ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

CARLO BETTINALI, ALDO LA GINESTRA, MARIO VALIGI

Fosfato di calcio e zirconio: preparazione e caratteristiche cristallografiche

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 33 (1962), n.6, p. 472–476.

Accademia Nazionale dei Lincei

ihttp://www.bdim.eu/item?id=RLINA_1962_8_33_6_472_0;

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Chimica. — Fosfato di calcio e zirconio: preparazione e caratteristiche cristallografiche (*). Nota di Carlo Bettinali, Aldo La Ginestra e Mario Valigi, presentata (**) dal Socio V. Caglioti.

Nel corso di ricerche condotte per studiare le reazioni che hanno luogo nel riscaldamento di miscele di idrossiapatite e fosfato di zirconio è stato ottenuto un composto il cui spettro di diffrazione ai raggi X è completamente diverso da quello dei fosfati di calcio o di zirconio già noti.

L'analisi chimica indica trattarsi di un composto $CaZr(PO_4)_2$, analogo al $CaTh(PO_4)_2$, già studiato da altri Autori [1, 2]. Non vi è però analogia fra i rispettivi spettri di diffrazione.

PARTE SPERIMENTALE.

La preparazione dei due fosfati di partenza è stata fatta separatamente dato il diverso pH a cui iniziano a precipitare; l'idrossiapatite è stata preparata secondo il metodo di E. Hayek e coll. [3], ed il fosfato di zirconio secondo il metodo di E. M. Larsen e coll. [4]. Dopo filtrazione ed essiccamento i due precipitati venivano mescolati in proporzioni tali da contenere Ca e Zr in rapporto I: I, tenendoli ad agitare in alcool per alcune ore. Evaporato l'alcool, la miscela abbastanza omogenea veniva calcinata a 1200° C per 48 ore.

Sul prodotto di calcinazione si è eseguita l'analisi chimica i cui risultati sono riportati in Tabella I accanto ai valori teorici relativi al composto $CaZr(PO_4)_2$.

	Trovato	Teorico
CaO °/o	17,02	17,44
ZrO ₂ °/ ₀	38,30	38,32
P ₂ O ₅ °/ ₀	44,65	44,24

TABELLA I.

^(*) Lavoro eseguito nell'Istituto di Chimica Generale ed Inorganica dell'Università di Roma – Laboratorio di Chimica delle Radiazioni e Chimica Nucleare del C.N.E.N. e Centro di Chimica Generale del C.N.R.

^(**) Nella seduta del 15 dicembre 1962.

TABELLA II.

Intensità	d	$1/d_{osserv.}^2$	I/d ² _{calc} .	h k l
40	6,306	.0251	.0251	110
7	5,706	.0307	.0303	0 1 1
			.0306	1 1 <u>1</u>
9	4,910	.0415	.0412	101
			0420	2 O Ī
75	4,549	.0483	.0483	200
100	4,385	.0520	.0520	020
16	4,264	.0550	.0550	2 1 1
			.0542	III
9	4,039	.0613	.0613	2 1 0
14	3,892	. 0660	.0660	Management
100	3,798	.0693	.0693	0 0 2
			.0693	O 2 I
			. 0695	I 2 Ī
13	3,346	.0893	.0892	2 O I
15	3,317	.0909	.0906	3 o <u>ī</u>
14	3,218	.0966	<u>-</u>	
70	3,157	. 1003	. 1003	2 2 0
9	3,122	. 1026	. 1022	2 1 1
14	3,077	. 1056	. 1050	I O 2
80	2,861	. I 222	. 1217	3 1 0
			1213	0 2 2
			.1224	2 2 2
9	2,809	. 1267		<u> </u>
7	2,782	. 1292	. 1291	I 3 O
10	2,652	. 1422	. 1426	3 2 1
23	2,564	.1521	<u> </u>	_
40	2,534	. 1557	. 1559	0 0 3
7	2,456	. 1658	. 1653	2 3 0
5 °-	2,443	. 1676	. 1680	402
6	2,415	. 1715	. 1714	3 1 3
6	2,308	. 1877	. 1874	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10	2,275	. 1932	. 1932	400
9	2,202	. 2062	. 2062	410
			. 2062	2 3 I
10	2,193	. 2079	. 2080	0 4 0
	,-,3	- 12	. 2079	0 2 3
			.2076	3 3 1
II	2,181	. 2102	.2104	$\begin{array}{c} 3 & 3 & 1 \\ 3 & 2 & \overline{3} \end{array}$
	2,101	.2102	.2104	3 2 3

Segue: TABELLA II.

Intensità	d	$I/d_{osserv.}^2$	$I/d_{\text{calc.}}^2$	h k l
IO	2,149	. 2165	. 2164	113
			.2168	2 2 2
5	2,122	.2221	. 2220	I 3 2
18	2,105	.2257	.2257	3 3 0
			. 2256	141
			. 2253	041
5	2,077	.2318	. 2315	204
10	2,043	.2396	 ,	
27	2,018	.2457	.2452	4 2 0
10	1,989	.2528	.2532	5 0 2
18	1,981	. 2548	. 2551	114
			.2553	I 2 3
22	1,976	. 2561	. 2563	2 4 0
9	1,962	.2598	.2595	4 2 3
			.2602	5 0 Ī
12	1,940	. 2657	. 2658	I 4 2
			. 2652	5 I 2
9	1,914	. 2730	. 2729	0 3 3
			. 2732	5 I I
10	1,905	. 2756	. 2754	$3 \ 3 \ \overline{3}$
27	1,898	. 2776	. 2772	0 0 4
			. 2773	0 4 2
			. 2784	$2\ 4\ \overline{2}-3\ 3\ I$
ΙI	1,870	. 2855	. 2851	$4 \ 3 \ \overline{2}$
23	1,781	.3153	.3152	$3 \ 4 \ \overline{2}$
			.3149	5 I O
23	1,776	.3170	.3167	3 4 0
9	1,695	. 3481	.3481	$23\overline{4}$
II	1,690	.3501	•3495	I I 4
6	1,675	.3564	.3569	402
			.3561	5 I 4
15	1,664	.3612	.3613	3 3 4
25	1,659	. 3633	. 3639	043
			.3634	$2 \circ \overline{5}$
5	1,633	. 3750	.3747	4 3 I
			.3754	6 I 2
8	1,626	. 3782	. 3782	5 O I
			.3778	3 I 5
6	1,614	. 3839	. 3838	3 1 3
5	1,609	.3863	. 3862	105
5	1,604	. 3887	. 3884	I 2 4

Segue: TABELLA II.

Intensità	d	$I/d_{osserv.}^2$	$I/d_{\rm calc.}^2$	h k l
9	1,578	.4016	.4012	4 4 0
14	I,544	.4195	.4195	2 0 4
			.4189	530
15	1,539	.4222	.4228	3 2 3
8	1,521	4323	.4322	$3.5\frac{5}{2}$
9	1,519	•4334	4329	2 1 4
			.4331	0 0 5
			4337	3 5 0
			.4332	6 2 1
13	1,517	4345	.4347	600
14	1,485	4535	.4535	1 3 4
			.4530	5 I 5
13	1,465	. 4659	. 4657	4 4 I
ΙΙ	1,455	.4724	.4719	2 2 4
12	1,447	. 4776		
7	1,439	. 4829	.4830	2 4 3
8	1,432	. 4877	.4878	3 3 3
6	I,430	.4890	.4892	5 0 2
			.4888	$5 4 \frac{3}{3}$
			.4896	4 4 4
			.4898	2 5 2
8	I,424	.4932	.4931	$4 \ 5 \ \overline{2}$
II	1,411	. 5023	. 5022	5 1 2
9	1,383	. 5228	. 5228	6 о і
14	1,364	. 5375	.5373	062
			. 5369	2 3 4
10	1,283	.6075	.6077	4 3 3
15	1,266	. 6239	.6237	0 0 6
			.6239	063
5	1,247	. 6431	.6427	640
	5 to 1		.6437	720
5	1,230	.6610	.6615	154
			.6612	460
7	I,217	.6752	.6757	0 2 6
			.6755	463
10	1,186	.7109	.7112	$\frac{4}{1} \cdot \frac{5}{5}$
		•	.7101	$\frac{1}{6} \frac{5}{4}$
			.7112	4 2 4
IO	1,162	.7406		0 3 6
IO	1,138	.7722	.7407	8 0 0
10	1,096	.8320	1	
	1 -7-90		.8320	080

La densità del composto calcinato a 1200° C determinata con il picnometro è risultata 3,21.

Lo spettro di diffrazione ai raggi X registrato mediante spettrometro a contatore di Geiger e su film (camera d=114,6 mm), con radiazione CuK α ($\lambda=1,5405$ Å) ha dato i risultati riportati in Tabella II. Gli indici sono stati calcolati seguendo il metodo di Ito.

Dai dati sperimentali abbiamo tratto le seguenti conclusioni: il composto $CaZr(PO_4)_2$ è monoclino con 4 molecole nella cell'a elementare caratterizzata dalle seguenti costanti:

$$a_{o} = 9,966 (\pm 0,009) \text{ Å}$$
 $b_{o} = 8,774 (\pm 0,005) \text{ Å}$
 $c_{o} = 8,323 (\pm 0,004) \text{ Å}$
 $\alpha = \gamma = 90^{\circ}$
 $\beta = 114^{\circ} 4' 40''$

Volume trovato = $664,4 \text{ Å}^3$.

Volume calcolato in base alla densità $(3,21) = 664 \text{ Å}^3$.

Ringraziamo il prof. V. Scatturin, dell'Università di Bari, ed il dr. P. Porta, del Centro di Chimica Generale del C.N.R. di Roma, per le indicazioni forniteci durante lo svolgimento del nostro lavoro.

BIBLIOGRAFIA.

- [1] R. COLANI, «C. R.», 243 (1909).
- [2] S. H. U. Bowie, J. E. T. Horne, «Min. Mag. », 93 (1953).
- [3] E. HAYEK, W. STADLMANN, «Angew. Chemie », 67, 327 (1955).
- [4] E. M. LARSEN, W. C. FERNELIUS, L. L. QUILL, «Anal. Chem. », 513 (1953).