ATTI ACCADEMIA NAZIONALE DEI LINCEI

CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

Rendiconti

MICHAEL EDELSTEIN

Secants and transversals

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. **32** (1962), n.5, p. 630–634.

Accademia Nazionale dei Lincei

http://www.bdim.eu/item?id=RLINA_1962_8_32_5_630_0¿

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma bdim (Biblioteca Digitale Italiana di Matematica) SIMAI & UMI http://www.bdim.eu/ **Matematica.** — Secants and transversals. Nota di MICHAEL EDELSTEIN, presentata^(*) dal Socio B. SEGRE.

I. INTRODUCTION. – A hyperplane π in Eⁿ, will be called a secant of a subset $A \subset E^n$ if $\pi \cap A \models \emptyset$. If A is connected and both components of $E^n - \pi$ meet A then we shall say that π is a transversal of A. Every transversal is clearly a secant.

If \mathfrak{A} is a family of subsets of \mathbb{E}^n , then by a $k-s \in c \text{ ant } (k-trans-versal)$ of \mathfrak{A} we mean a hyperplane which is a secant (transversal) of exactly k members of \mathfrak{A} . The fact that a hyperplane is a k-transversal implies, then, that it is also a l-secant with $l \geq k$.

If \mathfrak{A} is a finite nonempty family of compact subsets of \mathbb{E}^n then a 1-secant always exists. If, in addition, all members of \mathfrak{A} are pairwise disjoint, $\bigcup \mathfrak{A}$ is infinite and does not lie on a single straight line then a 2-secant exists [1].

It is the main purpose of the present paper to prove the following theorems. THEOREM I. – Let $\mathfrak{A} = \{A_1, A_2, \dots, A_m\}$, be a finite family of compact, connected and mutually disjoint subsets of \mathbb{E}^n and suppose that there exists an *l*-transversal $(l \ge I)$, of \mathfrak{A} . Then for every positive integer k with $k \le l$ there exists a hyperplane π which is a k-secant of \mathfrak{A} . Moreover k-secants exist which are (k-I)-transversals.

THEOREM II. – Let \mathfrak{A} be as in Theorem I and suppose that no (k + 1)-secants exist. Then every k-transversal is also a k-secant.

2. PRELIMINARIES.

2.1. Let Pⁿ denote the projective *n*-space obtained by closing the Eⁿ with the "infinite hyperplane." Let S be a fixed (n - 1)-sphere in Eⁿ. We shall denote by $p(\pi)$ the point $p \in P^n$ which corresponds to the hyperplane π by polarity with respect to S. As usual we call p the pole of π ; π the polar of p.

2.2. Consider the set of poles of all transversals of a given connected set $A \subset E^n$; if a_r and a_2 are any two points of A strictly separated by some hyperplane π then these points will also be separated by hyperplanes whose parameters are sufficiently close to those of π . This clearly implies that the above set of poles is open (in the topology of P^n). Similarly, it can be seen that the set of poles of all hyperplanes disjoint from a given compact subset of E^n is also open.

(*) Nella seduta del 12 maggio 1962.

2.3. We now define a set Q^k as follows:

$$Q_{i} = \{ p(\pi) \mid \pi \cap A_{i} = \emptyset \}, \qquad (i = 1, 2, \dots, m);$$

$$Q_{i_{1}i_{2},\dots,i_{k}} = Q_{i_{1}} \cap Q_{i_{2}} \cap \dots \cap Q_{i_{k}}, \quad (i_{1}, i_{2}, \dots, i_{k} = 1, 2, \dots, m);$$

$$Q^{k} = \bigcup_{\substack{i \leq i_{1} < i_{2} < \dots < i_{k}}} Q_{i_{1}i_{2},\dots,i_{k}}.$$

 Q^k is a finite union of intersections of closed sets (2.2); hence closed. Let B denote its boundary. As $B \subset Q^k$, any hyperplane π with $p(\pi) \in B$ meets k members of \mathfrak{A} at least. If π be an k-transversal then clearly $k \leq k - 1$ (otherwise $p(\pi) \in \operatorname{int} Q^k$). We thus arrive at the conclusion that polars of points of B which do not satisfy the requirements of the theorem have the property of meeting two sets at least without being a transversal of any of them. Such hyperplanes are then supports of at least two members of \mathfrak{A} . This property and the following two lemmas will be used in the proofs of our theorems.

3. LEMMA $I. - If K_1$ and K_2 are disjoint compact and convex subsets of E^n , then the set M of poles of all common supporting hyperplanes of both K_1 and K_2 is of dimension (in the sense of Menger-Urysohn) not exceeding n - 2.

Proof. – We remark that the dimension of the set of poles of all supporting hyperplanes of any subset of E^{k} , does not exceed k - 1. This follows from [3, p. 46, Corollary 1], as such a set of poles is nowhere dense in P^{k} (any small parallel displacement of a supporting hyperplane yields a nonsupporting one).

Let now x be an arbitrary point of M and $\pi = p^{-1}(x)$ its polar. Either (a) π contains at least one of the K₁ (i = 1, 2); or (b) it does not. In case (b) either (i) one of the two components of $E^n - \pi$ is free of K₁ \cup K₂; or (ii) no one is.

We denote by M_r and M_2 the subsets of M with polars satisfying (a) or (i) and (a) or (ii) respectively. Both M_r and M_2 are closed, and therefore compact, subsets of P^n . [Indeed if $x \in P^n - M_i$, (i = 1, 2), then $p^{-1}(x)$ is not a supporting hyperplane of at least one of the K_i ; but then all points of P^n sufficiently close to x have the same property.] As $M = M_r \cup M_2$ it suffices, in order to prove the Lemma, to show that dim $M_i \leq n - 2$.

To prove that dim $M_r \leq n-2$ we consider the intersection H_r of all closed half spaces determined by $p^{-r}(x)$, $x \in M_r$, which contain $K_r \cup K_2$. Let ρ be any hyperplane strictly separating K_r from K_2 . The set $D_r = \rho \cap H_r$ is convex and nonempty (any segment joining $y \in K_r$ with $z \in K_2$ meets D_r).

Any supporting hyperplane of H_r intersects ρ along a (n-2)-dimensional linear variety which is itself a supporting hyperplane, relative to ρ , of D_r . The separation property of ρ implies that intersections are different for different supporting hyperplanes of H_r . [Indeed should a pair $\pi_r = \pi_2$, $p^{-r}(\pi_r)$, $p^{-r}(\pi_2) \in M_r$ exist such that $\pi_r \cap \rho = \pi_2 \cap \rho$, then obviously $\pi_r \cap \pi_2 \subset \rho$, and no point of $K_r \cup K_2$ can lie on $\pi_r \cap \pi_2$. Let $w_i \in K_i \cap \pi_r$, $z_i \in K_i \cap \pi_2$, (i = 1, 2), then w_1, w_2, z_1, z_2 are all distinct. Now the segment $[y_1, y_2]$ joining the middle points of the segments $[w_1, z_1]$ and $[w_2, z_2]$ crosses π_r (and π_2) which is incompatible with the definition of M_r]. Thus a biunique correspondence c is set up between M_r and the supporting hyperplanes of D_r (in ρ). As M_r is compact and the intersection $p^{-r}(x) \cap \rho$ depends continuously on x, c is seen to be a topological mapping of M_r on a subset of P^{n-r} which is of dimension $\leq n-2$, by the remark at the beginning of this proof. Hence dim $M_r \leq n-2$.

In an analogous manner (here ρ' will be chosen parallel to ρ and so that $K_r \cup K_2$ shall lie in one component of $E^n - \rho'$) it can be verified that dim $M_2 \leq n - 2$. Hence dim $M \leq n - 2$ as asserted.

LEMMA 2. – If K_1 and K_2 are disjoint compact subsets of E^n then the dimension of the set M of the poles of all common supporting hyperplanes of both K_1 and K_2 does not exceed n - 2.

Proof. – Consider a cover C of $K_r \cup K_2$ by open balls (i.e. interiors of (n-1)-spheres), centred at points of this set and of radius r < d/2, being the (shortest) distance between K_r and K_2 . C contains a finite subcover $C_r \cup C_2$, $C_r = \{S_r^r, S_2^r, \dots, S_{k_r}^r\}$, $C_2 = \{S_r^2, S_2^2, \dots, S_{k_2}^2\}$, such that $S^r = \bigcup_{i=1}^{k_r} S_i^r \supset K_r$, $S_2 = \bigcup_{i=1}^{k_2} S_i^2 \supset k_2$ and $S^r \cap S^2 = \emptyset$. Any common supporting hyperplane π of both K_r and K_2 is also a common supporting hyperplane of at least one pair of sets consisting of $S_i^r \cap K_r$ and $S_j^2 \cap K_2$ for suitable *i* and *j*. Clearly π is also supporting the closures of the convex hulls of these two sets. The previous lemma applies and M is contained in a finite union of closed sets of dimension $\leq n-2$ each. Hence [3, p. 30] dim $M \leq n-2$ as asserted.

4. PROOFS OF THEOREMS I AND II.

4.1. Proof of Theorem I. – The existence of an *l*-transversal with $l \ge k$ implies that $\operatorname{int} Q^k = \emptyset$. On the other hand $P^n - Q^k = \emptyset$ as, obviously, hyperplanes exist which are disjoint from $\bigcup A_i$. Thus B is disconnecting P^n . By a known theorem dim $B \ge n - 1$. Suppose, however, that contrary to the statement of the theorem no *k*-secant exists. Hence, as remarked in 2.3, all hyperplanes of p^{-1} (B) are supporting hyperplanes of two members of \mathfrak{A} at least and B is contained in the finite union of closed sets (of poles corresponding to common supporting hyperplanes of pairs of members of \mathfrak{A}) each of dimension $\le n - 2$. Hence dim $B \le n - 2$. This contradiction shows that *k*-secants do exist. Moreover as the above argument shows that p^{-1} (B) contains polars which support exactly one member of \mathfrak{A} , *k*-secants exist which are (k - 1)-transversals.

This concludes the proof of Theorem I.

4.2. Proof of Theorem II. – Let π be a k-transversal and suppose it is a l-secant with $l \models k$. By hypothesis l > k + 1. We may assume A_1, A_2, \dots, A_k are the sets transversed by π and that A_{k+1}, \dots, A_l are those intersected

but not transversed. Let $a \in \bigcup_{k+1}^{i} A_i$ and consider all hyperplanes through a which are common transversals of A_1, \dots, A_k . We need only consider the case in which none of these hyperplanes is a k'-transversal with k' > k as otherwise the assertion follows directly from the previous theorem. Suppose now that among these hyperplanes there is no k-secant and that, therefore, they are all supporting hyperplanes of at least two sets each. Their poles form, by Lemma 2, a set of dimension $\leq n-2$. This however is impossible. Indeed as an intersection of an open set (of poles of k-transversals) and a hyperplane (locus of poles of all hyperplanes through a) it is (n-1)-dimensional. This contradiction shows that k-transversals are here k-secants as asserted.

4.3. REMARK. – Theorems I and II, specialized to n = 2, imply the following result due to Grünbaum [2].

PROPOSITION. – Let \mathfrak{A} be a family of (at least two) compact connected and mutually disjoint subsets of E^2 at least one of which is nondegenerate. If \mathfrak{A} has the property that each straight line that intersects a pair of members of \mathfrak{A} also intersects some other member of \mathfrak{A} , then $\bigcup \mathfrak{A}$ lies on a single straight line.

Proof. – By hypothesis there are no 2-secants. Hence no *l*-transversal with l > 1 can, by Theorem I, exist. However, should $\bigcup \mathfrak{A}$, contrary to the statement of Grünbaum's result, not lie on a straight line then a transversal could be found which is not a *l*-secant. Indeed assume A_r is nondegenerate and let $a \in \bigcup \mathfrak{A} - A_r$. If there is no straight line containing $\{a\} \cup A_r$ there must exist a line through a_r^r , $a_2^r \in A_r$, $a_r^r \models a_2^r$, that does not contain a. But then the straight line through a and the midpoint of the segment $[a_r^r, a_2^r]$ will clearly be a transversal of A_r , that intersects some $A_j \models A_r$. Since a is arbitrary the whole of $\bigcup \mathfrak{A}$ must lie on the same line.

5. In the present section we use a notion of maximality for transversals to give a necessary and sufficient condition for a k-transversal to be a k-secant.

5.1. DEFINITION. – A hyperplane π is a maximal k-transvers a l if all hyperplanes sufficiently close to π are k'-transversals with $k' \leq k$. [Equivalently: There exists a neighbourhood $U \subset P^n$ of $p(\pi)$ such that all $\pi' \in p^{-1}(U)$ are k-transversals with $k' \leq k$].

5.2. PROPOSITION I. – Let \mathfrak{A} be as in Theorem I and suppose that no member of \mathfrak{A} is a degenerate point set, then a necessary and sufficient condition or a k-transversal to be a k-secant is that it be a maximal k-transversal.

Proof. Necessity. – If a hyperplane π is both a k-transversal and a k-secant then it intersects exactly k members of \mathfrak{A} and is a transversal of each of them. The same is obviously true for all sufficiently close hyperplanes.

Sufficiency. – Suppose the contrary is true. Without restricting generality we may assume that π is a transversal of A_1, A_2, \dots, A_k and a secant of A_{k+1} . Now int $Q_{12,\dots,k} = \emptyset$ and, since no set reduces to a single point, int $Q_{k+1} = \emptyset$. But $p(\pi) \in Q_{k+1} \cap$ int $Q_{12,...,k} = \emptyset$. Hence int $Q_{k+1} \cap$ int $Q_{12,...,k} = \emptyset$ and any point of this intersection has a polar which is a (k + 1)-transversal contrary to the assumption on π . This contradiction proves sufficiency and thus concludes the proof of the Proposition.

References.

- M. EDELSTEIN, F. HERZOG and L. M. KELLY, A further theorem of the Sylvester type, «Proc. Am. Math. Soc. » (to appear).
- B. GRÜNBAUM, A generalization of a problem of Sylvester, «Riveon Lematematika», 10, 46–48 (1956).
- [3] W. HUREWICZ and H. WALLMAN, Dimension theory, Princeton Univ. Press.