ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI

PAOLO BAGGIO, ROBERTO MALARODA


Il traforo del Monte Bianco; prime osservazioni geologiche sul tratto dalla progressiva 2500 alla progressiva 3700 (parte italiana). Nota III

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 33 (1962), n.3-4, p. 149–152.

Accademia Nazionale dei Lincei

ihttp://www.bdim.eu/item?id=RLINA_1962_8_33_3-4_149_0;

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geologia. — Il traforo del Monte Bianco; prime osservazioni geologiche sul tratto dalla progressiva 2500 alla progressiva 3700 (parte italiana) (*). Nota III di Paolo Baggio e Roberto Malaroda, presentata (**) dal Socio Gb. Dal Piaz.

La presente Nota si riferisce al tratto di galleria scavato tra il giorno 3 gennaio 1961 (progr. m 2503) ed il 31 dicembre 1961 (progr. m 3701). Data la ristrettezza dello spazio concesso non è possibile completare qui neppure l'esposizione sommaria delle osservazioni, per cui la parte più decisamente petrografica di esse viene riservata ad una seconda comunicazione che seguirà a breve scadenza.

Le azioni di cataclasi e milonisi tornano ad essere, nel tratto di galleria ora considerato, diffuse ed, in genere, anche più intense, di una intensità paragonabile a quella riscontrata nella zona di contatto tra i terreni della copertura mesozoica ed il Cristallino, tra le progressive 1250 e 1350. Ciò vale in particolare per il tratto compreso tra le progressive 3070 e 3450 circa. Altre estese zone d'intensa milonisi si trovano intorno alle progressive 2515, 2700, 3540 e 3650 circa, ma anche nella restante parte della galleria abbondano i piani di diaclase e faglia, spesso accompagnati da numerose, anche se non molto potenti, fascie di miloniti, per cui è raro trovare, esposta su ampie superfici, della roccia che non presenti tracce di questi fenomeni di deformazione.

La maggior parte dei piani di diaclase e di faglia sono orientati verticalmente o subverticalmente ed hanno direzione normale o quasi all'asse del traforo, più precisamente comprese nei settori NE–SW. Decisamente subordinate sono invece le superfici orientate nei settori NW–SE. Le inclinazioni dei medesimi piani, quando essi non sono verticali, si presentano molto forti, quasi sempre superiori agli 80°, in prevalenza con immersioni comprese nel quadrante di NW. In alcuni casi sono stati osservati, qui come nei tratti precedenti del traforo, giunti subverticali aventi più o meno la

^(*) Lavoro compreso nel programma del Gruppo di Ricerche sul Traforo del Monte Bianco del Comitato per la Geografia, Geologia e Mineralogia del C.N.R., eseguito presso l'Istituto di Geologia dell'Università di Torino e presso il Laboratorio di Torino della Divisione Geomineraria del C.N.E.N., con il contributo finanziario del Consiglio Nazionale delle Ricerche e sotto gli auspici dell'Accademia Nazionale dei Lincei. La presente Nota rappresenta la continuazione delle due precedentemente pubblicate in questo stesso periodico (vol. 28, 1960, 470–476, t. 1; vol. 30, 1961, 908–920, tt. 1–7) e ad esse si rinvia per le indicazioni generali sul metodo di esecuzione del grafico della Tav. I e per la bibliografia; nelle stesse vennero elencati Enti e Persone che promossero ed aiutarono questi studi. Il lavoro sistematico di raccolta dei dati e dei campioni in cantiere è stato eseguito, con la consueta diligenza, dal Per. Min. G. Mezzacasa del C.N.E.N.

^(**) Nella seduta del 12 giugno 1962.

stessa direzione dell'asse dello scavo; questi giunti, che l'osservazione di superficie fa ritenere di diffusione più limitata rispetto agli altri, non possono naturalmente essere oggetto di comparazione statistica, poiché coincidono con l'orientazione dell'opera. I piani di milonisi e diaclasi poco inclinati sono del tutto eccezionali; se ne possono segnalare nella zona compresa tra le progr. 2500 e 2575; molto caratteristico è il sistema di giunti di distensione suborizzontali incontrato tra le progr. 3480 e 3580, messo ben in rilievo sulle pareti scure della galleria dalle quarziti bianco—lattee che ne costituiscono il riempimento.

In piena concordanza con quanto previsto nella Nota precedente (p. 916) il fenomeno dell'autoclasi, in questa zona molto cataclastica e milonitica, è divenuto di scarsa rilevanza.

Si sono verificati invece in tre punti (alla progr. 3130 circa, ove il fenomeno avvenne a centinatura già eseguita, alla progr. 3230 circa, e alla progr. 3665–70, in corrispondenza alla zona dove si è manifestata la più grossa infiltrazione d'acqua) fenomeni di crollo in calotta che hanno richiesto l'immediata centinatura della volta o il suo rafforzamento e, per un certo tempo, tra le progr. 3130 e 3230, hanno consigliato l'avanzamento prudenziale a cunicolo. In queste due zone, più estesamente che in altre dove pure compariva, si è notata la presenza di materiale argilloso—arenitico ripetutamente alternante a miloniti ed evidentemente rappresentante il prodotto estremo della triturazione e delle azioni di alterazione connesse.

In questo tratto di galleria le giaciture dei piani di scistosità delle embrechiti sono in genere molto più evidenti che in precedenza, data la minore diffusione delle embrechiti occhiadine ed il prevalere invece di facies più nettamente scistose. Nonostante la relativa monotonia, esse si prestano alle seguenti osservazioni: fino alla progr. 3015 si passa gradualmente, e in continuità con le ultime giaciture del grafico precedente, da direzioni N-15° E (progr. 2500) a direzioni N-50° E (progr. 2725) per poi di nuovo scendere, con valori più irregolari, all'incirca a N-25° E (progr. 2900-3015). Segue un lungo tratto di rocce milonitiche, in cui risulta impossibile o inutile la misura di giaciture e poi, a partire dalla progr. 3200, si misurano soltanto direzioni comprese tra N-50° E e N-70° E. Molto più costanti sono i valori dell'inclinazione, compresi tra 80° verso il settore di NW - verticali - 65° verso il settore di SE, con netta prevalenza delle giaciture verticali o con 85º d'inclinazione. Fino alla progr. 2755 si hanno immersioni esclusivamente verso il settore di NW, poi i piani di scistosità, quando non sono verticali, immergono sempre verso il settore di SE, salvo per un tratto limitatissimo tra le progr. 2810 e 2815.

In relazione alla forte tettonizzazione della zona si sono verificate molte venute d'acqua concentrate, ciò specialmente nella seconda metà del tratto considerato. Fra queste, particolarmente notevole la polla incontrata a m 3668, ove si raggiunse una presumibile portata iniziale di 800 litri/sec che

determinò l'allagamento della galleria per tutta la sua lunghezza e la conseguente temporanea sospensione dei lavori.

I dati di variazione delle portate e delle temperature delle principali venute d'acqua sono riassunti nella seguente tabella:

Progressive	Portate iniziali	Temperature iniziali	Portate successive	Temperature successive		
3064	12 l/sec	20°,2	3 l/sec	20°		
	(23–4–61)	(23–4–61)	(11-8-61)	(11–8–61)		
3084	30 l/sec	19°,3	18-20 l/sec	20°,8		
	(26–4–61)	(26–4–61)	(11-8-61)	(11–8–61)		
3125	35 l/sec	18°	15 l/sec	20°		
	(12–5–61)	(12–5–61)	(11–8–61)	(11–8–61)		
3274	12 l/sec	15°	10 l/sec	13°,4		
	(21-8-61)	(21–8–61)	(4-3-62)	(19–2–62)		
3362	30 l/sec	15°,6	15 l/sec	[15°,3		
	(23–10–61)	(23–10–61)	(4-3-62)	(19–2–62)		
3496	20 l/sec	15°	10 l/sec	13°,8		
	(15-11-61)	(15–11–61)	(4-3-62)	(19–2–62)		
3522	60 l/sec	15°,3	25 l/sec	12°,7		
	(18–11–61)	(18–11–61)	(4-3-62)	(19–2–62)		
3542	60 l/sec	14°,6	12 l/sec	14°,5		
	(22-11-61)	(22–11–61)	(4-3-62)	(19–2–62)		
3664	25 l/sec	15°,1	20 l/sec	14°		
	(10–12–61)	(10–12–61)	(12-4-62)	(21–3–62)		
3668	800 l/sec (10-12-61)	11°,6 (10–12–61)	400 l/sec (12–4–62)	(21-3-62)		

Risulta da questa tabella la generale tendenza, nelle varie polle, alla diminuzione anche sensibile delle portate, mentre per quanto riguarda le temperature si ha, nel tempo, un adeguamento della temperatura dell'acqua alla temperatura della roccia del corrispondente tratto di galleria. Aumentano così, o restano costanti, le temperature delle venute d'acqua dalla progr. 2600 alla progr. 3125, mentre quelle successive, e fino alla progr. 3700 diminuiscono, talora anche sensibilmente.

Uno dei fenomeni più interessanti riscontrati nella galleria è stata la progressiva diminuzione della temperatura della roccia che si è verificata a partire dalla progr. 2520 fino a raggiungere il minimo di 13° alla progr. 3668 (fig. 1). Un valore tanto anormale del grado geotermico (alla progr. 3700 lo spessore di roccia cristallina soprastante la galleria è valutabile in 2000 m circa) può essere spiegato soprattutto con la frequenza ed estensione delle superfici di discontinuità tettonica (diaclasi e faglie) e con lo spessore delle fascie di prodotti milonitici e cataclastici in netta prevalenza con giaciture

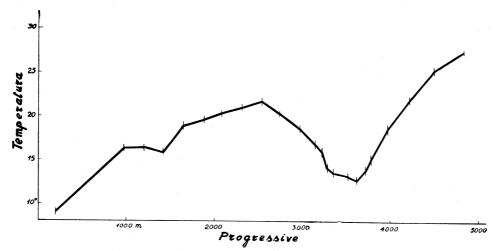


Fig. 1. – Curva delle temperature della roccia nel tratto italiano del traforo del M. Bianco.

I trattini verticali indicano l'ubicazione delle stazioni termometriche.

subverticali facilitanti al massimo la dispersione termica. Determinante deve però ritenersi, agli effetti dell'equilibrio termico, l'influenza delle acque fredde di provenienza subglaciale (provenienza confermata dall'analisi isotopica dell'ossigeno), e in particolare della grossa venuta alla progr. 3668, in corrispondenza alla quale si verifica il massimo abbassamento di temperatura.

SPIEGAZIONE DELLA TAVOLA I

Grafico del tratto di galleria tra le progressive 2500 e 3700 dall'imbocco italiano.

1. Embrechiti occhiadine (facies normali del « protogino »). — 2. Embrechiti normali non, o solo debolmente, occhiadine; subordinatamente embrechiti più o meno anatessitiche. — 3. Embrechiti più o meno anatessitiche. — 4. Granito aplitico microgranulare e, subordinatamente, anatessiti; venute di granitizzazione a carattere metasomatico. — 5. Relitti di gneiss biotitici entro le embrechiti. — 6. Sacche, di norma irregolari, talora sciami, fascie e venule di feldspatizzazione, con addensamenti di fenocristalli di feldispato potassico a tendenza idiomorfa. — 7. Sciami di biotite, derivati da mobilizzazione tardiva, spesso discordanti rispetto alla tessitura delle embrechiti, frequentemente associati a zone di feldispatizzazione o granitizzazione e costituenti un'aureola intorno a septa di gneiss biotitici. — 8. Filoni di graniti aplitici e di apliti granitiche microgranulari. — 9. Principali sacche, geodi e filoni di quarzite e clorite idrotermali associate ai giunti suborizzontali di distensione. — 10. Miloniti e blastomiloniti (parte sinistra del quadrello); faglie principali (parte destra del quadrello). — 11. Zone di cataclasi, laminazione e diaclasi diffuse (da sinistra a destra) a debole, media, forte intensità. — 12. Giaciture dei piani di scistosità. Nelle zone in cui manca l'indicazione la tessitura scistosa è stata cancellata da intensi fenomeni di cataclasi e milonisi. — 13. Giacitura delle diaclasi (tratteggio) e delle faglie principali (linea continua) (Più che fornire una rappresentazione statistica delle orientazioni delle diaclasi e delle faglie, rappresentazione che sarà data altrove con diagrammi di proiezione polare, si è voluto qui riprodurre la gamma di variabilità delle giaciture, per cui la densità dei segni adottati non risulta proporzionale alla reale frequenza dei giunti). — 14. Stillicidi e venute d'acqua con portate inferiori a 10 litri/sec (parte sinistra del quadrello); venute d'acqua con portate superiori a 10 litri/sec (parte destra del quadrello; l'altezza del segno è proporzionale alla portata media quale risultava alle prime misure eseguite entro una settimana dallo scavo).

3F2	0	0	0	0	$-\sqrt{\frac{48}{5}}\lambda$	0	165 + 12 Y 5414 + 5421	385 + 13 8	-\(\frac{2}{105}\langle + \frac{\delta}{\sqrt{35}}	25 + 2 V6	125 + 268	3A A A	2 ₽	3/35 2/2 5/7	22Δ-4λ-E	6
3p ₂	0	0	0	0	$\sqrt{\frac{42}{5}}\lambda$	0	1 5 - VE 1 6 5 16 5 VE	1/3/468 38 5/7/5/14 35	13/+/2 x -/	45 - 43 8 2	2007	•	1	<u>и</u>	, 3	<u>-</u>
3F3	0	0	0	0	0	0	0	√555-√5 1-	مأمر	¹ \	ا مر	5	- <u>β</u> -λ-Ε			
3F4	0	0	0	0	0	27	$-\sqrt{\frac{8}{35}} + \frac{48}{\sqrt{105}}$	9 3 5 - 38 1	135+38	45 + 18 × 18 × 18 × 18 × 18 × 18 × 18 × 18	2/2/-1/3x	39 Δ + 3λ-Ε	,			A2
3F2	0	-V 48 λ	0	0	0	0	0	- \(\frac{\sqrt{3}}{7}\) \(\triangle \)	1	1	, -4λ-Ε	6			58+2C- <u>{2</u> ∆-E	,D ₂
3P ₂	0	V42 7	0	0	0	0	0	□ □ <		1 4				(2B+2C− <u>2∆</u> −E	<u>4√3</u> ∆ 58	€6.4
3F4	0	0	0	27	0	0	_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-3 <u>A</u> -2 \ 35	26	2			128+2C+ <u>A</u> -E		4 1 5 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	4
3F4	0	0	27	0	0	0	1 1 1 D	27 Δ+3λ-E				ш	(2B+2(<u>√6</u> S	4 \$,e4
зРо	-2V6 \	0	0	0	0	0	15B-2λ-Ε				ш	15Β-λ-Ε	0	0	0	3P4
164	$\sqrt{\frac{48}{35}} \sqrt{-\sqrt{\frac{32}{35}}} \chi$	4/2/8	8 VES+ 168	VE S	- <u>2√3</u> Δ	128+2C+13A	1 1				3Δ + 3λ-E 10	4 €	27	0	0	3F4
, D2	85 + 124 8 V	-2/3 /	18 5-8/3 V	28 Z	58+2C+ <u>8∆</u> 35 -E	12				<u>Δ</u> -λ-Ε	-1 (3 A	+ √3 ∆ 5 √2 ∆	0	0	0	3F3
1G4		2 V	√35 √35	12B+2C- <u>A</u> -E					Δ-λ-E	\$ + \$ ON + 2VFS	\sqrt{2} \sqrt{6} \sqrt{2}	1 + 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	0	0	0	3F3
454	۵	2√5 A	128+2C- 9A -E	42				3Δ ₊ 3λ-Ε	0	15 5 - 3 13 x	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-\(\frac{3}{35}\rangle + \(\frac{7}{35}\rangle	0	27	0	3F4
,D2	0	5B+2C-12 ∆ 35 -E	27	J			ய	√ 2 ∆ 35 ∆	0	5+2/3/2	13/+/2/3	$\frac{165}{5\sqrt{21}} \cdot \frac{4}{5} \sqrt{\frac{2}{2}} \cdot \frac{4}{5} \sqrt{\frac{3}{2}} \cdot \frac{3}{5} \sqrt{\frac{13}{2}} \sqrt{\frac{13}{15}} \sqrt{\frac{5}{115}} $	0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3P2
νς,	, , ,	5	.		11 A-47-E	35	3 1/2 D	6∆ 7√5	0	114 5 - 17 ¥ 5 - 5√21	-4/2 5 + 1/35	165 4 12 x	0	0	-V48 \	3 5
Ą		1 , "			_ <u></u> 1	1	1				1_T_	1 14,	<u> </u>	1	<u> </u>	. لبل

Fig. 2. – Matrici del determinante secolare secondo il metodo del campo debole per la configurazione d^2 , comprensivo dell'interazione spin-orbita. $\theta \equiv (\mathbf{z} \mid V \mid o)^{-\tau}; \quad \gamma \equiv (\mathbf{I} \mid V \mid -1).$

														9
3F ₂	- √ <u>48</u> λ	0	0	$-\frac{2}{5}\sqrt{7} \sqrt{8} \sqrt{6}$	$\frac{41\Delta}{6\sqrt{14}} + \frac{2}{15}\sqrt{\frac{2}{7}} \sqrt{3}$ $-\frac{13\delta}{40\sqrt{2}4}$	$\frac{11\Delta}{2\sqrt{210}} + \sqrt{\frac{6}{35}} \delta$ $\frac{3\delta}{2\sqrt{35}}$	$\frac{3\Delta}{2\sqrt{70}} + \frac{1}{2}\sqrt{15} \int_{-\sqrt{25}}^{2} \sqrt{15} \int_{35}^{2} \sqrt{15} \int_{35$	$-\frac{3\Delta}{14\sqrt{10}} + \frac{11\sqrt{5}}{14\sqrt{15}} - \frac{2\sqrt{2}}{7\sqrt{5}} \%$	$-\frac{2}{5}\sqrt{\frac{2}{7}}(\Delta - \delta)$ $-\frac{4}{5}\sqrt{\frac{3}{7}}\delta$	$-\frac{22\Delta}{105} - 4\lambda - \frac{26}{35}\sqrt{\frac{2}{3}}$ + $\frac{468}{105}$ - E			$5B+2C+\frac{8\Delta}{35}$ $-\frac{2\sqrt{6}}{7}S+\frac{6}{7}-E$,D2
3p ₂	$\sqrt{\frac{42}{5}}$ λ	0	0	$-\frac{38}{10} - \frac{2}{5}\sqrt{\frac{3}{2}}$	$ \begin{array}{c c} -\Delta + \delta \\ -4 + 60 \\ + 3 \sqrt{3} \sqrt{2} \delta \end{array} $	$-\sqrt{\frac{3}{80}}\Delta - \sqrt{\frac{3}{20}}$ 8	3/3 2/10 2/10	$\frac{\Delta}{1\sqrt{35}} + \frac{1}{2} \sqrt{\frac{3}{70}} \left\langle \frac{3}{10} \right\rangle \right\rangle \right\rangle \right } \right\rangle \right \right) \right dv} \right $	F 50 5			128+2C+3A_E	$\sqrt{\frac{3}{14}} \Delta - \frac{\delta}{\sqrt{7}} + \frac{\sqrt{6}}{7} \delta$	1 64
3F4	0	0	2 }	$-\frac{4}{4}\sqrt{\frac{7}{5}}\Delta + \frac{3\sqrt{3}}{2\sqrt{35}}$ $-\frac{3}{2}\sqrt{\frac{3}{70}}\delta$	$\frac{9\Delta}{4\sqrt{35}} - \frac{8}{2\sqrt{35}} + \sqrt{\frac{8}{105}} \sqrt{\frac{8}{105}}$	1 -	$-\frac{3\Delta}{4\sqrt{7}} - \frac{3\delta}{4\sqrt{7}}$	$\frac{27\Delta}{140} + 3\lambda - \frac{2\sqrt{6}}{7} $			$12B+2C-\frac{9\Delta}{70}$ + $\frac{2\sqrt{6}}{7}$ \$ + \frac{6}{7}\$ \text{\$\gamma}	$\frac{\Delta}{\sqrt{28}} + \sqrt{\frac{6}{7}} + \frac{\sqrt{7}}{\sqrt{7}}$	$\frac{\sqrt{6}\Delta_{4}}{44} - \frac{5}{7} \sqrt{4} \frac{\sqrt{6}}{\sqrt{7}} \sqrt{\frac{3}{14}} \frac{\sqrt{6}}{\sqrt{7}} \sqrt{\frac{4}{7}} \sqrt{\frac{6}{7}} \sqrt{\frac{8\Delta_{4}}{35}}$ $-\frac{2\sqrt{6}}{7} \sqrt{4} + \frac{8\Delta_{4}}{7} - \frac{1}{7} \sqrt{\frac{8\Delta_{4}}{7}} \sqrt{\frac{8\Delta_{4}}{7}}$, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
3,54	0	27	0	-\frac{\delta}{\sqrt{80}} - \frac{\delta}{\tau} + \frac{\delta}{\delta} \circ \tau	$-\frac{3\Delta}{4\sqrt{5}} - \frac{\delta}{4\sqrt{5}} + \sqrt{\frac{2}{15}} \delta$	- \(\frac{\sqrt{3}}{4} \rangle \)	$-\frac{9\Delta}{20} + 3\lambda - E$			$-\frac{15B-\sqrt{6}}{5}S-\lambda$	0	0	0	3p ₄
3F3	0	0	0	$\frac{1}{4}\sqrt{\frac{3}{5}}\Delta_{+}\frac{1}{2}\sqrt{\frac{5}{2}}$ $+\frac{1}{2}\sqrt{\frac{3}{5}}$	>> 20 03	$\frac{\Delta}{20}$ - λ - E			$\frac{\Delta}{60} - \lambda - \frac{4\delta}{5\sqrt{6}}$ $\frac{\delta}{30} - E$		0	0	0	3F3
3F3	0	0	0	$-\frac{3\Delta}{20} + \frac{41\delta}{10\sqrt{6}} - \frac{\delta}{10}$	$\frac{\Delta}{60} - \lambda + \frac{4\delta}{5\sqrt{6}} + \frac{4\delta}{30} - E$			<u>Δ</u> -λ-Ε	$\frac{\Delta}{4\sqrt{15}} + \frac{1}{4}\sqrt{\frac{3}{5}} \circ$	$-\frac{4}{4}\sqrt{\frac{3}{5}}\Delta_{+}\frac{5\sqrt{5}}{2\sqrt{10}}$ $+\frac{1}{2}\sqrt{\frac{3}{5}}$	0	0	0	3F3
3P ₄	0	0	0	$\frac{(5B-\lambda+\sqrt{6})}{438}$			$-\frac{9\Delta}{20} + 3\lambda - E$	- √3 Δ	$\frac{3\Delta}{4\sqrt{5}} + \sqrt{\frac{2}{15}} \sqrt{\frac{2}{15}}$		0	27	0	3F4
ţ2 ₄	$\frac{1}{7}\sqrt{\frac{3}{2}}\Delta + \frac{5}{7}$ \(\lambda \)	$\frac{-\Delta}{\sqrt{28}} + \sqrt{\frac{6}{7}} + \sqrt{\frac{4}{7}}$	-94+12B+2C -2165-64-E			$\frac{27\Delta}{140} + 3\lambda + \frac{2\sqrt{6}}{7}\delta$ $-\frac{3\delta}{14} - E$	210		<u> </u>	$-\frac{1}{4}\sqrt{\frac{7}{5}}\Delta + \frac{3}{2}\sqrt{\frac{3}{10}}\delta - \frac{3}{2\sqrt{35}}$	27	0	0	3F4
f64	$-\sqrt{\frac{3}{14}}\Delta + \frac{5}{\sqrt{7}} + \sqrt{\frac{6}{7}} \sqrt{\frac{3}{7}}\sqrt{\frac{3}{7}} + \frac{5}{7} \sqrt{\frac{5}{7}}$	$\frac{3\Delta}{10} + 12B + 2C - E \frac{-\Delta}{\sqrt{28}} + \sqrt{\frac{6}{7}} \cdot 5 + \frac{8}{\sqrt{7}}$			$15B - \sqrt{6}\sqrt{5}\sqrt{-38}$ $+ \lambda - E$	$\begin{array}{c} \triangle & +\frac{3 \&}{2 \sqrt{35}} \\ +\frac{4 \sqrt{35}}{2 \sqrt{70}} & +\frac{4}{2 \sqrt{70}} & \\ \end{array}$	$\frac{\Delta}{4\sqrt{5}} + \frac{3}{2}\sqrt{40} \left\langle \frac{3}{10} \right\rangle$	13 r - 5	4-10-05	√6 S + 3¥ 5 S + 40	0	0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3P ₂
,D2	5B+2C+ <u>8A</u> + <u>2/6</u> \$- 1 /7 - E			$-\frac{22\Delta}{105} - 4\lambda + \frac{26}{35}\sqrt{\frac{2}{3}} $ $-\frac{16 \text{ Å}}{105} - E$	$-\frac{2\sqrt{2}}{5\sqrt{7}}(\Delta + \delta)$ $+\frac{4\sqrt{3}}{5\sqrt{7}}$			110 + 16 8 1840 + 135 8			0	0	- √ 48 λ	3F2

82

Fig. 3. - Matrici del determinante secolare secondo il metodo del campo debole per la configurazione d^2 , comprensivo dell'interazione spin-orbita. $\vartheta \equiv (2 \mid V \mid o)$; $\gamma \equiv (1 \mid V \mid -1)$.