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Sitnikov's Planet

CHRISTOPH LHOTKA

`̀ I do not know what I may appear to the world, but to myself I
seem to have been only like a boy playing on the seashore, and
diverting myself in now and then finding a smoother pebble or
a prettier shell than ordinary, whilst the great ocean of truth
lay all undiscovered before me." (Sir Isaac Newton)

Prolog

If evolution of mankind would have taken place on another Earth
that was oscillating along a straight line through the barycenter of two
massive stars (see Figure 1), would such a brilliant mathematician like
Sir Isaac Newton (1643 - 1727) have discovered the same law of gra-
vity? Would a person like Johannes Kepler (1571-1630) have formu-
lated his three fundamental laws of planetary motion? Imagine, some
religious beliefs would have supported the quite self-involved fact that

Figure. 1: Gravitational attraction of three masses (m1, m2, m3) in special configuration.



the Earth is truly the center of the world. Which kind of observations
would some brilliant man or woman need to make to be able to disprove
this wrong statement? Would it have been easier for him, or her, than
it was for Tycho Brahe (1546-1601)? Would a person like Albert
Einstein have formulated the general theory of relativity in a different
way? Let us follow this gedankenexperiment (1) for some moment, and
let us assume that the natural environment of this planet supported
the evolution of life, and that descent with modification allowed to
create specimen that are capable of doing mathematics like we do. Let
us imagine to be one of them:

We stand, quite similar to the observer Tycho Brahe, on the he-
misphere of this planet that is found in daylight (daylight astronomy
has shown to be much more interesting). Having performed enough
observations we are able to draw the following conclusions: i) the stars
appear in the morning (at the end of dawn) on the horizon in opposite
directions, and disappear in the evening in not necessarily the same,
but again opposite directions (at the beginning of dusk). Let us denote
by T one complete cycle from dawn to dawn (or dusk to dusk). We
further observe: ii) in addition to the vertical motion of period T the
stars perform periodic motion of period P and parallel to the horizon.
Let us assume T=P >> 1 so that we are able to observe that the ho-
rizontal motion projects paths into the sky that resemble ellipses of the
same shape but mirrored to each other. We parametrize their shape by
eccentricity e and semi-major axes a. Very probably, but not ne-
cessarily, we are able to formulate a variant of Kepler's first law in
terms of our observations:

I The orbit of every star is an ellipse with the projection of the
position of our planet to the orbital plane of the stars at the
common focus.

We remark that the formulation of law I already required to exchange
the role of the stars with that of the planets. It may be even more
sophisticated to formulate the variant of Kepler's second law:

(1) i.e., thought experiment.
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II A line segment joining a star and the projection of our planet on the
plane of stellar orbits sweeps out equal areas during equal intervals
of time.

The statement is true if we already understood that we move re-
lative to the orbital plane of the stars. Otherwise these areas would
also change because their projection to the sky is coupled with our
own movement. The formulation of Kepler law III becomes even
more difficult. We remind ourselves of its standard, usual formu-
lation:

III The square of the orbital period of a planet is proportional to the
cube of the semi-major axis of its orbit.

Historically, a careful work comparing the orbital motions of many
planets was necessary to claim the third Kepler law in 1619. Most
crucial, the orbital periods and the semi-major axes of different
planets could be observed at that epoch. If we would just increase
the number of stars in the vicinity of our planet the dynamics of the
system would very probably become too unstable to justify our
existence. Let us assume (2) that the people living on a Sitnikov's
planet, starting from laws I & II, are able to deduce the following
natural formulation of the gravity law (for instance, by using an
equivalent of the Binet's formula): the attraction between any two
bodies is equal to G=r2, being r the distance between those bodies
and G some parameter. Moreover, it is also possible to determine
the explicit value of G / c2=(a(1ÿ e2)), where c is the constant an-
gular momentum (see Appendix). Then, Kepler's law III directly
follows from the fact that the constant c can also be related to the
orbital period P by means of c2 � n2a4(1ÿ e2), where n is the mean
motion related to the orbital period by n � 2p=P. In this context,
the formulation of law III on the basis of pure observations and
without a good theory of gravity seems impossible.

(2) The author acknowledges the suggestion of an anonymous reviewer.
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1. ± Introduction

It turns out that the planet moves according to the following
equation of motion:

�z � ÿ zÿ
r t; e� �2�z2

�3=2
:�1�

Here, z � z(t) is the distance of the planet (hereafter third body) from
the common barycenter of the two stars (hereafter primaries), and
r(t; e) is the distance of one primary from the common center of gravity
of the two primaries, that depends on orbital eccentricity e. A derivation
of equation (1) from Newton's law of gravity is presented in the
Appendix. The second order, non autonomous differential equation is
valid as long as the scientists on our virtual planet choose their unit of
mass, length and time to coincide with the sum of masses of the stars,
revolution periods of the two stars, and semi-major axis of the orbital
ellipse of one of the stars, respectively. The problem to describe possible
solutions of equation (1), with given initial conditions z(0), _z(0), is named
after the Russian mathematician Kirill Aleksandrovich Sitnikov, who
proved the existence of oscillatory motions in the three-body problem
(Sitnikov, 1960) on the basis of this differential equation. The statement
of the theorem requires some basic definitions related to symbolic dy-
namics that is based on Z.

Let s � [ . . . ; skÿ1; sk; sk�1; . . . ] be an infinite sequence of integers,
where the sk are defined by the relation:

sk �
�

tk�1 ÿ tk

2p

�
:�2�

Here, the square bracket operator, [x], denotes the integer part of x,
and the tk 2 R, with the property tk < tk�1, are discrete times with
index k 2 Z, at which the solution of (1), say z(tk), becomes zero. With
our choice of units, the sk are therefore a measure of the number of
complete revolutions of the primaries between two consecutive zeroes
of the solution z(t) of (1). In this setting, Sitnikov's theorem on oscil-
latory kind of motions in the three-body problem is as follows (version
after Moser, 1973):
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THEOREM 1. ± Given a sufficiently small eccentricity e > 0 there
exists an integer m � m(e) such that any sequence s with sk � m
corresponds to a solution of the differential equation of the Sitnikov
problem, namely (1).

We remark that the sk can be chosen completely independent from
the initial conditions, with the only requirement that for a given ec-
centricity e, of the orbital ellipses of the primaries, m must be a lower
fence to the sk. It is therefore possible to choose an infinite, unbounded
sequence of integers sk such that the corresponding solution of (1) will
be unbounded too, but will contain an infinite number of zeroes.

The proof of Theorem 1 can be found in Sitnikov (1960), Moser
(1973), see also the discussion of the original proof in Wodnar (1993).
The existence of oscillatory motions in the three-body problem has
originally been shown for zero mass of the third body and small ec-
centricity e of the primaries. In Alekseev (1968a,b, 1969) the author
generalizes the results to non-zero mass of the third body, and for the
whole eccentricity interval 0 � e < 1. A proof based on showing the
topological equivalence of a discrete mapping, that describes the mo-
tion of the Sitnikov problem close to the critical velocity boundary (3)
with the Bernoulli shift is given in Moser (1973).

We remark that Theorem 1 just states the existence of oscillatory
kind of motions in the Sitnikov problem, the question remains open to
find the relation m(e), and to determine the initial conditions (z(0); _z(0))

for a given integer sequence s. No general recipe is known to the au-
thor. It would be a challenge to enlighten the scientific community with
a proof of Theorem 1 that is also constructive in that sense that it
provides a method to find m(e), and (z(0); _z(0)) for given s too. So far,
only numerical methods, based on trial and error or genetic algo-
rithms, may be used to construct oscillatory solutions that are un-
bounded with a possible infinite number of zeros. It turns out, that
finding oscillatory solutions of this kind, for given integer sequence s,

(3) The critical velocity boundary is the curve in phase space that separates bounded
and unbounded motions.
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seems to be a numerical challenge too, since most of the numerically
determined solutions turn out to be very sensitive in their initial
conditions. Moreover, care is needed in the choice of numerical inte-
gration methods to propagate the orbit on long times. The reason is
found in the presence of chaos in equations of the form (1), see also
Section 3.

We demonstrate a possible solution of unbounded oscillating be-
haviour in Figure 2: using the initial conditions z(0) � 0:0, _z(0) � 2:5,
and eccentricity parameter e � 0:5, the integer sequence around t � 0
turns out to be s � ( . . . ; 4; 1; 9; 7; 2; 8; 6; 4; 10; 1; 4; . . . ). We notice that
unbounded integer sequences with an infinite number of zeroes may
result in solutions of (1) with unusual structure: regular integer se-
quences with periodic sub-sequences (with contiguous elements) may
be followed by sequences of irregular structure. This phenomenon is
strongly related to the concept of intermittency in chaotic (but con-
servative) dynamical systems, where irregular alternation of phases of
periodic and chaotic motions may take place.

As quoted in Moser (1973), Theorem 1 allows also to finding infi-
nitely many periodic orbits (4) by choosing periodic integer sequences.
As an example one could take the solution of (1) for z(0) � 2:0, _z(0) � 0,
e � 0:2. The corresponding integer sequence around t � 0 turns out to

(4) An orbit with the property z�t� T� � z�t� for some real number T > 0.

Figure. 2: A typical example of complex kind of oscillatory motion in the Sitnikov problem
(z(0) � 0:0, _z(0) � 2:5, e � 0:5).
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be periodic in s � ( . . . ; 5; 5; 6; 6; 5; 6; 6; 5; 6; 7; . . . ). However, a small
modulation of the underlying frequencies leads to a more complex
overall integer sequence, as shown in Figure 3: we graphically re-
present the associated integer sequence s0; . . . ; s200 (from upper left to
lower right) on the number line, where the dots represent the numbers
5 (bottom, red), 6 (middle, green), and 7 (top, blue). This kind of re-
presentation of one orbit of (1) is closely related to symbolic dynamics.
It would be interesting to investigate the kind of replacement rules
acting on 3 different symbols that would reproduce this specific orbit
for infinite times, without the need of numerical integrations of the
equations of motion.

Let the initial position of the primaries in their orbit be para-
metrized by an angle f (called true anomaly). The relation between
the choice of the system parameters (e and f) and the initial con-
ditions (z(0) and _z(0)) of the third body on the resulting integer se-
quence s can be visualized following an original idea of F. Vrabec
(Dvorak et al., 1993): for a fixed parameter e and true anomaly
0� < f < 360� one numerically integrates (1) for different orbits of
the third body for a given number of crossings through the bary-
center, while counting the number of revolution periods of the pri-
maries. If we choose the initial conditions on a grid _z(0) � 0 with
z(0) � 0 we obtain a plot as shown in Figure 4. Here, the color code
gives the number of revolution periods of the primaries between the
5-th and 6-th oscillation period of the third body in the parameter
space (f; _z(0)). Black (bottom of color legend) indicates the region in

Figure. 3: `Symphony' of integers sk (k on abscissa) for z(0) � 2:0, _z(0) � 0, e � 0:2: symbol
blue (top) for 7, green (middle) for 6, red (bottom) for 5.
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parameter space that leads to unbounded motions, while yellow (top
of color legend) indicates the regime where the primaries take 10 (or
more revolution periods) for one full oscillation cycle. We notice that
we find complex patterns that also reveal regions of fractal structure
close to the critical velocity boundary (see e.g., Dvorak and Lhotka,
2013).

In addition to the mathematical proof of oscillatory kind of motions
in the three-body problem (Sitnikov, 1960; Alekseev, 1968a; Moser,
1973; Wodnar, 1993) the existence of different special kinds of orbits
has been shown in Corbera and Llibre (2000); Chesley (1999); Martinez
Alfaro and Chiralt (1993). We recommend that literature for further
reading.

We conclude this section by returning to our gedankenexperi-
ment, and try to understand how difficult it would be to define the
length of a day for a population living on a Sitnikov planet. We first
assume that the planet rotates with the spin axis normal to the or-
bital plane of the two stars (and therefore aligned with the orbit of

Figure. 4: Parameter study in the space (f; _z(0)) (initial true anomaly vs. initial velocity
with z(0) � 0). The color code gives the crossings per revolution period of the primaries from
one crossing to the other (after Lang (2011)). See also Dvorak and Lhotka (2013).
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the planet). Then, dusk (5) starts on one hemisphere exactly at the
moment when z(tk) � 0, where tk is defined in (2), while dawn starts
on the other hemisphere at the same moment. Since the number of
revolution periods is given by sk of Theorem 1 the length of day and
night is also given by sk. Since it is possible to construct arbitrary
integer sequences s we may also construct arbitrary regular or ir-
regular patterns of day and night changes together with arbitrary
lengths of daylight durations. What a challenge for the people, living
on a Sitnikov planet, to define their calendar!

2. ± Historical remarks & the MacMillan problem

The dynamical system behind the Sitnikov problem was already
known decades before Sitnikov provided his proof of oscillatory kind of
motions. The case e � 0 was investigated by Pavanini (1907), and it was
MacMillan (1911) who derived the oscillation period of the third body
in terms of elliptic functions. The problem to describe solutions for
zero eccentricity of the primaries is usually called MacMillan problem.
The dynamical system behind is integrable. The integrability is easily
understood, since for e � 0 equation (1) reduces to

�z � ÿ z

a2 � z2� �3=2
:�3�

Here, r(t; e) from (1) reduces to a constant radius a of one of the pri-
maries from the common center of gravity, and the primaries stay in
the same circular orbit, always separated from each other by 180�. The
equation of motion (3) admits the energy integral

H � T � V � _z2

2
ÿ 1���������������

a2 � z2
p ;�4�

where H is the Hamiltonian, and T and V are the kinetic and po-

(5) We use dusk / dawn to define the moment when the stars disappear / appear on the
horizon (see also Prolog). This is a strong simplification since lighting conditions depend
on many more parameters.
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tential energies of the system. Since the Hamiltonian (4) is a con-
served quantity and the dynamical system is only of dimension 1 it
follows that (3) must be integrable. We notice, that z � 0 is an equi-
librium point of (3) with �z � 0. Let z(0); _z(0) << 1. If we expand the
right hand side of (3) around z � 0 up to first order in z we get:

�z � ÿAz ;�5�
with A � 1=a3. The solution of this linear, second order ordinary dif-
ferential equation becomes

z(t) � z(0) cos v0t� � � _z(0)

v0
sin v0t� � ;�6�

where the fundamental oscillation frequency is

v0 �
����
A
p
�

�����
1

a3

r
:�7�

We remark that the choice a � 1 leads to v0 � 1, while choosing the
unit of length to coincide with the distance of the primary bodies from
each other gives a � 1=2 and thus v0 �

���
8
p

(both definitions of the
basic length unit exists in literature). For large z(0), _z(0) the period of
oscillation can be calculated in terms of elliptic functions. If we directly
integrate (3) with respect to time t we get:�

dz

dt

�2

� 2���������������
a2 � z2
p ÿ 2C ;�8�

where the constant C � ÿE (being E the total energy) depends on the
choice of the initial conditions z(0); _z(0). In MacMillan (1911) the author
derives on the basis of the above equation the integral�t

0

dt �
�v
0

dv

(1ÿ 2k2v2)2
������������������������������������
(1ÿ v2)(1ÿ k2v2)
p ;�9�

where

k2 � 1

2
(1ÿ C) ;�10�
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and the new dependent variable v is related to z by means of v2 � 1ÿ u

1ÿ C
and 1� z2 � 1

u2
. The integration of (9) and inversion into the form v(t)

therefore shows also the integrability of (3). If we instead Taylor ex-
pand (9) with respect to k2, the integral up to v � 1 gives quarter of a
period. One full period in the MacMillan problem is then given by:

T � 2p 1� 9

4
k2 � 345

64
k4 � 3185

256
k6 � . . .

� �
;�11�

with

k2 � 1

2
1ÿ 1������������������

z(0)2 � 1
p !

�12�

(valid for _z(0) � 0). We demonstrate the usage of (11) in Figure 5,
where we calculate the period of oscillation in the space (z; _z) and su-
perimposed with specific orbits obtained by numerical integration of
(3). We notice that, due to the integrability of the MacMillan problem,
all possible orbits in Figure 5 are regular closed curves or degenerate
to the central equilibrium that is located at z(0) � _z(0) � 0.

Figure. 5: Contours, calculated from (11), between different colors mark same oscillation
periods in the space (z; _z). Dashed lines correspond to orbits directly obtained from (3) for
_z(0) � 0 and z(0) � 0:; 0:5; . . . ; 3:5 (corresponding oscillation periods given in boldface).
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The `circular Sitnikov problem', and its generalizations, are still
subject of scientific studies nowadays: in Pandey and Ahamad (2013)
the authors study the different kinds of motions of the third body in
the case where the primaries are three oblate spheroids - instead of
point masses - and are situated at the edges of an equilateral triangle,
in the circular problem. They establish a relation between the obla-
teness parameter of the primaries and the length of the sides of the
equilateral triangle, and also provide the stability region as well as
periodic orbits in the planar and 3D problem. The authors of Bountis
and Papadakis (2009) investigate the generalized Sitnikov problem
where the third body moves perpendicular on a line through the
center of mass of N ÿ 1 equally massed primaries that themselves
move on a circle. The study includes a detailed investigation of the
intervals of stability and instability, along the z-axis, the investigation
of periodic solutions that are found off the z-axis. The authors finally
provide the solution of the problem for N tending to infinity. In
Sidorenko (2011) the author studies the alternation of stability and
instability within the family of periodic vertical motions, whenever
their amplitude is varied in a continuous monotone manner. In Soulis
et al. (2008), the authors study the existence and stability of straight
line periodic orbits in a generalized Sitnikov problem, where three
equally massed primaries move on a circular orbit. They provide a
detailed study of the stability interval along the z-axis, and also in-
vestigate the bifurcation of 3D families of symmetric periodic orbits
by means of the SALI method (Skokos et al., 2004) and suitably
chosen PoincareÂ maps. In Perdios (2007) the author investigates the
stability and extension of the family of straight line periodic orbits
into 3D, also in the circular Sitnikov problem. Several new critical
orbits are found at which families of three dimensional periodic orbits
of the same or double period bifurcate. The study also investigates the
influence of nearly equal primaries. A modern treatment to find the
solution of the circular Sitnikov problem, and its period, in terms of
elliptic functions can also be found in Belbruno et al. (1994). The au-
thors study the linear stability of periodic orbits, and of the families of
periodic orbits of the 3D circular restricted three body problem that
bifurcate from them.
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The MacMillan problem is also related to Euler's three-body pro-
blem (6) (Leonhard Euler, 1707-1783), where a particle moves in the
gravitational field of two other point masses that are fixed in space.
Since the primaries, in the MacMillan problem, move with constant
angular speed around their common barycenter it is possible to in-
troduce a rotating coordinate system, that is moving uniformly with
the primaries, and to treat the MacMillan problem in a synodic frame,
where the primaries are fixed. It remains to investigate the Euler
problem with equal point masses and initial conditions of the third
body restricted to the symmetry line normal to the line connecting the
primaries, and to relate it to the inertial (non-rotating) frame. It turns
out that Euler's problem is integrable in terms of Jacobi elliptic
functions (e.g., see Whittaker, 1937). Contributions to the Euler pro-
blem have been made by the great mathematicians over centuries:
Lagrange, Liouville, Laplace, Jacobi, Darboux, Le Verrier, Velde,
Hamilton, PoincareÂ, and Birkhoff (to name a few).

3. ± The phase space of the Sitnikov problem

It is natural to investigate low dynamical systems of the form (1) in
the space (z; _z) like we already did with (3) in Figure 5, but with some
minor modification: we first notice the presence of time t in (1) through
r(t) � r(t; e) that is absent in (3). We therefore can expect that phase
portraits of the form of Figure 5 will change with time. Fortunately,
the time dependency enters into equation (1) with a given period (2p in
our choice of units). We can make use of this fact and draw phase
portraits (z(t); _z(t)) modulo time 2p too.

3.1 ± Surfaces of section

We start with 100 initial conditions within the region z� _z 2
(ÿ 2:5; 2:5)� (ÿ 2; 2) and integrate equation (1) for 1000 revolution
periods of the primaries. We only keep points of the times series mo-

(6) Also named Euler-Jacobi problem and Two-Center Kepler problem.
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dulo 2p and plot them in the space (z; _z). We sketch the relationship
between the time series of specific orbits and the phase portrait modulo
2p - called the surface of section - for e � 0:1 in Figure 6: the equili-
brium (z(0) � _z(0) � 0:0) evolves on a straight line (red) going through
the central point of the phase portrait. A quasi-periodic orbit (in green),
starting on an invariant curve, at (z(0); _z(0)) � (0:3; 0:0), winds around
the central line until it crosses the same curve on the phase portrait
again after time 2p. We also demonstrate the structure of an orbit
starting close to the 2:1 resonance in blue: during one revolution period
of the primaries (in our units 2p) the third body performs only one half
of its oscillation period (a full period would mean to return close to the
region where the orbit started, see more explanations in Section 3.2).

Figure. 6: Phase portrait modulo 2p for e � 0:1 and time series of specific orbits
(z(0); _z(0)) � (0; 0) (red), (z(0); _z(0)) � (0:3; 0) (green), (z(0); _z(0)) � (1:836:::; 0:0482:::) (blue),
and (z(0); _z(0)) � (0:1487:::; 1:797:::) (dotted magenta).
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While all these previous kinds of orbits intersect the phase portrait in
such a way to form regular smooth invariant manifolds on the surfaces
of sections, we also demonstrate the structure of a chaotic orbit in
Figure 6 (magenta, dotted): starting with initial conditions inside the
chaotic (dotted) domain, the orbit evolves in time on a smooth curve, but
lacking of any visible regular pattern projected to the phase space.
Moreover, the orbit does not return close to its initial conditions, and
eventually (not shown here for the clarity of visualization) fills up the
whole chaotic regime.

We remark that from the manifolds on the phase portraits mo-
dulo 2p we have sufficient information to judge (by visual in-
spection) if the corresponding orbit is an equilibrium, (quasi-) pe-
riodic, or of chaotic nature. In the following, we will therefore only
provide surfaces of section to qualitatively describe the dynamics.
We also notice, that the space (z; _z) modulo 2p is also named in li-
terature stroboscopic map, or (more often) PoincareÂ surface of
section (7).

3.2 ± Qualitative description of the phase space

In this section we provide surfaces of section of the Sitnikov pro-
blem for different values of the parameter e. We focus on the regime of
phase space close to the central equilibrium and close to the 2:1 re-
sonance. We start with the phase portrait modulo 2p for e � 0, shown
in Figure 7 (left), that should be compared with Figure 5: the phase
space is dominated by closed invariant curves that resemble ellipses
close to the central equilibrium (located at z(0) � _z(0) � 0), while they
become reshaped into diamond like curves further away from the
origin. Each curve in these kinds of plots represents a manifold of

(7) To be precise, the construction of a classical PoincareÂ surface of section requires to
choose initial conditions on a given energy level of the Hamiltonian. In case of the Sitnikov
problem the Hamiltonian is not a constant of motion - strictly speaking we do not present
PoincareÂ surface of sections in the classical sense, but rather surfaces of section in a much
broader context.
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initial conditions that result in the same orbit - with same irrational
frequency of oscillation - as it was already indicated by the color code
in Figure 5.

If the oscillation period of the third body and the revolution period
of the primaries become rationally dependent the curves are replaced
by so-called resonant islands. For e � 0:01 two islands, with their
centers located at roughly z ' � 1:85 and _z � 0 show up in phase space
as shown in Figure 7 (right). The two points correspond to the 2:1
resonant orbit of the third body, and mark the locations where the
third body is situated after one revolution period of the primaries.
Starting close to the point with positive z(0) the third body is located
close to the point with negative z after the first revolution period of the
primaries. The orbit returns back to the point with positive z after the
second revolution period of the primaries. One full oscillation cycle
therefore takes two revolution periods of the primary bodies to com-
plete.

In Figure 7 (right) the resonant islands are still surrounded by
invariant curves that circumscribe the central main equilibrium
point. Eventually, chaos will destroy some of these invariant curves
as already has been shown on the sections in Figure 6. While chaotic
orbits starting between the central and 2:1 resonant island may fill up
the complete chaotic region of the phase space on short times, motion

Figure. 7: Left: phase portrait modulo 2p for the Sitnikov problem with e � 0 - the
MacMillan problem. Right: the case e � 0:01 - the 2:1 resonant islands are `born'.
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starting on invariant curves stays bound (at least for a while). We also
see, in Figure 6 the appearance of higher order resonant islands that
are separated from the 2:1 resonant island that, however, disappear
for increasing e.

The same fate happens to the 2:1 resonant island at e � 0:25 as
shown in Figure 8 (left): we show the region close to the positive part
of the island and find that the stability of the central point has been
reversed and the small invariant curves that previously formed the
resonant island have disappeared. It is interesting to notice that
resonant islands may reappear for increasing parameter e as it is
illustrated in Figure 8 (right) where we show the phase space
around the exact 2:1 resonance on a very fine grid of initial condi-
tions for e � 0:3.

The presence of invariant curves in phase space is strongly related
to the stability of motion of the third body. We demonstrate this by
means of a parametric study in Figure 9: we perform numerical in-
tegrations of (1) in the space z(0)� e with 0 � z(0) � 3, with _z(0) � 0,
and 0 � e � 0:3. The color code indicates the stability time (in per-
centage of the most stable one) of the third body. Here, yellow (light)
marks stable regions and the blue (dark) regions lead to an escape of
the body on relatively short times, while red regions mark the so-called
sticky orbits that resemble stable orbits for very long time until they
finally escape due to the presence of weak chaos (see, e.g. Dvorak et al.,

Figure. 8: Left: phase portrait modulo 2p for the Sitnikov problem with e � 0:25 - the 2:1
resonant orbit becomes unstable. Right: the case e � 0:3 - the 2:1 resonant island reappears.
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1998). We notice the evolution of the extent of the 2:1 resonance (lo-
cated at z ' 1:848::: and indicated by a dashed line) with increasing e:
the stability regime (related to the extent of invariant curves around
exact resonance) increases up to e ' 0:15, decreases, increases again
up to e ' 0:25, where it disappears, but reappears again for slightly
larger e.

Many numerical studies have been performed for the Sitnikov
problem that provide a quite complete picture of the phase space. We
only list a few of them: a complete parameter study of the classical
Sitnikov problem can be found in Dvorak (2007). The author provides
detailed surfaces of sections in the parameter space e, and initial
condition space. A shrinking of the main island with increasing e, and
the dynamics of the 2:1 periodic orbit is demonstrated: the corre-
sponding island disappears (reappears) by means of (inverse)
pitchfork bifurcations. Furthermore, the role of sticky orbits, and
escape channels on the dynamics are discussed. In JimeÂnez-Lara
and Escalona-BuendõÂa (2001) the authors calculate the symmetry
lines of the Sitnikov problem and their dependency on the parame-

Figure. 9: Parameter study (e vs. z(0) for _z(0) � 0): stable orbits (yellow, top of color
legend), sticky orbits (red, second on top of color legend), unstable orbits (blue, bottom of color
legend). See also Dvorak and Lhotka (2013).
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ters using stroboscopic maps. They find families of periodic orbits
and their bifurcations. Bifurcation diagrams and patterns of bi-
furcations are found too. A systematic numerical study of the dy-
namical problem can also be found in Dvorak (1993). The author
provides in this valuable article a parameter study, and shows the
existence of invariant curves that exist up to a certain value of the
initial conditions. A numerical study, that is based on PoincareÂ

surface of sections and Lyapunov characteristic exponents is pro-
vided in Liu et al. (1991a,b). Here, the authors support a relation
between the chaotic region and the eccentricity of the primary's
orbit.

The list is not complete, see references to (and within) for further
information.

4. ± Stability & approximate solutions

Numerical studies of the problem have shown to be a perfect stra-
tegy to investigate the phase space and space of parameters of the
system in great detail. However, numerical studies are lacking of the
possibility to relate the system parameters and initial conditions with
basic properties of the solution, like its (non-)linear stability, or the
fundamental oscillation periods. In this section we therefore summa-
rize the result of some relevant studies that have been made to inve-
stigate the problem from an analytical point of view. Most of the stu-
dies are based on some kind of approximation of the original equation
of motion, i.e. series expansion of (1).

The Taylor series expansion of the right hand side of (1) takes the
form:

ÿ zÿ
r t� �2�z2

�3=2
� ÿ

X1
k�0

�ÿ 3
2

k

�
z2k�1

r(t)2k�3
;�13�

that is a convergent series for jz=r(t)j < 1. Up to first order in z the
linearized equation of motion, valid for jzj << 1 is given by:

�z� g(t; e)z � 0 :�14�
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Here the function g turns out to be g(t; e) � 1=r(t)3 with r(t; e) given
up to 4-th order in the eccentricity e:

�15� r(t; e) � 1

2
ÿ e

2
cos (t)� e2

4
[1ÿ cos (2t)]�

3e3

16
[ cos (t)ÿ cos (3t)]� e4

6
[ cos (2t)ÿ cos (4t)]:

The coefficient g(t; e) in the second order linear differential equation
(14) turns therefore out to be a periodic coefficient in time. This type of
equation can therefore easily be investigated using Floquet theory
(see, e.g. Lhotka, 2004; Hagel and Lhotka, 2005). On its basis it can be
shown that the central equilibrium point is linearly stable as long as
the trace of the transfer matrix R, that defines the mapping from
(z(2kp); _z(2kp)) to (z(2(k� 1)p); _z(2(k� 1)p)) is in modulus strictly
smaller than 2. The trace of R up to high order in e has been derived in
Lhotka (2004). Up to 8-th order in e it is of the form:

�16� Tr(R)� 2 cos
ÿ ���

2
p

p
�
4:�0:677e2�0:375e4�0:259e6�0:198e8� . . .

��
The critical points in e turn out to be close to � 0:544 . . ., � 0:859,
� 0:966 at which Tr(R) reaches � 2. At these points nonlinear con-
tributions in z from (13) may harm the stability of motion of the third
body. Using a different approach (Martinez Alfaro and Chiralt, 1993)
the authors find two sequences of critical values of e, and in addition
values at which the central equilibrium becomes unstable (e.g. at
e � 0:8558625 . . .).

We notice that a nonlinear stability analysis of the central equili-
brium for small z and e has been done in Di Ruzza and Lhotka (2011),
where the authors implement a suitable change of variables to obtain a
high order normal form of (1). The nonlinear stability character of the
regime close to the central equilibrium has been shown on the basis of
the non-normal form terms, i.e. in a small domain close to z � _z � 0 and
e � 0:05.

In Lhotka (2004), Hagel and Lhotka (2005) the authors derive an
approximate solution of the full nonlinear Sitnikov problem that re-
produces the qualitative dynamics in the domain ÿ 0:2 � z(0) � 0:2
and 0 � e � 0:4 with great precision. The solution is obtained using the
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combination of advanced perturbation techniques, like Floquet theory,
Courant Snyder transformation, and PoincareÂ-Lindstedt methods. At
lowest degree in Fourier harmonics the solution of the Sitnikov pro-
blem after Lhotka (2004) is given by:

z t� � � A t� � cos
���
8
p

F t� �
� �

:�17�

Here, A(t) � A(t; e; z(0); _z(0)), F(t) � F(t; e; z(0); _z(0)) are periodic
functions in time that depend on the parameter e and initial conditions
z(0), _z(0). Let N be the order of truncation. Then the amplitude and
phase functions are given by:

A t� � �
XN

k�0

ak[e; z(0); _z(0)] cos kt� � ;

F t� � � f0[e; z(0); _z(0)] t�
XN

k�1

fk[e; z(0); _z(0)] sin kt� � :
�18�

We provide the ak, fk with N � 7 valid for the choice of parameter
e � 0:2, and initial conditions z(0) � 0:2, _z(0) � 0 in Table 1. The
comparison of the solution obtained from (17) with a numerical solution
obtained from (1) is shown in Figure 10: the two different solutions
(numerical=dashed, red, analytical=thick, black) perfectly agree in
shape for times 0 � t � 20p (left plot). After long enough time, the
approximation error in the phase, due to higher order terms, starts
accumulating and the analytical solution only qualitatively reproduces
Sitnikov's orbit (right). Higher order harmonics of the solution of the
Sitnikov problem have been derived. The corresponding amplitude

Table 1: Coefficients (units � 10ÿ7) of an approximate solution of the Sitnikov problem, given
by (17), for e � 0:2, z(0) � 0:2, _z(0) � 0.

k : 0 1 2 3 4 5 6 7

ak : 2413148 ÿ362246 ÿ40730 ÿ6481 ÿ1196 ÿ254 ÿ54 ÿ
1 cos (t) cos (2t) cos (3t) cos (4t) cos (5t) cos (6t) ÿ

fk : 8950379 t 2759084 316590 51557 9434 1927 502 113
ÿ sin (t) sin (2t) sin (3t) sin (4t) sin (5t) sin (6t) sin (7t)
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and phase functions at high order and for different z(0), _z(0) have been
published in Hagel and Lhotka (2005).

We list some few additional analytical studies for further reading: A
conformal mapping is derived and used in Liu and Sun (1990). On its
basis, the authors are able to show the existence of a hyperbolic in-
variant set. They also measure the stochasticity of the mapping in
terms of Kustaanheimo-Stiefel entropy. Good agreement is demon-
strated between the analytical determinations and the results of nu-
merical simulations. A mapping and a first integral of motion for the
Sitnikov problem are derived in Hagel and Trenkler (1993) by making
use of computer algebraic methods, that were originally designed for
high energy particle accelerators. The results are based on the for-
mulation of the problem in terms of an approximate polynomial dif-
ferential equation, using Chebyshev approximation techniques.

An analytic approach is used to obtain approximate analytic solu-
tions of the Sitnikov problem in Hagel (1992). The author uses a
transformation that reduces the linear part of the equation of motion
to the type of a harmonic oscillator. In this setting it is possible to
derive an approximate integral of motion that is then used to ex-
plicitely find the solution of the problem. Regular solutions near the 3:2
resonant orbit are derived in Jalali and Pourtakdoust (1997) using a
rotating coordinate system and the averaging method. Approximate
solutions are found by the authors by means of Jacobian elliptic
functions. The authors also provide a study of the breakdown of re-

Figure. 10: Comparison of a 7-th order analytical (black, thick) and numerical (dashed, red)
solution for e � 0:2, z(0) � 0:2, _z(0) � 0 for times between 0 and 20p (left) and for times 380p
and 400p (right).
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gular motion due to chaos for certain values of the eccentricity of the
primary bodies. The stability of motion of the third body when the
primaries are oblate and radiating is studied in Kalantonis et al. (2008).
Using perturbation theory based on Floquet theory the authors
compute the stability of motion, they provide critical orbits at which
families of periodic orbits bifurcate. It is shown that the family of
straight line oscillations only exists for identical primary bodies. The
known result, that in a first order approximation the Sitnikov problem
has the form of a Hill-type equation (linear second order equation
with time dependent, periodic coefficients), is used in Kalas and
Krasil'Nikov (2011) to show that the stability of the center equilibrium
solution depends on the eccentricity of the primaries e. The authors
find that the center is stable for almost any e, with the exception of a
discrete set of e values that accumulates at e � 1. Perturbation theory
based on normal form theory implemented in the case of this simple
system can be found in Di Ruzza and Lhotka (2011), Floquet theory
and Courant Snyder theory has been used to find approximate solu-
tions of the nonlinear system in Hagel (2009); Hagel and Lhotka
(2005); Faruque (2003, 2002). Analytical studies may also be found in
Jalali and Pourtakdoust (1997); Wodnar (1995); Hagel and Trenkler
(1993); Hagel (1992). This list is not complete, but should give the
reader a starting point for further information on the problem.

5. ± Generalizations & conclusions

Various generalizations and extensions of the Sitnikov problem
can be found in literature. The system has already been inve-
stigated for the case of unequal masses of the primaries in Perdios
and Markellos (1988). The mass effect of the third body on the
motion of the primaries has been investigated Dvorak and Sui Sun
(1997). The point mass character of the primaries has been replaced
by oblate bodies in Pandey and Ahmad (2013); Douskos et al. (2012);
Kalantonis et al. (2008). While the motion of the primaries out of the
inertial reference plane has been subject of Dvorak and Sui Sun
(1997); Perdios and Markellos (1988), initial conditions of the third
body off the line of motion has been studied in great detail in
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Perdios and Kalantonis (2012); Bountis and Papadakis (2009);
Soulis et al. (2008, 2007); Belbruno et al. (1994). The number of
primaries has been increased in Bountis and Papadakis (2009);
Soulis et al. (2008), it was replaced by a continuous ring in Bountis
and Papadakis (2009). Additional non relativistic forces have al-
ready been included in KovaÂcs et al. (2011).

The Sitnikov problem has shown to be a testbed for various ana-
lytical and numerical techniques, probably due to the reason that it is
a very simple toy model of celestial mechanics, while it already con-
tains all different kind of complexity that is found in planetary dy-
namics: sticky and chaotic orbits have been investigated in full detail
in KovaÂcs and EÂ rdi (2009); Hevia and Ranada (1996), escape and
diffusion channels are scientific subject in Dvorak (2007). The fractal
structure of the phase and parameter space is has been exploited in
KovaÂcs and EÂ rdi (2007); Dvorak (1993), bifurcations & families of
periodic orbits have been found and analyzed in Perdios (2007);
Perdios and Kalantonis (2006). Chaos indicators and the usage of
stroboscopic maps and surfaces of section have been tested, e.g. in
KovaÂcs and EÂ rdi (2007); Dvorak (2007); JimeÂnez-Lara and Escalona-
BuendõÂa (2001); Liu et al. (1991a). A symplectic mapping for the
Sitnikov problem has been derived in Liu and Sun (1990), specialized
numerical integration techniques to investigate shadowing orbits are
subject in Urminsky (2010).

The Sitnikov problem serves as a toy model of celestial dynamics
that is comparable to the role of the standard map in physics. No
planetary system has been observed so far that is situated in such a
special kind of configuration (still, many binary star systems have been
observed and may host celestial bodies that perform possible vertical
motions). For this reason, our gedankenexperiment will probably stay
a theoretical construct in our mind for ever.

To this end, we would like to advertise additional review works on
the Sitnikov and related problems that may be of interest to the rea-
der: Dvorak and Lhotka (2014), Dvorak and Lhotka (2013), Castriotta
(2012), Dzhanoev et al. (2009), Lacomba et al. (2002), Corbera and
Llibre (2002), GarcõÂa and PeÂrez-Chavela (2000), Chesley (1999),
MartõÂnez Alfaro and Chiralt MonleoÂn (1991), to name a few.
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Appendix: Sitnikov's problem from Newton's law of gravity

In this Section we derive equation (1) from Newton's law of gra-
vity. We denote by m1, m2, m3 the masses of the primaries (m1, m2)
and the third body (m3), respectively. Let the origin of an inertial
coordinate system coincide with the center of gravity. Let~ri be the
position vector of the body with mass mi and Di; j denote the scalar
distance between body with mass mi from the body with mass mj

(with i 6� j and i; j � 1; 2; 3). The force, due to gravity, ~Fij acting on
the body of mass mi due to the body with mass mj is given by
Newton's law of gravity:

~Fij � ÿG
X3

i 6�j; j�1

mimj

~ri ÿ~rj

ÿ �
D3

i; j

:�19�

Here, G is the gravitational constant. Let the vector ~rk be parame-
trized by components (xk; yk; zk) with k � 1; 2; 3. Then, the scalar Di; j in
Euclidean space is simply given by:

Di; j �
������������������������������������������������������������������
xi ÿ xj

ÿ �2� yi ÿ yj

ÿ �2� zi ÿ zj

ÿ �2
q

:�20�
Let the accelerations be given by �~rk � (�xk; �yk;�zk) with k � 1; 2; 3. Then
the system of equations of motions for the three bodies is given by:

�~r1 � ÿG
m2 ~r1 ÿ~r2� �

D3
1;2

�m3 ~r1 ÿ~r3� �
D3

1;3

 !
;�21�

�~r2 � ÿG
m1 ~r2 ÿ~r1� �

D3
1;2

�m3 ~r2 ÿ~r3� �
D3

2;3

 !
;�22�

�~r3 � ÿG
m1 ~r3 ÿ r1� �

D3
1;3

�m2 ~r3 ÿ~r2� �
D3

2;3

 !
:�23�

At initial time t � t0 the initial conditions are

~rk(t0) � (xk(t0); yk(t0); zk(t0)) ; _~rk(t0) � ( _xk(t0); _yk(t0); _zk(t0)) ;�24�
with k � 1; 2; 3.
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The number of degrees of freedom of the above system of diffe-
rential equations is 9. If we assume that the third body does not in-
fluence the motions of the primary bodies, then the 6 equations of
motion for the primaries become uncoupled from the remaining 3 that
describe the motion of the third body. We remark, that the two-body
problem defined by the primaries alone is integrable. Their motion lies
in an invariant plane that we choose as the basic reference plane of our
system. Let m � m1 � m2, and the x-axis of the inertial coordinate
system passing through the apocenters of the primary bodies. Then
the orbits of the primaries are antisymmetric with respect to each
other as follows:

~r1 � ÿ~r2 � (x1; y1; 0) :�25�
It is therefore sufficient to deal with the reduced set of differential

equations to describe the motion of the primaries:

�x1 � ÿ Gmx1

4 x2
1 � y2

1

ÿ �3=2
�26�

�y1 � ÿ Gmy1

4 x2
1 � y2

1

ÿ �3=2
:�27�

Moreover, if we restrict the motion of the third body to the inertial z-
axis that is normal to the orbital plane of the primaries, (23) reduces to:

�z3 � ÿ 2Gmz3

x2
1 � y2

1 � z2
3

ÿ �3=2
:�28�

We notice that (28) is coupled with the equations of motion of the
primaries only in terms of their radial distance from the common ba-
rycenter:

r2
1 � x2

1 � y2
1 :�29�

Let us drop - for simplicity - indices from now on: we therefore
denote r1; x1; y1 by r; x; y and z3 by z. We first solve the Kepler problem
in polar coordinates to find the solution r � r(t). Let (r; f) denote polar
coordinates related to (x; y). The respective equations of motion in
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terms of r; f are then given by

�r ÿ r _f2 � ÿ 2Gm

r2
;�30�

1

r

d

dt

�
r2 _f

�
� 0:�31�

We make use of the conservation of the angular momentum c, and
rewrite (30) in terms of

�r ÿ r

�
c

r2

�2

� ÿ 2Gm

r2
;�32�

together with (Dvorak and Lhotka, 2013):

c � r2 _f �
����������������������������
2Gma(1ÿ e2)

p
:�33�

Here, a is the semi-major axis of one of the primary bodies, and e is
its orbital eccentricity. We notice, that the solution r(t) can be found
from (32) independently from (28). In fact, by making use of Kepler's
first law, the solution in polar coordinates is of the form:

r � a(1ÿ e2)

1� e cos (f)
:�34�

Here, the motion law of the angle f can also be deduced from Kepler
law I & II:

_f �
����������������������

2Gm

a3(1ÿ e2)3

s
1� e cos f� �� �2 ;�35�

that reduces the problem to find r(t) from f(t) by making use of a first
order differential equation instead of (32). We are left to substitute r(t)
in (28), and finally obtain the equation of motion for the third body:

�z� 2Gmz

r(t)2 � z2
� �3=2

� 0 :�36�

Setting 2Gm � 1 we obtain (1). It is a common practice to set t0 � 0,
a � 1 (or 2a � 1) such that units of mass, length, and time correspond
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to the total mass of the primaries, the semi-major axis (or distance
between the primaries), and one revolution period of the primary bo-
dies.

We remark that in the context of the assumptions that have been
made, the solutions of (36) are solutions of (21)-(23) for special initial
conditions with the symmetric properties that have been described
above. Equation (1) therefore describes special solutions of the spatial,
elliptic restricted three-body problem.
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