t  (x° , y°) it  results 2  a* 0 '°, • • •, yfy =  o ,
i

because (3* (x°) == o. T hus y° e W  (x°) =  W  and i) is proved. To prove 2) 
consider a polinomial P € k [X , Y] which is homogeneous of degree r  as a 
polynom ial in indeterm inates Y 0 , • • •, Y, and such th a t P (x , y) — o. This 
implies P (x , 9 (#)). == o, which shows th a t P (u° , Y0 , • • •, Y*) e a and so 
P .^ °  » #0 y • • •, #s) =  o for every z — (zQ , • • •, #,) e W. T aking the po int z 
generically over K for an irreducible com ponent W z of W  , (x° , z) is a generic 
po in t of U  X W x over K. T hen P (u° , z) — o implies P (x° ,z) =  o which 
shows th a t P is null over U  x  W x and thus U x W j C V ' .

Remarks'.
i° I f  {9.0 , • • is a system  of param eters for O then, in view 

of the “ analitically  independence ” ([3], theorem  21, p. 292) a — o. Thus 
W  =  PJ , s =  codim U —  1.

20 If  m =  q then Gk (q) =  F*(m).
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30 E v iden tly  V  is independent of k. I f  V " is the varie ty  obtained 
ip the sam e w ay as V ' from the system  of generators of qh formed by the 
monomials p,Q , • • •, \ip of degree h in cpQ , • • - , 9* then V ' is isom orphic to V". 
Indeed, if F  C PS is the locus of (cpG (x) , • • - , cps (pc)) over k then V ' is the 
graph  of the ra tional transform ation  V — F, defined over i ,  which m aps 
0*0 onto (<pQ(x) >* * 9s (x)). S im ilarly if F^ C P^ designates the locus of 
(Ho (x) , • • •, (x)) over k , V " is the graph  of : V  -> F^ , where (x) =
=  (p.0 (x) >• * *, [Lp(x)). B u t F  , Fk are isom orphic over k by the birational 
m ap lh for which lh (cpG (x) , • • •, 9, (x)) =  (fxG (x) , • • •, p* (*)) . Thus ^  /T 1
and V ' , V " are isom orphic over k.

40 I f  ò 0 , • • •, ^  is ano ther system  of generators of q and : Vi ->
- ^ V ( V ' i C V x P )  the b irational m ap defined by  them , then the irreducible
com ponents of t ~ 1 [U] , [U] correspond one-to-one biregular by  t —1 o t 1 .
This is a consequence of the form ulas ^  =  2  7yy modulo mq , 9y =  2  (xyy ^y

j  i
modulo mq w ith  suitable X,y , pty,- e Q (U) ( =  £)/m).

DEFINITION. — birational map t  above is called a monoidal transfor
mation o /V  of center q. I f q ~  m then t  /j- called a monoidal transformation of 
V of center U .

LEMMA 2. — Let ^ be a monoidal transformation of V  of center q. Every 
irreductible component of t —1 [U] is a hyper surf ace of V \

Proof ([5], p. 105). -  In  view of the local character of this lemma, we 
m ay suppose th a t V  is a subvarie ty  of an affine space A r and replace 
by an affine space A s of suitable coordinates say z x — y i\y 0 , • • • ,#* =  y /y 0 
if y Q~|=o on V '. T hen V ' c A ^ x A '  =  A r+S is an affine v arie ty : if K is an 
extension of K OJx  =  (xx , • • •, x r) €V a generic point over K  and Zi =  9,• (x)/(pQ (x f  
(i =  i , • • - , s), then (x , z) is a generic point of V ' over K. L et U ' be an 
irreducible com ponent of t — 1 [U] defined over K and (pc' , / )  e U ' a generic 
po int over K. W e m ay suppose th a t 9* (xx , • • •, x f  is a polynom ial in 
x x , • * •, x r (i =±= i , • • •, j)  ; X e U  implies 9,* (V) =  o (2 =  1 , • • •, s). T hus U ' is 
a subse t of the in tersection of V ' by  the hypersurface Hy of A r+S of equation 
9* (X i , • • - , X r) =  o. Since %  a'- 0 on V ', it  follows th a t V  c|: H 0 and the
refore every irreducible com ponent U "  of V ' n H 0 is a hypersurface of V ' 
(codim U " =  1). L e t U "  be such th a t U ' C U " ; let U " be defined over K 
and (x" , .t") be a generic po in t of U "  over K. T hen (x" (pc', z )
and a fortiori x '  — ■ x ' . B u t zi 9 0 (x) =  9* (x) implies .9,- (x") =  o which
shows th a t / € U .  Therefore x"  is a generic point of U  i.e. t [U ,r] =  U . 
T hus the inclusion U 'C  U " implies th a t  U ' = U  "i .e  codim U ' =  1. q.e.d.

T h eo rem  i. -  Let U  be a subvariety o fV  which satisfies the hypothesis (i) 
(i.e F  (m) is an integrity domain) and the hypothesis (ii) (of the lemma 2). 
Then every monoidal transformation of V  of center U , t : V ' - > V ,  is aproper 
morphism and  t ~  1 [U] is a simple hypersurface of V'.

Proof. -  By lem m as 1 and 2, t ~ 1 [U] is a hypersurface U ' of V '. To 
show th a t U ' is sim ple on V ' we shall use the no tations from the proof of 
the lem m a 2.
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L et 0 X be the transform  of 0  by the canonical isomorphism, t:  Q (V )-*  
^ Q ( V ')  associated to t. L e t m, be the m axim al ideal of 0 X and <p; =  t ( y t)
(i =  o , ■ ■ ■, s). I f  O ' =  O (U ' , V ') then 0X is dom inated by O', i.e 0X G O',
tifi C m' — ni ( U ' , V '), and because cp'/cpó =  ^  are functions of coordinate of 
V ', in an affine neighborhood of U ' on V ', we have £ e O'. To prove th a t O' 
is regular, i t  is sufficient to show only th a t ntx O' is the m axim al ideal m'

of O'. Indeed, since mx =  X  9*‘ O, , tnx 0 ' =  m implies m' =  O' and then
i ~ o

Ì ì =  9Ó C- (i =  i , • • •, s) shows th a t m' =  <pó O'. Suppose th a t W  is defined
over k and F  e k  [X x , • • •, X r , Z x , • • •, Zs] w ith  F  (pc', s') =  0. I f  n is the
degree of F  (x  , Z) e k (x) [Z] in Z x , • • •, Zs , by m ultiplying it  by  cp« (x) and 
p u ttin g  <pQ (x) Z, =  Y,• we g e t H (x , Y 0 , • • •, Y,) =  <p* (x) F  (x , Zx, • • •, Z,) 
where H (x  , Y b , • • •, Y,) is a homogeneous polynom ial of degree n in 
Y 0 , • • •, Y s . W e have

H (x ,  i , s) , ■ ■ ■, z's) — o .

Because (x', s') is a generic point of U ', this shows th a t H (x° , Y) e a. T here
fore H ( x , <p (x)) =  2  a,- (x) M ■+ I (<p0 (V) , • • •, <ps (x)) w ith  a,- e 0 .

i

T hus yn0(x) F  (x , Z (x)) =  Sa,- (x )M ™+1 (9 (x)) which implies 

F ( x  , I  (pc)) =  S  oc,,M£ . (Z (x)) ( x \  i.e

F (x , Z (x)) e mi £)'. I t  follows th a t t (m^) =  nu and consequently mx O =  m'.
Remark. -  L e t £ be the linear system  w ithou t basic divisors defined 

by the vector space L generated  by <p0 , - • - , 9* over O i.e. the fam ily of 
divisors of V  obtained from the divisors (9) - f  M where 9 e L  and-M .== m in (9,*) 
afte r deleting the basic divisors. L e t B be the set of basic points of. 2. V ' is 
the g raph  of the ra tional m ap V Ps associated to 2. Therefore if x  e V  is a 
norm al po in t the m ap V P is regular a t 'X when and only when x  e B  
([5]). I t  follows th a t if V  is a norm al varie ty  and B =  U , then t is bire
gu lar in V •— U.

§ 2. L e t U  be a subvarie ty  of V  which satisfies the hypotheses (z), (ii) and 
consider a m onoidal transform ation  t  : V '->  V of center U ; le t t ~  1 [U] — U ' 
be the to ta l transform  of U  by x. In  view of rem ark  4 of lem m a 1 , V ' 
is uniquely determ ined up to a birational m apping biregular over U'. We 
m ay therefore in troduce the following

Definition. — If  t  : O (V) -> Q (V') is the canonical isomorphism defined 
by t and vv , the valuation defined by U ' in  Q (V') , z; =  v ot is called the 
valuation vv associated to U  on V. According to the above definition, if 
9 € (V) we have

VU (?) =  VU '( t  (9))

W e shall call the in teger vv (9) the order o f at U .

(if (9) =  9o0 •
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THEOREM 2. -  Let U  be a subvariety o fV  which satisfies the hypothesis (i). 
I f  9 =  (ji/v with (a , v e O =  O (U , V) and [i e ma , fx £ nta+I , v e inè , v € m3+I 

^  (9) =  a —  b.
Proof. -  L e t t :  V'-->V be a m onoidal transform ation of V  of center U, 

defined over k. W e shall use the no tations of the proof of the lem m a 2 and 
theorem  1. If  9' =  t (9) , vv (9) =  u implies 9' =  (pfi fi  where f i  is a u n it of

£>' =  D ( U ' , V '). If  ( y 0 , ■ ■ •, y s) =  (i , z'z , ■ • ■, z's) , x' (x , y) =  f f f  w ith

A (x , Y) , B (x , Y) € k  [.x ] [Y] and homogeneous of degree g  in Y 0 , ••• ,  Y*. 
M oreover A  (x , y )  - t  o , B ( x , y )  =|= o ; thus if oc, (3 e k (V) are the functions for 
which a (x) — A  (x , <pQ (x) , • • - , 9* (x)) , p (#) =  B (x , 9 C (x) , • • •), then a ,  (3 € ttF, 
oc, (3enU+I. B u t 9o € m2 because 9o 6 m '2 as a regular param eter of O'. I t  
follows 9 =  9 o y  w ith  a9^e nU+** , oc9^e nv?+,H~I , p 6 nU , (3 € m^+I, in view of 
the hypothesis (i) which shows th a t u — a —  b.

§ 3. If  A  is a subvarie ty  of the varie ty  B, we shall designate by m  (A , B)
the m ultip licity  of A  on B.

Theorem 3. — LetTJ be a subvariety of V which satisfies the hypotheses (z), (it)
p

and fo r  which the local ring  0  (U , V) is an U.F.D. Let 9 € Q (V) and (9) =  2
i =  I

ai H*. Then we have
p

VU (9) =  2  a i bi »
i — I

where bi =  m (U , Hi)/m (U , V) (bi =  o if V  c|z H,*),
F irst, we shall prove a lem m a of local algebra. L e t 0  be a local ring 

which is an U .F .D ., let m be the m axim al ideal of O and suppose th a t F  (m) 
is an U .F .D . T hus if K is the field of fractions of 0 ,  the function which 
associates to every elem ent x e £ )  the in teger r =  r (x) defined by x  € \nr 
x  & mr+1 (the i order of x) is the restric tion  a t O of an uniquely determ ined 
valuation  v of K  ([3]). If  p is a prim e ideal of 0 , 0  ̂ represents the ring of 
fractions of 0  w ith  respect to p. If  R  is a local ring m (R) is the m ultip li
city  of R  i.e.\ the m ultip licity  of his m axim al ideal.

LEMMA 3. -  Let z  e K , z  =  zri , • • •, Zrf  where z x , • • •, zh 6 0 are prime ele
ments of 0 and r x , • • • ,r h are integers. I f  fo r  i =| - j  z i is relatively prime to 
z j  ('Ù j  — 1 , • • •, h) then

h

v (?) =  2  m  0  £>*,-) m  (£>/„,-)

where , p* =  zi 0  and m  (s0pz) — —  m (z~ J 0^-) i f  r£ <  o.
Proof. -  Since 0$, is a one-dim ensional regular local ring having z£

as a regular param eter and z£ is re la tively  prim e to z j  for j  -|= i, we have
p

r£ =  m  (Zi 0 ) . As z/ (z) =  2  ri v (?i) ^  enough to show th a t m  (0 ) v (zf) =
i=i

— m (O/zi 0 ). B ut v (zt) =  s implies z£ e , z{ & mJ+I. Because F  (m) is an 
U .F .D ., : (z£ 0 ) =  m. H ence m (Djzi 0 ) =  sm (0 ) ([4]).



3 »4 Lincei -  Rend. Sc. fis. mat. e nat. -  Voi. XXXIV -  aprile 1963

W e can prove now the theorem  3. I f  in the above lem m a we take 
0  =  D ( U , V )  and f  =  z, it  is easy to see th a t p  =  h and, by  suitable 
notations, (z)t =  H • - f  X,-, where no com ponent of X i contains U . T hus 
ai =  ri ( i =  I In  view of the theorem  2-, z/y =  v. By lem m a 3,
vu G ) =  m  (C/t»')/* (O) B ut r{ =  m (cpDpi) and =  D (U  , H,), i.e-
a . =  m  (T0P,-) and bi =  m  (D/p,-)/« (O) =  m, (U , H i)/m (U  , V).
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