Atti Accademia Nazionale dei Lincei

Classe Scienze Fisiche Matematiche Naturali

Rendiconti

Michael Edelstein

Secants and transversals

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti, Serie 8, Vol. 32 (1962), n.5, p. 630-634.
Accademia Nazionale dei Lincei
ihttp://www.bdim.eu/item?id=RLINA_1962_8_32_5_630_0i

L'utilizzo e la stampa di questo documento digitale è eonsentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Matematica. - Secants and transversals. Nota di Michael Edelstein, presentata ${ }^{(*)}$ dal Socio B. Segre.
i. Introduction. - A hyperplane π in E^{n}, will be called a secant of a subset $\mathrm{A} \subset \mathrm{E}^{n}$ if $\pi \cap \mathrm{A}=\equiv \emptyset$. If A is connected and both components of $\mathrm{E}^{n}-\pi$ meet A then we shall say that π is a transversal of A. Every transversal is clearly a secant.

If \mathfrak{A} is a family of subsets of E^{n}, then bya $k-\mathrm{sec}$ ant $(k-\mathrm{trans}-$ versal) of \mathfrak{A} we mean a hyperplane which is a secant (transversal) of exactly k members of \mathfrak{G}. The fact that a hyperplane is a k-transversal implies, then, that it is also a l-secant with $l \geq k$.

If \mathfrak{G} is a finite nonempty family of compact subsets of E^{n} then a I-secant always exists. If, in addition, all members of \mathfrak{G} are pairwise disjoint, $\cup \mathfrak{G}$ is infinite and does not lie on a single straight line then a 2 -secant exists [I].

It is the main purpose of the present paper to prove the following theorems.
Theorem I. - Let $\mathfrak{A}=\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{m}\right\}$, be a finite family of compact, connected and mutually disjoint subsets of E^{n} and suppose that there exists an l-transversal ($l \geq 1$), of \mathfrak{Q}. Then for every positive integer k with $k \leq l$ there exists a hyperplane π which is a k-secant of \mathfrak{G}. Moreover k-secants exist which are (k - I)-transversals.

Theorem II. - Let \mathfrak{G} be as in Theorem I and suppose that no $(k+\mathrm{I})$-secants exist. Then every k-transversal is also a k-secant.

2. Preliminaries.

2.I. Let P^{n} denote the projective n-space obtained by closing the E^{n} with the "infinite hyperplane." Let S be a fixed ($n-1$)-sphere in E^{n}. We shall denote by $p(\pi)$ the point $p \in \mathrm{P}^{n}$ which corresponds to the hyperplane π by polarity with respect to S. As usual we call p the pole of π; π the polar of p.
2.2. Consider the set of poles of all transversals of a given connected set $\mathrm{A} \subset \mathrm{E}^{n}$; if a_{I} and a_{2} are any two points of A strictly separated by some hyperplane π then these points will also be separated by hyperplanes whose parameters are sufficiently close to those of π. This clearly implies that the above set of poles is open (in the topology of P^{n}). Similarly, it can be seen that the set of poles of all hyperplanes disjoint from a given compact subset of E^{n} is also open.
(*) Nella seduta del 12 maggio 1962.
2.3. We now define a set Q^{k} as follows:

$$
\begin{aligned}
& Q_{i}=\left\{p(\pi) \mid \pi \cap \mathrm{A}_{i}=\emptyset\right\}, \quad(i=\mathrm{I}, 2, \cdots, m) ; \\
& \mathrm{Q}_{i_{\mathrm{I}} i_{2}, \cdots, i_{k}}=\mathrm{Q}_{i_{\mathrm{I}}} \cap \mathrm{Q}_{i_{2}} \cap \cdots \cap \mathrm{Q}_{i_{k}}, \quad\left(i_{\mathrm{I}}, i_{2}, \cdots, i_{k}=\mathrm{I}, 2, \cdots, m\right) ; \\
& \mathrm{Q}^{k}=\underset{\mathrm{I} \leq i_{\mathrm{I}}<i_{2}<\cdots<i_{k}}{\cup} Q_{i_{\mathrm{I}} i_{2}, \cdots, i_{k}} .
\end{aligned}
$$

Q^{k} is a finite union of intersections of closed sets (2.2); hence closed. Let B denote its boundary. As $\mathrm{B} \subset \mathrm{Q}^{k}$, any hyperplane π with $p(\pi) \in \mathrm{B}$ meets k members of \mathfrak{A} at least. If π be an h-transversal then clearly $h \leq k$ - I (otherwise $p(\pi) \in$ int Q^{k}). We thus arrive at the conclusion that polars of points of B which do not satisfy the requirements of the theorem have the property of meeting two sets at least without being a transversal of any of them. Such hyperplanes are then supports of at least two members of \mathfrak{A}. This property and the following two lemmas will be used in the proofs of our theorems.
3. Lemma r. - If K_{r} and K_{2} are disjoint compact and convex subsets of E^{n}, then the set M of poles of all common supporting hyperplanes of both K_{r} and K_{2} is of dimension (in the sense of Menger-Urysohn) not exceeding $n-2$.

Proof. - We remark that the dimension of the set of poles of all supporting hyperplanes of any subset of E^{h}, does not exceed h - I . This follows from [3, p. 46, Corollary I], as such a set of poles is nowhere dense in P^{h} (any small parallel displacement of a supporting hyperplane yields a nonsupporting one).

Let now x be an arbitrary point of M and $\pi=p^{-x}(x)$ its polar. Either (a) π contains at least one of the $\mathrm{K}_{\mathrm{r}}(i=\mathrm{I}, 2)$; or (b) it does not. In case (b) either (i) one of the two components of $\mathrm{E}^{n}-\pi$ is free of $\mathrm{K}_{\mathrm{r}} \cup \mathrm{K}_{2}$; or (ii) no one is.

We denote by M_{r} and M_{2} the subsets of M with polars satisfying (a) or (i) and (a) or (ii) respectively. Both M_{1} and M_{2} are closed, and therefore compact, subsets of P^{n}. [Indeed if $x \in \mathrm{P}^{n}-\mathrm{M}_{i},(i=\mathrm{I}, 2)$, then $p^{-\mathrm{I}}(x)$ is not a supporting hyperplane of at least one of the K_{i}; but then all points of P^{n} sufficiently close to x have the same property.] As $M=M_{r} \cup M_{2}$ it suffices, in order to prove the Lemma, to show that $\operatorname{dim} \mathrm{M}_{i} \leq n-2$.

To prove that $\operatorname{dim} \mathrm{M}_{\mathrm{r}} \leq n-2$ we consider the intersection H_{r} of all closed half spaces determined by $p^{-1}(x), x \in M_{I}$, which contain $K_{r} \cup K_{2}$. Let ρ be any hyperplane strictly separating K_{t} from K_{2}. The set $D_{r}=\rho \cap H_{r}$ is convex and nonempty (any segment joining $y \in \mathrm{~K}_{\mathrm{r}}$ with $z \in \mathrm{~K}_{2}$ meets D_{r}).

Any supporting hyperplane of H_{r} intersects ρ along a ($n-2$)-dimensional linear variety which is itself a supporting hyperplane, relative to ρ, of D_{I}. The separation property of ρ implies that intersections are different for different supporting hyperplanes of H_{I}. [Indeed should a pair $\pi_{\mathrm{I}} \neq \pi_{2}$, $p^{-1}\left(\pi_{\mathrm{I}}\right)$, $p^{-\mathrm{I}}\left(\pi_{2}\right) \in \mathrm{M}_{\mathrm{r}}$ exist such that $\pi_{\mathrm{I}} \cap \rho=\pi_{2} \cap \rho$, then obviously $\pi_{\mathrm{r}} \cap \pi_{2} \subset \rho$, and no point of $\mathrm{K}_{\mathrm{r}} \cup \mathrm{K}_{2}$ can lie on $\pi_{\mathrm{r}} \cap \pi_{2}$. Let $w_{i} \in \mathrm{~K}_{i} \cap \pi_{\mathrm{r}}, z_{i} \in \mathrm{~K}_{i} \cap \pi_{2}$,
($i=1,2$), then $w_{1}, w_{2}, z_{1}, z_{2}$ are all distinct. Now the segment $\left[y_{1}, y_{2}\right]$ joining the middle points of the segments $\left[w_{1}, z_{1}\right]$ and $\left[w_{2}, z_{2}\right]$ crosses $\pi_{\text {I }}$ (and π_{2}) which is incompatible with the definition of M_{r}]. Thus a biunique correspondence c is set up between M_{r} and the supporting hyperplanes of D_{r} (in ρ). As M_{r} is compact and the intersection $p^{-r}(x) \cap \rho$ depends continuously on x, c is seen to be a topological mapping of M_{r} on a subset of $\mathrm{P}^{n-\mathrm{I}}$ which is of dimension $\leq n-2$, by the remark at the beginning of this proof. Hence $\operatorname{dim} \mathrm{M}_{\mathrm{r}} \leq n-2$.

In an analogous manner (here ρ^{\prime} will be chosen parallel to ρ and so that $K_{r} \cup K_{2}$ shall lie in one component of $E^{n}-\rho^{\prime}$) it can be verified that $\operatorname{dim} \mathrm{M}_{2} \leq n-2$. Hence $\operatorname{dim} \mathrm{M} \leq n-2$ as asserted.

Lemma 2. - If K_{r} and K_{2} are disjoint compact subsets of E^{n} then the dimension of the set M of the poles of all common supporting hyperplanes of both K_{r} and K_{2} does not exceed $n-2$.

Proof. - Consider a cover C of $\mathrm{K}_{\mathrm{r}} \cup \mathrm{K}_{2}$ by open balls (i.e. interiors of ($n-1$)-spheres), centred at points of this set and of radius $r<d / 2$, being the (shortest) distance between K_{1} and K_{2}. C contains a finite subcover $C_{r} \cup C_{2}, C_{r}=\left\{S_{\mathrm{r}}^{\mathrm{I}}, \mathrm{S}_{2}^{\mathrm{I}}, \cdots, \mathrm{S}_{k_{\mathrm{I}}}^{\mathrm{I}}\right\}, \mathrm{C}_{2}=\left\{\mathrm{S}_{\mathrm{I}}^{2}, \mathrm{~S}_{2}^{2}, \cdots, \mathrm{~S}_{k_{2}}^{2}\right\}$, such that $\mathrm{S}^{\mathrm{I}}=\bigcup_{\mathrm{I}}^{k_{\mathrm{I}}} \mathrm{S}_{i}^{\mathrm{I}} \supset \mathrm{K}_{\mathrm{I}}, \mathrm{S}_{2}=\bigcup_{\mathrm{I}}^{k_{2}} \mathrm{~S}_{i}^{2} \supset k_{2}$ and $\mathrm{S}^{\mathrm{I}} \cap \mathrm{S}^{2}=\emptyset$. Any common supporting hyperplane π of both K_{r} and K_{2} is also a common supporting hyperplane of at least one pair of sets consisting of $\mathrm{S}_{i}^{\mathrm{T}} \cap \mathrm{K}_{\mathrm{r}}$ and $\mathrm{S}_{j}^{2} \cap \mathrm{~K}_{2}$ for suitable i and j. Clearly π is also supporting the closures of the convex hulls of these two sets. The previous lemma applies and M is contained in a finite union of closed sets of dimension $\leq n-2$ each. Hence [3, p. 30] $\operatorname{dim} M \leq n-2$ as asserted.

4. Proofs of Theorems I and II.

4.1. Proof of Theorem I. - The existence of an l-transversal with $l \geq k$ implies that int $\mathrm{Q}^{k} \equiv=\varnothing$. On the other hand $\mathrm{P}^{n}-\mathrm{Q}^{k}=\varnothing \varnothing$ as, obviously, hyperplanes exist which are disjoint from $\cup \mathrm{A}_{i}$. Thus B is disconnecting P^{n}. By a known theorem $\operatorname{dim} \mathrm{B} \geq n-\mathrm{I}$. Suppose, however, that contrary to the statement of the theorem no k-secant exists. Hence, as remarked in 2.3, all hyperplanes of $p^{-1}(\mathrm{~B})$ are supporting hyperplanes of two members of \mathfrak{A} at least and B is contained in the finite union of closed sets (of poles corresponding to common supporting hyperplanes of pairs of members of \mathfrak{A}) each of dimension $\leq n-2$. Hence $\operatorname{dim} \mathrm{B} \leq n-2$. This contradiction shows that k-secants do exist. Moreover as the above argument shows that $p^{-\mathrm{I}}(\mathrm{B})$ contains polars which support exactly one member of \mathfrak{A}, k-secants exist which are ($k-\mathrm{I}$)-transversals.

This concludes the proof of Theorem I.
4.2. Proof of Theorem $I I$. - Let π be a k-transversal and suppose it is a l-secant with $l=k$. By hypothesis $l>k+\mathrm{I}$. We may assume $\mathrm{A}_{\mathrm{r}}, \mathrm{A}_{2}, \cdots \mathrm{~A}_{k}$ are the sets transversed by π and that $\mathrm{A}_{k+\mp}, \cdots, \mathrm{A}_{l}$ are those intersected
but not transversed. Let $a \in \bigcup_{k+1}^{l} \mathrm{~A}_{i}$ and consider all hyperplanes through a which are common transversals of $\mathrm{A}_{1}, \cdots, \mathrm{~A}_{k}$. We need only consider the case in which none of these hyperplanes is a k^{\prime}-transversal with $k^{\prime}>k$ as otherwise the assertion follows directly from the previous theorem. Suppose now that among these hyperplanes there is no k-secant and that, therefore, they are all supporting hyperplanes of at least two sets each. Their poles form, by Lemma 2, a set of dimension $\leq n-2$. This however is impossible. Indeed as an intersection of an open set (of poles of k-transversals) and a hyperplane (locus of poles of all hyperplanes through a) it is ($n-\mathrm{I}$)-dimensional. This contradiction shows that k-transversals are here k-secants as asserted.
4.3. Remark. - Theorems I and II, specialized to $n=2$, imply the following result due to Grünbaum [2].

Proposition. - Let \mathfrak{A} be a family of (at least two) compact connected and mutually disjoint subsets of E^{2} at least one of which is nondegenerate. If a has the property that each straight line that intersects a pair of members of \mathfrak{A} also intersects some other member of \mathfrak{A}, then $\cup \mathfrak{A}$ lies on a single straight line.

Proof. - By hypothesis there are no 2-secants. Hence no l-transversal with $l>\mathrm{I}$ can, by Theorem I, exist. However, should $\cup \mathfrak{G}$, contrary to the statement of Grünbaum's result, not lie on a straight line then a transversal could be found which is not a l-secant. Indeed assume A_{t} is nondegenerate and let $a \in \cup \mathfrak{A}-\mathrm{A}_{\mathrm{r}}$. If there is no straight line containing $\{a\} \cup \mathrm{A}_{\mathrm{r}}$ there must exist a line through $a_{\mathrm{x}}^{\mathrm{I}}, a_{2}^{\mathrm{T}} \in \mathrm{A}_{\mathrm{r}}, a_{\mathrm{I}}^{\mathrm{I}}=\mid=a_{2}^{\mathrm{I}}$, that does not contain a. But then the straight line through a and the midpoint of the segment $\left[a_{\mathrm{I}}^{\mathrm{I}}, a_{2}^{\mathrm{I}}\right]$ will clearly be a transversal of A_{r}, that intersects some $\mathrm{A}_{\boldsymbol{j}}=\mathrm{A}_{\mathrm{r}}$. Since a is arbitrary the whole of $\cup \mathfrak{C}$ must lie on the same line.
5. In the present section we use a notion of maximality for transversals to give a necessary and sufficient condition for a k-transversal to be a k-secant.
5.I. Definition. - A hyperplane π is a maximal $k-\mathrm{transver}$ s a 1 if all hyperplanes sufficiently close to π are k^{\prime}-transversals with $k^{\prime} \leq k$. [Equivalently: There exists a neighbourhood $\mathrm{UC} \subset \mathrm{P}^{n}$ of $p(\pi)$ such that all $\pi^{\prime} \in p^{-1}(\mathrm{U})$ are k-transversals with $k^{\prime} \leq k$].
5.2. Proposition I. - Let \mathfrak{G} be as in Theorem I and suppose that no member of \mathfrak{G} is a degenerate point set, then a necessary and sufficient condition or a k-tramsversal to be a k-secant is that it be a maximal k-transversal.

Proof. Necessity. - If a hyperplane π is both a k-transversal and a k-secant then it intersects exactly k members of \mathfrak{A} and is a transversal of each of them. The same is obviously true for all sufficiently close hyperplanes.

Sufficiency. - Suppose the contrary is true. Without restricting generality we may assume that π is a transversal of $A_{r}, A_{2}, \cdots, A_{k}$ and a secant of $A_{k+\mathrm{r}}$. Now int $Q_{\mathrm{r} 2}, \cdots, k=\emptyset$ and, since no set reduces to a single point,
int $Q_{k+\mathrm{r}} \neq \emptyset$. But $p(\pi) \in \mathrm{Q}_{k+\mathrm{r}} \cap$ int $\mathrm{Q}_{\mathrm{r} 2}, \ldots, k \neq \emptyset$. Hence int $\mathrm{Q}_{k+\mathrm{r}} \cap$ int $Q_{\mathrm{I}_{2}, \ldots, k} \equiv \emptyset$ and any point of this intersection has a polar which is a $(k+\mathrm{I})-$ transversal contrary to the assumption on π. This contradiction proves sufficiency and thus concludes the proof of the Proposition.

References.

[i] M. Edelstein, F. Herzog and L. M. Kelly, A further theorem of the Sylvester type, «Proc. Am. Math. Soc.» (to appear).
[2] B. Grünbaum, A generalization of a problem of Sylvester, «Riveon Lematematika», Io, 46-48 (1956).
[3] W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press.

