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Matematica. — Secants and transversals. Nota di MICHAEL
EperstrIN, presentata @ dal Socio B. SEGRE.

1. INTRODUCTION. — A hyperplane = in E#, will be called a secant of
a subset AC E” if tMA==¢g. IfAisconnected and both components of
E*” —7 meet A then we shall say that ® isatransversal of A. Every
transversal is clearly a secant.

If & is a family of subsets of E#, then bya £2—-secant (A—trans-
versal) of & we mean a hyperplane which is a secant (transversal) of
exactly £ members of &. The fact that a hyperplane is a A-transversal implies,
then, that it is also a /-secant with / > 4.

If & is a finite nonempty family of compact subsets of E” then a 1-secant
always exists. If, in addition, all members of & are pairwise disjoint, U &
is infinite and does not lie on a single straight line then a 2—secant exists [1].

I'tis the main purpose of the present paper to prove the following theorems.

THEOREM I. — Let A = {A,,A,, -, An}, be a finite family of compact,
connected and mutually disjoint subsets of E" and suppose that there exists an
I~transversal (I > 1), of Q. Then for every positive integer k with k <1 there
exists a kyperplane T which is a k—secant of &. Morveover k—secants exist which
are (B — 1)—transversals.

THEOREM 1I. — Let & be as in Theorvem I and suppose that no (£ + 1)—se-
cants exist. Then every k—transversal is also a k—secant.

2. PRELIMINARIES.

2.1. Let P” denote the projective z—space obtained by closing the E*
with the * infinite hyperplane.” Let S be a fixed (# — 1)-sphere in E”
We shall denote by p (n) the point p € P* which corresponds to the hyper-
plane © by polarity with respect to S. As usual we call p the pole of =;
n the polar of .

2.2. Consider the set of poles of all transversals of a given connected
' set AC E*; if @, and a, are any two points of A strictly separated by some
hyperplane = then these points will also be separated by hyperplanes whose
parameters are sufficiently close to those of m. This clearly implies that the
above set of poles is open (in the topology of P*). Similarly, it can be seen that
the set of poles of all hyperplanes disjoint from a given compact subset of E*
is also open.

(*) Nella seduta del 12 maggio 1962.



MICHAEL EDELSTEIN, Secants and transversals 631

2.3. We now define a set Q* as follows:

Q={p@E|rNA: -0}, G=1,2, -, m);
Qiliz,u.,ik: Qiln Qizm t 'an‘k: (izyiz" : ')ik: I,2,-- ym>7
Qk = @) Qi:{ ’.2:"'#./5 .

IS"I<"2<"‘<‘;

QF is a finite union of intersections of closed sets (2.2); hence closed. Let
B denote its boundary. As B CQ#, any hyperplane = with p (%) ¢ B meets
%/ members of & at least. If @ be an /—transversal then clearly 2 << 2—1
(otherwise p (%) e int Q#). We thus arrive at the conclusion that polars
of points of B which do not satisfy the requirements of the theorem have the
property of meeting two sets at least without being a transversal of any of
them. Such hyperplanes are then supports of at least two members of A.
This property and the following two lemmas will be used in the proofs of our
theorems.

3. LEMMA 1. — If K, and K, are disjoint compact and convex subsets of
E», then the set M of poles of all common supporting hyperplanes of both K, and
K, is of dimension (in the sense of Menger-Urysohn) not exceeding n— 2.

Proof. — We remark that the dimension of the set of poles of all suppor-
ting hyperplanes of any subset of E# does not exceed #— 1. This follows
from [3, p. 46, Corollary 1], as such a set of poles is nowhere dense in P*
(any small parallel displacement of a supporting hyperplane yields a nonsup-
porting one).

Let now x be an arbitrary point of M and © = p—* (x) its polar. Either
(a) m contains at least one of the K, ( = 1, 2); or (b) it does not. In case
(b) either (i) one of the two components of E* — = is free of K, U K,; or (ii)
no one is. '

We denote by M, and M, the subsets of M with polars satisfying (a) or (i)
and (a) or (ii) respectively. Both M, and M, are closed, and therefore compact,
subsets of P”. [Indeed if x e P* —M;, (/ = 1, 2), then p—* (x) is not a sup-
porting hyperplane of at least one of the K;; but then all points of P~
sufficiently close to x have the same property.] As M =M, UM, it suffices,
in order to prove the Lemma, to show that dim M; << » — 2.

To prove that dim M, << #— 2 we consider the intersection H, of all
closed half spaces determined by p—* (x), # € M;, which contain K, U K,.
Let p be any hyperplane strictly separating K, from K,. Theset D, = p N H,
is convex and nonempty (any segment joining y ¢ K, with ze K, meets D,).

Any supporting hyperplane of H, intersects p along a (# — 2)-dimensional
linear variety which is itself a supporting hyperplane, relative to g, of D,.
The separation property of p implies that intersections are different for diffe-
rent supporting hyperplanes of H,. [Indeed should a pair =, == =,, p—* (m,),
P (w,) e M, exist such that m N p = m, M p, then obviously ® N =, Ce,
and no point of K, UK, can lie onm,N7,. Let ws e Ki N7, e KinNm,,
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((=1,2), then w, ,w,, 2,2, are all distinct. Now the segment [y, , ¥.]
joining the middle points of the segments [w, , 2] and [w,,s,] crosses =,
(and 7,) which is incompatible with the definition of M,]. Thus a biunique
correspondence ¢ is set up between M, and the supporting hyperplanes of D,
(in ). AsM, is compact and the intersection p—* () N p depends continuou-
sly on x, ¢ is seen to be a topological mapping of M, on a subset of P*—:
which is of dimension <{ 7 — 2, by the remark at the beginning of this proof.
Hence dim M, << # — 2.

In an analogous manner (here o’ will be chosen parallel to ¢ and so
that K; U K, shall lie in one component of E” —¢’) it can be verified that
dimM, <<% — 2. Hence dim M << » — 2 as asserted.

LEMMA 2. - If K, and K, are disjoint compact subsets of E* then the dimen-
sion of the set M of the poles of all common supporting hyperplanes of both K,
and K, does not exceed n — 2. ) ‘

Proof. — Consider a cover C of K, U K, by open balls (i.e. interiors of
(72 — 1)-spheres), centred at points of this set and of radius » << &2, being
the (shortest) distance between K, and K,. C contains a finite subco-
ver C,uC,, C,={SI,S;, -,Sy}, C,= {S:,S.,---,S%}, such that

St = 6 S; DK, S, = 8 Si Dk, and SNS*=g. Any common supporting

hyperplane © of both K, and K, is also a common supporting hyperplane of
at least one pair of sets consisting of S; N K, and S; N K, for suitable 7 and ;.
Clearly = is also supporting the closures of the convex hulls of these two sets.
The previous lemma applies and M is contained in a finite union of closed sets
of dimension <C 7z — 2 each. Hence [3, p. 30] dim M < % — 2 as asserted.

4. PrROOFS oF THEOREMS I AND II.

4.1. Proof of Theorem I. — The existence of an /-transversal with / > 4
implies that int Q#==g.  On the other hand P* — Q% --g as, obviously,
hyperplanes exist which are disjoint from UA;. Thus B is disconnecting
P~. By a known theorem dim B > » — 1. Suppose, however, that contrary
to the statement of the theorem no A-secant exists. Hence, as remarked
in 2.3, all hyperplanes of p—* (B) are supporting hyperplanes of two members
of & at least and B is contained in the finite union of closed sets (of poles
correspondmg to common supporting hyperplanes of pairs of members of &)
each of dimension < # —2. Hence dim B < n—2. This contradiction
shows that Z-secants do exist. Moreover as the above argument shows that
#7* (B) contains polars which support exactly one member of d, A-secants
exist which are (£ — 1)-transversals.

Thls concludes the proof of Theorem I.

4. 2. Proof of Theorem II. — Let 7@ be a A—transversal and suppose it is a
/-secant with /== 4. By hypothesis/ >4+ 1. WemayassumeA, A, --A,
are the sets transversed by m and that A, ,---,A; are those intersected
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but not transversed. Let @ e kL—'l|-) A; and consider all hyperplanes through

@ which are common transversals of A, ,---,Az. We need only consider the
case in which none of these hyperplanes is a #'-transversal with # > £ as
otherwise the assertion follows directly from the previous theorem. Suppose
now that among these hyperplanes there is no A-secant and that, therefore,
they are all supporting hyperplanes of at least two sets each. Their poles
form, by Lemma 2, a set of dimension <X #» — 2. This however is impossible.
Indeed as an intersection of an open set (of poles of Z—transversals) and a
hyperplane (locus of poles of all hyperplanes through «) it is (z — 1)—dimen-
sional. This contradiction shows that A—transversals are here /-secants as
asserted.

4.3. REMARK. — Theorems I and II, specialized to » = 2, imply the
following result due to Grunbaum [2].

PROPOSITION. — Let & be a family of (at least two) compact connected and
mutually disjoint subsets of E* at least one of which is nondegenerate. If & has
the property that each straight line that intersects a pair of members of & also
intersects some other member of Q, then OA lies on a single straight line.

Proof. — By hypothesis there are no 2-secants. Hence no /~transversal
with /> 1 can, by Theorem I, exist. However, should U@, contrary to
the statement of Griinbaum’s result, not lie on a straight line then a transver-
sal could be found which is not a /~secant. Indeed assume A, is nondegenerate
and let ae Ya —A,. If thereis no stralght line containing {a} U A, there
must exist a line through a;,a, € A, , a; == a,, that does not contain . But
then the straight line through @ and the midpoint of the segment [a; , ;] will
clearly be a transversal of A,, that intersects some A;=-A,. Since ¢ is arbi-
trary the whole of (& must lie on the same line.

5. In the present section we use a notion of maximality for trans-
versals to give a necessary and sufficient condition for a A-transversal to
be a /-secant.

5.1.. DEFINITION. — A hyperplane® isamaximal 2-transver-
sal if all hyperplanes sufficiently close to 7 are A—transversals with #<C 4.
[Equivalently: There exists a neighbourhood UCP* of p (%) such that
all 7’ ¢ p—* (U) are A-transversals with 2 <C £].

5.2. PROPOSITION I. — Let Q be as in Theorem I and suppose that no
member of ais a degenerate point set, then a necessary and sufficient condition
or a é—z‘rdmswrsal to be a k—secant is that it be a maximal k-transversal.

Proof. Necessity. — If a hyperplane w is both a A—transversal and a
k-secant then it intersects exactly Z members of @ and is a transversal of
each of them. The same is obviously true for all sufficiently close hyper-
planes.

Suffeciency. — Suppose the contrary is true. Without restricting gene-
rality we may assume that 7 is a transversal of A, , A, ,- -, A; and a secant
of Azy, . Now int Q,,.... =@ and, since no set reduces to a 'single point,
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int Qu,==0. Butp(®@eQi.Nint Q.. ...z =-=@. Hence int Qgy, N int
Q1.,...,4 =0 and any point of this intersection has a polar which is a (£ + 1)-
transversal contrary to the assumption on 7. This contradiction proves
sufficiency and thus concludes the proof of the Proposition.
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