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Revisiting Aspects of Visualization
in Mathematics Education

ABRAHAM ARCAVI

La matematica richiede anzitutto
immaginazione e interesse per vede-
re direttamente i problemi e allora eÁ
istruttiva e anche divertente.

(de Finetti L 1967, p. 1)

Words can `̀ cite,'' but never `̀ sight''
their objects.

(Mitchell 1994, p. 152)

1. -- Introduction

Bruno de Finetti's prescient contribution to mathematics and ma-
thematics education regarding visualization is notable. This chapter is
intended as an homage to his pioneering ideas. In his lovely book
Il `̀ saper vedere'' in Matematica (de Finetti L 1967), among other
things, de Finetti describes and exemplifies four main features of
visualizing in mathematics:

- How to see easy things (`̀ Saper vedere le cose facili'', p. 8)

- How to see concrete things (`̀ Saper vedere le cose concrete'', p. 12)

- How to exploit dynamic vision (`̀ Sfruttare una visione dinamica'',
p. 30)

- How to exploit global vision (`̀ Sfruttare una visione globale'', p. 35)

These are indeed basic premises which led the foundation of the
subsequent work on what visualization may be in mathematics educa-
tion and how can be integrated into its teaching and learning. The
easiness and the concreteness enable us to envision abstract ideas
and strategies, and the globality and the dynamism of images enable us



to perceive and comprehend mathematical nuances. The visionary
(double entendre intended) work of Bruno de Finetti re-emerged with
full vigor more than two decades after he published his book.

In the last two decades, visualization in the teaching and learning of
mathematics became a very central and active area of study. Only
recently an entire issue of the International Journal on Mathematics
Education (ZDM, Rivera et al. 2014) was devoted to the latest deve-
lopments on visualization. A search of `̀ visualization in mathematics
education'' in Google Scholar, restricted to 2014, yielded (in February
2015) almost 16,000 results (books, articles, reports). About the same
number of entries can be found by searching overarching and impor-
tant topics such as `̀ socio cultural theories in mathematics education''.
In comparison, a similar search of `̀ misconceptions in mathematics
education'' - a very heartfelt topic just a few decades ago-yielded only
about half that number of entries.

The recent growing interest in visualization is possibly due to the
inherent attractiveness of the topic to mathematicians, mathematics
educators and textbook and software designers. It can be also at-
tributed to the well-known truism that we live in a world dominated by
the visual, to the point that `̀ the potential for `visual culture' to displace
`print culture' is an idea with implications as profound as the shift from
oral culture to print culture.'' (Kirrane 1992, p. 58).

In the mathematics education community, the growing interest can
also be attributed to the many still open research questions. Presmeg
(2014, p. 151) lists thirteen `̀ significant questions'' and claims that
`̀ Many of the questions ... identified ... are still in need of investigation''.
She also stresses the need for addressing `̀ newer questions that ine-
vitably emerge, starting with - but not confined to - those I have
suggested.'' (Presmeg 2014, p. 156).

This chapter is intended as a modest contribution to visualization,
following up on previous work (Arcavi 2000) and addressing (at least
partially) four of the questions from Presmeg's list:

- `̀ What aspects of pedagogy are significant in promoting the
strengths and obviating the difficulties of use of visualization in
learning mathematics?'' (Question 1)
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- `̀ What aspects of the use of different types of imagery and vi-
sualization are effective in mathematical problem solving at va-
rious levels?'' (Question 3)

- `̀ What conversion processes are involved in moving flexibly
amongst various mathematical registers, including those of vi-
sual nature, thus combating the phenomenon of compartmenta-
lization?'' (Question 5)

- `̀ How may be visualization be harnessed to promote ma-
thematical abstraction and generalization?'' (Question 10)

2. -- A definition of visualization

On the basis of many studies, we have proposed in the past the
following definition: `̀ Visualization is the ability, the process and the
product of creation, interpretation, use of and reflection upon pictures,
images, diagrams, in our minds, on paper or with technological tools,
with the purpose of depicting and communicating information, thin-
king about and developing previously unknown ideas and advancing
understandings.'' (Arcavi 2000)

Given the complexity of this definition, some parsing of it may be in
place. As in previous exercises that we undertook in order to make sense
of multi-layered concepts such as variable (see, Arcavi & Schoenfeld,
1987), we can start by constraining ourselves to just one word to com-
plete the following sentence: Visualization is _________. Such word
should capture the essence of the term. According to the definition
proposed above, we have three candidates for the one word: `ability',
`process' and `product'. Still these three descriptors require, as shown
above, to be completed by `of what'?, and they are: creation, inter-
pretation, use and reflection upon pictures, images, diagrams. The
definition also includes an answer to a `̀ where?'': in our minds, on paper
or with technological tools. Finally, the definition also includes purpose
and goals: communication of information, thought, learning and un-
derstanding (whatever theoretical perspective is taken to define these
loaded terms). At this point, it might be useful to apply some visual
means to our proposed definition of visualization. Figure 1 is offered as a
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visually convenient arrangement of the verbal statements (a `̀ diagram
on paper'') intended to help perceive and better communicate both the
components of our proposed definition and the interconnections the-
rein. It also reflects the parsing proposed above:

Figure 1. A visual display of the proposed definition of visualization

Following on this definition, we concentrate on some aspects of
pedagogy, use and conversion process (to use Presmeg's formula-
tions). Specifically, we address three themes:

- visualization and sense making,

- visualization and systematicity, and

- visualization and proof.

These issues will be discussed on the shoulders of some illustrative
examples, and are proposed as the basis for further developments and
examination.
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3. -- Visualization and sense making

As human beings, we sometimes have the feeling or the intel-
lectual experience that leads us to say: `this makes sense to me' or
alternatively `this does not make sense to me' (or paraphrasing de
Finetti's: this is easy to me, this is concrete to me). What does this
saying entail? It may refer to what some describe as an `aha! mo-
ment', an insight, in which we feel how pieces fall into place, how ideas
suddenly cohere and connect to each other. It may consist of the
impression that something resonates with what we think, and is ali-
gned with previous experiences and understandings. It may be re-
flected by our ability to explain something to ourselves or to others in
a way that satisfies our inner intellectual demands, dispelling `hazi-
ness' and uncertainty, and producing intellectual satisfaction.
Making sense may also imply the perception or the recognition of
something through the senses or through the intellect, regarding it
as reasonable, plausible, akin to what can be expected, and producing
a sense of meaningfulness for oneself. One of the main challenges of
mathematics education is to provide repeated opportunities for stu-
dents to participate in experiences which support the development of
this inner feeling, and not only to engage in the reproduction (for
themselves or for others) of ideas and strategies that are expected of
them.

Sense making may involve some of our five senses, especially vision.
It is perhaps in that respect that the English expression `̀ I see'' is
sometimes also a synonym of `̀ I understand'', rather than the mere act
of sensorial vision, but possibly intricately connected to it.

Consider the following example from elementary arithmetic, to
calculate:

1

9
� 1

8
� 1
9
:

This is a simple exercise which can be solved in several ways, for
example:

1

9
� 1

8
� 1
9
� 1

9
� 1

72
� 8� 1

72
� 1

8
:
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Or,

1

9
� 1

8
� 1
9
� 1

9
1� 1

8

� �
� 1

9
� 9
8
� 1

8
:

Some sophisticated savant suggested replacing the multiplication
by a subtraction and that yields the result directly as follows:

1

9
� 1

8
� 1
9
� 1

9
� 1

8
ÿ 1

9
� 1

8
:

This substitution is warranted once we know that the product of two
unit fractions with consecutive denominators is equal to their positive
difference.

So far we have shown different arithmetic solutions. There is a very
interesting visual solution which appears in Smudge (1999, p. 8) wi-
thout any further explanation, as shown in Figure 2.

Figure 2. A visualization of
1

9
� 1

8
� 1
9
� 1

8

As is the case with other visual solutions, this diagram may re-
quire some consideration before it `makes sense'. The large square is
divided into nine equal squares, thus each of them constitutes a ninth
of the whole. The central small square is subdivided into eight
congruent triangles, thus each of them constitutes an eighth of it. If
we take the larger square as the unit, then the triangular subdivision
of the central small square constitutes an eighth of a ninth of the
large square.
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Therefore, the painted area (see Figure 3) is a geometrical re-

presentation of the expression
1

9
� 1

8
� 1
9

.

Figure 3. A visualization of
1

9
� 1

8
� 1
9

If one observes carefully in order to make sense of the re-
presentation, one realizes that the whole square is made up of eight
combinations of one small square and a small triangle attached to it.

Thus,
1

9
� 1

8
� 1
9
� 1

8
.

It can be claimed that the graphical display `makes more sense' than
a concatenation of operations since it visually connects the operation to
the meaning of a fraction as part of a whole and provides a global in-
sight of what is being calculated and how. Moreover, depending on how
we look, the visual diagram offers a representation of either the left
hand side of the equality or its right hand side (or both simultaneou-
sly): if one looks at the small square and the attached triangle as two

separate figures, we see the addition of
1

9
� 1

8
� 1
9

ÿ 1

9
being the small

square and
1

8
� 1
9

the small triangle
�
. However, if we look (globally) at

the two figures as a single `unit', one sees the eighth of the large
square, and thus the figure highlights the result of the calculation,

namely,
1

8
. In other words, the figure is reasonable and resonates with

our inner feeling of understanding because it represents both the
calculation (a process), and its result (a product) and thus is also con-
stitutes an explanation of it. In this case Visualization is a mediator, a
catalyzer, and a facilitator for sense making.

At this point, it might be fair to point out a limitation of visualization
as it emerges from this particular example. Our aim in mathematics is

generalization, can we make the case that
1

n� 1
� 1

n
� 1

n� 1
� 1

n
for any
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integer n that is the square of an odd number (recall that the square in
the visualization had a central small square)? As in the previous case,
the sense making intended can be further nurtured by comparing and
contrasting with other representations. Such comparisons may high-
light not only how algebra lends itself well to generalizations, but also
may inspire us to look for visualization of this property for numbers
that are not necessarily squares of odd numbers. For example, it may

inspire to create a representation for
1

3
� 1

2
� 1
3
� 1

2
, as follows (see

Figure 4) as well as for other cases.

Figure 4. A visualization of
1

3
� 1

2
� 1
3
� 1

2

4. -- Visualization and systematicity

Much has been said about the limitations of visualization. For
example, consider the rough sketches of the graphs of the two func-

tions y � log 1
16

x and y � � 1

16
�x (Eisenberg 2000) as shown in Figure 5.

Figure 5. Sketch of the graphs of y � log 1
16
x and y � � 1

16
�x

According to the sketched graphs, there is one solution for the

equation log 1
16

x � � 1

16
�x. However, this equation has three solutions!
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Some of us may find difficult to visualize two concave curves of this
type intersecting three times. Graphing these particular functions
may not be helpful due to scaling problems. However, changing the
basis of the logarithms to 0.01, one can produce a satisfactorily visually
convincing image (Figure 6), showing the relative positions of the two
graphs, and thus illustrating how two concave curves can intersect in
three points.

Figure 6. Sketches of two concave graphs with three intersections

In this case, the moral that `̀ visualization graphs can sometimes be
misleading'' (Eisenberg 2000, p. 100) can be contested: comparing and
contrasting different representations (or different sources for the
same piece of knowledge) should serve as a monitor for the ways we
make use of visual images. In this case, the initial misleading con-
clusion from the rough sketch was amended by such monitoring which
in turn led us to look for a graph that is more visually enlightening and
convincing.

We would like to claim also that sometimes, visualization tools can
provide us with a systematic means to tackle and solve a problem.
Consider, for example, the following version of the three jugs problem
(one of its first sources is Coxeter & Greitzer 1967, p. 89).

The problem presents us with three jugs with the capacity of hol-
ding 8, 5 and 3 liters respectively. At the beginning, the largest jug is
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full and the other two are empty, and we are requested to end up with
two jugs holding exactly 4 liters each without using any measuring
instrument, just by pouring liquid between the jugs.

Once we realize that the only measuring instruments are the jugs
themselves, we are limited to two `̀ operations'': to empty a jug and/or
to fill it. We assume that no liquid is wasted during the pouring, thus, at
any time of the pouring process, the sum of the volumes contained by
the three jugs should be 8.

This problem can be solved by trial and error. Table 1 describes an
example of successive pouring steps which solve the problem (each line
in the table shows the amount held by each of the jugs, and by looking
at successive steps one can deduce what was poured from where to
where).

Table 1. Steps of the solution for the three jugs problem

8-liter jug 5-liter jug 3-liter jug

8 0 0

5 0 3

5 3 0

2 3 3

2 5 1

7 0 1

7 1 0

4 1 3

4 4 0

This is indeed a satisfactory solution. However, is it the only one? Is
it the shortest one? Is there a `̀ method'' to solve the problem other than
by trial and error? A visual display of information that helps answer
this question in a systematic way is called a ternary diagram, a bary-
centric diagram or a de Finetti diagram, in honor of its proposer. This
diagram consists of an equilateral triangle of height 8 which serves as a
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`̀ coordinate system'' as shown in Figure 7:

Figure 7. de Finetti diagram

The distances from a point to the sides of the triangle will constitute
its `̀ coordinates'', as follows: the distance of a point to the sides AB, AC
and CB will be the first, second and third coordinate respectively. Thus
the triangular coordinates of points A, B and C are (0, 0, 8), (0, 8, 0) and
(8, 0, 0) respectively. Also the coordinates of points H are (2, 1, 5) and
those of point G are (4, 4, 0) as shown in Figure 8:

Figure 8. H(2,1,5) and G(4,4,0) plotted in a de Finetti diagram
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Viviani's Theorem states that in an equilateral triangle, the sum of
the distances from any interior point to the sides is equal to the length
of the triangle's altitude. Thus, in our case, the sum of the three
coordinates will always be 8, which makes this an appropriate pre-
condition to represent different steps of the pouring of the jugs: the
distance from AB will represent the amount of liquid in the 8-liter jug,
the distance from AC the amount in the 5-liter jug and the distance
from CB the amount in the 3-liter jug.

The initial stage of the jugs in the problem can be then represented
by point C, and the final stage by point G(4, 4, 0).

A few observations are in place:

- Given the capacity of the jugs, the domain of our problem (i.e. the
points whose three coordinates represent a possible situation for
the three jugs) is not the whole triangle ABC (only one jug has
the capacity of 8 liters) but the parallelogram highlighted in
Figure 9.

Figure 9. The domain of representation of the three jugs problem

- Any action of pouring leaves the content of one of the jugs
unchanged, whereas it brings one of the other two jugs to its
maximum or minimum capacity (full or empty). Thus only
points on the perimeter of the parallelogram represent legi-
timate states. The change in the volume of liquid is re-
presented in the diagram by moving along a ``coordinate line'',
that is a line parallel to one of the sides of the triangle (because
it leaves unchanged the contents of one jug), until we reach the
border of the domain.
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A solution would consist of departing from C, towards G, according
to the two rules above. The solution found above by trial and error can
be described as the following steps in the diagram (Figure 10):

Figure 10. Steps in the systematic solution of the three jugs problem

The de Finetti diagram supports a systematic method for solving
this and similar problems. It is easy to see, at any stage, what are
possible moves and where is the goal. Also, it is immediately obvious
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when a move takes you back to a situation you have already been in. By
this method one can find other solutions to the same problem, compare
the number of steps, and make sure one exhausts the possibilities.
Thus, in some cases, visual methods can and do achieve the generality
and the systematicity we seek in mathematics.

5. -- Visualization and Proof

`̀ The mathematicians insisted that proofs are crucial to ensure that
a result is true. The high school teachers demurred, pointing out that
students no longer considered traditional, axiomatic proofs to be as
convincing as, say, visual arguments.'' (Horgan 1993, p. 103)

In a similar vein, Hanna (1990) argues for stressing explanatory
proofs, whose main goal is not only to allow students to follow the
deductive links in a chain, but also to provide insight, to support un-
derstanding and to make connections to previous experiences.

Much has been investigated about the teaching and learning of
proof - see, for example, just two seminal undertakings: a special issue
of ZDM (2008) and the 19th ICMI Study (Hanna & de Villiers 2012). In
particular, the link between proofs and visualization has been studied
and many beautiful examples have been put forward in a series enti-
tled `̀ proofs without words'' (e.g. Nelsen 1993 and 2000).

The following is such a proof taken from Alsina and Nelsen (2006,
pp. 39-40):

Figure 11. Statement of the theorem to be visually proven

To prove that S � Sx ÿ Sy

�� �� in the following Figure 11.
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The proof step by step is shown in Figure 12:

Figure 12. The visual proof step by step

This visual proof is based on the following:

From a to b: The areas of the rectangles are twice the areas of the
triangles.

From b to c: The difference of areas is unchanged when we sub-
tract equal areas from the two rectangles.
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From c to d: We again subtract equal areas as follows: The given
straight line bisects three rectangles into pairs of
congruent right angle triangles. The shaded rec-
tangle above the straight line is made up of the large
triangle less the two small triangles. Similarly, the
shaded rectangle below the straight line has the sa-
me area - it too is made up of the same large triangle
less the two smaller ones.

From d to e: The rectangle has the same area as the paralle-
logram.

Indeed for many students, the visual transformation can be not only
part of a deductive chain but also an explanatory sequence of steps that
convincingly leads from the premise to the statement to be proven.

There is much to be discussed here from both the mathematical and
the pedagogical points of view. However, I would like to call the at-
tention to what may be considered an inaccurate description of these
types of proofs when it is said of them that they are `̀ without words''.
As an exercise, we invite the reader to carefully follow step by step the
above proof and to notice the amount of verbal description (see above)
needed (out loud or in our minds) in order to follow it.

Thus, in order to profit and learn from the potential explanatory
power of visual proofs, they should be accompanied by verbal de-
scriptions, comments, and arguments that make clear what is vi-
sually provided. We claim that in many cases, it is only during or
after the verbal explanations are explicitly developed, that the
global and convincing nature of these proofs becomes apparent and
makes sense.

The complementarity between visually powerful displays of ma-
thematical ideas and the verbal description or arguments produced to
accompany them has been noticed and advocated by researchers
(Zaskis et al. 1996, Mudaly 2010). This also became very apparent to us
when working with visually impaired students. We concluded then
that: `̀ Verbal explicitness may avoid the too common phenomenon of
two persons looking at the same object and seeing different things
while being completely unaware of that'' (Figueiras and Arcavi 2014).

158 ABRAHAM ARCAVI



In advocating the blending of the visual and the verbal ways of com-
municationandofdoingmathematics,weborrowaninteresting ideafrom
the field of the arts: ekphrasis. Simply stated, this construct refers to the
verbal representation of a visual representation, which may add not only
explicitness but also `̀ rhetorical vividness'' to what an image may depict.

6. -- Conclusion

In this paper, we attempted to focus on several aspects of visuali-
zation which are still the object of widespread interest and study.

In particular we proposed tentative partial answers to some of
Presmeg's questions through morals from rather simple examples, as
follows.

Promoting the pedagogical strengths of visualization should first
and foremost include a thorough search of enlightening examples
which relate and are relevant to the classroom curriculum and which
should involve alternative ways to approach concepts, problems and
thinking strategies. The examples we brought are just a few illu-
strations which among other things should involve and stimulate
students invocation of their common sense (the fraction calculation),
should refine the visualization of what at a first glance can be consi-
dered as hard to visualize (two concave curves that cross each other
three times), should present a systematic way to solve a problem (de
Finetti diagrams) and should integrally blend the strengths of other
representations (e.g. verbalizations of the visual). This will in itself
support the practice of changing registers as natural and rewarding in
terms of the sense making they may nurture.

The examples above can also serve as springboards for generali-

zing. For example, one can attempt to visualize
1

n
� 1

nÿ 1
� 1
n
� 1

nÿ 1
,

for several values of n, or one may attempt to use de Finetti diagrams
for other values of the original jug problem.

These proposals need to be accompanied by long term empirical
follow ups, in which visualization and its many functions (including
bypassing the potential limitations and difficulties) are thoroughly
scrutinized from the early years of mathematics education onwards.
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These studies should be enhanced by a prolific collection of enriching
examples that we need to continue developing as the repertoire upon
which the many still unanswered questions should be approached.
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