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Matematica. — Secants and transversals. N ota di M ichael 
E d e l st ein , p re sen ta ta 0  dal Socio B. S egre .

1. In tro d u c tio n . - A  hyperplane n  in En, will be called a s e c a n t  of 
a subset A  C L** if 7 u n A = | = 0 .  I f  A  is connected and both  com ponents of 
E* — 7z m eet A  then we shall say  th a t tc is a t r a n s  v e r s a i  of A. E very  
transversal is clearly a secant.

If  d  is a fam ily of subsets of En, then by a ^ - s e c a n t  (k -  t r a n s ­
v e r s a l )  of d  we m ean a hyperplane which is a secant (transversal) of 
exactly  k m em bers of £1. T he fact th a t  a hyperplane is a /è-transversal implies, 
then, th a t  it  is also a /-secan t w ith  /  >  k.

If  d  is a finite nonem pty  fam ily of com pact subsets of E* then a 1-secan t 
always exists. If, in addition, all m em bers of d  are pairw ise disjoint, ( j d  
is infinite and does no t lie on a single s tra igh t line then a 2-secan t exists [1].

I t  is the matin purpose of the present paper to prove the following theorems.
Theorem  I. -  Let d  =  { A 1 , A 2 , • • •, A m}, be a finite fam ily  of compact, 

connected and mutually disjoint subsets of E^ and suppose that there exists an 
l-transversal (I >  1), of d . Then fo r  every positive integer k with k <Ll there 
exists a hyperplane n which is a k—secant of d . Moreover k—secants exist which 
are (k  —  i)-transversals.

THEOREM II . — Let d  be as in Theorem I  and suppose that no (k +  1)—se­
cants exist. Then every k—transversal is also a k-secant.

2. Preliminaries.

2.1. L e t En denote the projective ^ -space  obtained by  closing the E* 
w ith  the “ infinite hyperp lane.” L et S  be a fixed ( n — i)-sp h e re  in E*. 
W e shall denote by  p  (tt) the po in t p  <e Pw which corresponds to the hyper­
plane tc by po larity  w ith  respect to S. As usual we call p  the pole of tc ; 
7t the polar of p.

2.2. Consider the set of poles of all transversals of a given connected 
set A  C En ; if ax and <32 are any  two points of A  stric tly  separated  by  some 
hy£>erplane 7c then these points will also be separated  by  hyperplanes whose 
param eters are sufficiently close to those of 7c. This clearly implies th a t  the 
above set of poles is open (in the topology of P*). Sim ilarly, it can be seen th a t 
the set of poles of all hyperplanes disjoint from  a given com pact subset of En 
is also open.

(*) Nella seduta del 12 maggio 1962.
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2.3. W e now define a set Qk as follows:

Qi =  (tu) I ttD  A,’ =j= 0 } , (i =  1 , 2 , • • - , w);

Q z j  Z2 , • • • C )  Q z 2  C )  * * * O  * * * ' * ^  ^ ^  y  * ’ ' >

Q* =  u  Q*i •
1<*I< *2 <••■<»'*

is a finite union of intersections of closed sets (2.2); hence closed. L e t 
B denote its boundary. As B C Qk, any  hyperplane n  w ith  p  (iz) e B m eets 
k m em bers of d  a t  least. I f  iz be an A -trans versai then clearly h <L k —  1 
(otherwise p  (jz) e  in t Q*). W e thus arrive a t the conclusion th a t polars 
of points of B which do no t satisfy  the requirem ents of the theorem  have the 
p roperty  of m eeting two sets a t least w ithou t being a transversal of any  of 
them . Such hyperplanes are then supports of a t least two m em bers of 61. 
This p roperty  and the following two lem m as will be used in the proofs of our 
theorem s.

3. Lemma r. — I f  K* and  K 2 are disjoint compact and convex subsets of 
E*, then the set M of poles of all common supporting hyper planes of both K, and 
K 2 is of dimension (in the sense of Menger- Urysohn) not exceeding n —  2.

Proof. -  W e rem ark  th a t the dim ension of the set of poles of all suppor­
ting hyperplanes of any subset of E A, does no t exceed h —  1. This follows 
from  [3, p. 46, Corollary 1], as such a set of poles is nowhere dense in Vh 
(any small parallel displacem ent of a supporting hyperplane yields a nonsup­
porting one).

L et now x  be an a rb itra ry  po in t of M and iz =  p~* (x) its polar. E ither
(a) tz contains a t least one of the K x (i =  1 , 2); or (b) it  does not. In  case
(b) either (i) one of the two com ponents of Kn -— tu is free of K r u  K 2 ; or (ii) 
no one is.

W e denote b y M j  a n d M 2 the subsets of M w ith  polars satisfying (a) or (i) 
and (a)jor (ii) respectively. B oth M r an d M 2 are closed, and therefore com pact, 
subsets of P*. [Indeed if — M*, (i =  1 , 2), then p ~ x (x) is riot a sup­
porting  hypèrplane of a t least one of the K* ; b u t then  all points of Vn 
sufficiently close to x  have the sam e property.] As M =  M x u  M 2 it  suffices, 
in order to prove the Lem m a, to show th a t dim  M* <  n — 2.

To prove th a t dim  M x <  n —  2 we consider the in tersection H x of all 
closed.hpilf spaces determ ined by  p ~ x (x)) x  e M 1, which contain K ^ u K s .  
L et p be any  hyperplane stric tly  separating  K x from  K 2. T he set D x =  p n H j  
is convex and nonem pty  (any segm ent joining jy e K x w ith # e K 2 m eets D x).

A ny supporting  hyperplane of H x intersects p along a (n —  2)-dim ensional 
linear varie ty  which is itself a supporting hyperplane, re la tive to  p, of D x. 
T he separation  p roperty  of p implies th a t  intersections are different for diffe­
ren t supporting  hyperplanes of H x. [Indeed should a pair tzz =|= 7u2, p ~ x (7^), 
p~~I f z 2) e M 1 exist such th a t 7c, D p =  tu2 n  p, then obviously ^  n  tt2 C P> 
and no po in t of K x u  K 2 can lie on tux n  tt2 . L et Wi e K * n  tzx , z%. e K,* O tu2 ,
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(i — I , 2), then w x , w 2, zx ,z2 are all distinct. Now the segm ent [yx , y 2] 
joining the m iddle points of the segm ents [wx , zx] and [w2 , z2] crosses 7  ̂
(and t z 2)  which is incom patible w ith  the definition of M J. T hus a biunique 
correspondence c is set up between M : and the supporting hyperplanes of DI 
(in p). As M x is com pact and the in tersection p ~ x (x) n  p depends continuou­
sly on ;r, c is seen to be a topological m apping of M x on a subset of Pn~ 1 
which is of dim ension < n  —  2, by the rem ark a t the' beginning of this proof. 
H ence dim  M x <1 n —  2.

In  an analogous m anner (here p' will be chosen parallel to p and so 
th a t Kj ( j K 2 shall lie in one com ponent of En — p') it can be verified th a t 
dim  M 2 < n  —  2. H ence dim  M <  n —  2 as asserted.

LEMMA 2. -  I f  Ky and  K 2 are disjoint compact subsets of En then the dimen­
sion of the set M of the poles of all common supporting hyper planes of both Kj 
and  K 2 does not exceed n —  2.

Proof. -  Consider a cover C of K, u  K 2 by open balls (i.e. interiors of 
( n —  i)-spheres), centred a t points of this set and of radius r  << <2̂ /2, being 
the (shortest) d istance between K, and K 2. C contains a finite subco­
ver Cx u  C2, Cj — { Si , S2 , • • •, } , C2 =  { Si , S2 , • • •, Sl2} , such th a t

S1 =  U SJ D Kj , S2 =  u  S? D k2 and S ^ S 2 =  0 . A ny common supporting

hyperplane tc of bo th  K ? and K 2 is also a common supporting hyperplane of 
a t least one pair of sets consisting of SJ D K, and Sy n  K 2 for suitable i  and j .  
Clearly iz is also supporting  the closures of the convex hulls of these two sets. 
T he previous lem m a applies and M is contained in a finite union of closed sets 
of dim ension <  n — 2 each. H ence [3, p. 30] dim  M <  n —  2 as asserted.

4. P roo fs  of Theorems I and  II.

4 * i- Proof of Theorem I. -  T he existence of an /-tran sv ersa l w ith  I >  k 
implies th a t  in t Qk =|= 0 . ■On the o ther hand  P” —  Q* =\= 0 as, obviously, 
hyperplanes exist which are disjoint from uA*-. Thus B is disconnecting 
P”. By a known theorem  dim  B >; n —  1. Suppose, however, th a t  contrary  
to the sta tem en t of the theorem  no ^ -secan t exists. Hence, as rem arked 
in 2.3, all hyperplanes of p ~ x (B) are supporting hyperplanes of two m em bers 
of d  a t least and B is contained in the finite union of closed sets (of poles 
corresponding to common supporting hyperplanes of pairs of m em bers of a )  
each of dim ension < n  —  2. Hence dim B <  n —  2. This contradiction 
shows th a t yé-secants do exist. M oreover as the above argum ent shows th a t 
p ~ x (B) contains polars which support exactly  one m em ber of a ,  /^-secants 
exist which are (k —  i)-transversa ls .

This concludes the proof of Theorem  I.
4.2. Proof of Theorem I I .  — L e t iz be a /è-transversal and suppose it is a 

/-secan t w i t h /  =|= k. By hypothesis /  j> k  +  1. W e m ay assum e A, ,A 2, • • . A* 
are the sets transversed  by  iz and th a t A k+X , • • •, A/ are those intersected
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b u t no t transversed. L et a e  Ù A,- and consider all hyperplanes throughk-\-1
a which are common transversals of A x , • • •, . W e need only consider the
case in which none of these hyperplanes is a M—transversal w ith kf f>  k as 
otherw ise the assertion follows directly  from  the previous theorem . Suppose 
now th a t am ong these hyperplanes there is no >é-secant and th a t, therefore, 
they are all supporting  hyperplanes of a t least two sets each. T heir poles 
form, by  Lem m a 2, a set of dim ension <6 n —  2. This however is impossible. 
Indeed as an in tersection of an open set (of poles of k—transversals) and a 
hyperplane (locus of poles of all hyperplanes through a) it is ( n —■ ^ -d im e n ­
sional. This contrad iction  shows th a t /é-transversals are here >é-secants as 
asserted.

4.3. R e m a r k . -  Theorem s I and II, specialized to n — 2, im ply the 
following resu lt due to G riinbaum  [2].

P r o p o s it io n . -  Let Si be a fa m ily  of (at least two) compact connected and 
mutually disjoint subsets of E 2 at least one of which is nondegenerate. I f  61 has 
the property that each straight line that intersects a pair of members of Si also 
intersects some other member of 61, then (j6 l lies on a single straight line.

Proof. -  By hypothesis there are no 2-secants. Hence no /-transversal 
w ith l i>  1 can, by  Theorem  I, exist. However, should (j6t, con trary  to 
the s ta tem en t of G runbaum ’s result, no t lie on a stra ig h t line then a transver­
sal could be found which is no t a /-secan t. Indeed assume A x is nondegenerate 
and let a e (j6I — A x . I f  there is no s tra ig h t line containing {a}  u  A z there 
m ust exist a line th rough a\ , al -e A x , a\ =|= a \ , th a t does no t contain a. B ut 
then the stra ig h t line through a and the m idpoint of the segm ent [al , al] will 
clearly be a transversal of A I? th a t intersects some Ay =j= A x . Since a is arb i­
tra ry  the whole of (j6 l m ust lie on the same line.

5. In  the present section we use a notion of m axim ality  for tran s­
versals tp gi^e a necessary and sufficient condition for a /é-transversal to 
be a >é-secant.

5.1. D e f in i t i o n .  -  A  hyperplane tu is a m a x i m a l  ^ - t r a n s v e r ­
s a l  if  all hy|)erplanes sufficiently close to tu  are ^ '-transversa ls  w ith U<L k. 
[Equivalently: T here exists a neighbourhood U c P ” of p  (tu) such th a t
all tu' e p ~ T (U) are vé-transversals w ith  k '<L k],

5.2. PROPOSITION I. -  Let 61 be as in Theorem I  and suppose that no 
member of 61 is a degenerate point set, then a necessary and sufficient condition 
or a k—transversal to be a k—secant is that it be a maximal k—transversal.

Proof. Necessity. -  If  a hyperplane tu is both  a ^ -transversa l and a 
>£-secaht then  it in tersects exactly  k m em bers of 61 and is a transversal of 
each of them . T he sam e is obviously true for all sufficiently close hyper­
planes.

Sufficiency. -  Suppose thè con trary  is true. W ithou t restric ting  gene­
ra lity  we m ay assume th a t tu is a transversal of K x , A 2 , • • •, Ak and a secant 
of Ak+X . Now in t QX2i...,k~j = 0 and, since no set reduces to a single point,
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in t Qk+z- \ -0 .  B u t p  (tu) g Qk+I n  in t QJ2,...,k 4 = 0 . Hence in t Q*+1.n  in t 
=|= 0 and any  point of this intersection has a polar which is a (k +  i)~ 

transversal con trary  to the assum ption on 7u. This contradiction proves 
sufficiency and thus concludes the proof of the Proposition.
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