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Low-cost travels within the Solar system
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1. — Introduction

Launch a spacecraft from the Earth, get it in the deep space - closer
to the Sun, leave the spacecraft for a while on an unstable equilibrium
point (the same of having the spacecraft on the upper tip of a pendulum),
catch the solar wind there and, blowing with the wind, come back home.

It could seem a science fiction story, but it is indeed reality. The
spacecraft is called Genesis, a NASA sample return mission. Launched
from Cape Canaveral on 8 August 2001, Genesis collected the solar
wind at about 1,500,000 km from the Earth and brought the sample
back, crashing on the desert floor in Utah (USA) on 8 September 2004.

The ambitious goal of collecting the wind of our star was comple-
mented by another fascinating aspect: Genesis was placed in orbit
around the unstable equilibrium Euler-Lagrangian point, known with
the initials L;. To understand where Genesis was located and how the
mission was made possible, we need to jump in time back of two centuries
and start a long story up to modern times, having as main characters
three outstanding mathematicians: Leonhard Euler, Joseph—Louis
Lagrange (*), Charles C. Conley.

1.1 — Euler and Lagrange: a mere curiosity

Among the outstanding contributions in several fields of mathe-
matics, Leonhard Euler made in 1762 a seminal discovery in Celestial

(*) A.C. was partially supported by PRIN-MIUR 2010JJ4KPA_009, GNFM-INdAM
and by the European Grant MC-ITN Astronet-II.

(!) Although Lagrange is best known with the French version of his name, he was
born in Turin, Piedmont, Italy, and the exact name was Giuseppe Lodovico Lagrangia.
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Mechanics ([7]). He considered a three-body problem composed by
point-mass particles subject to the mutual gravitational influence. The
system was assumed to be formed by two main bodies, called the pri-
maries, moving on circular orbits around their common barycenter, and
a small body orbiting between them; the small body was assumed not to
influence the motion of the primaries. Euler discovered three special
configurations in which the three bodies keep always moving on the
same line and maintaining the mutual distances unaltered. It must be
stressed that each particle moves on its own orbit, although the three
bodies are aligned and at fixed distance at any time. The solutions found
by Euler are known as collinear equilibrium points and are typically
denoted as Ly, Lo, L3 (L1 lies between the primaries, while Ly and L3 are
located beyond the primaries). The collinear equilibrium positions are
shown to be unstable; as we will see, this feature will play a relevant role
to invent low-cost missions, which exploit the instability of the collinear
equilibria to move according to the natural dynamical laws and without
asking for fuel consumption.

A few years later, Lagrange discovered two more equilibrium
configurations of the three—body problem ([18]), known as L4 and Ls.
Precisely, in a frame of reference rotating with the same angular ve-
locity of the primaries around their common barycenter, a so—called
synodic reference frame, one can find two equilibrium positions for-
ming an equilateral triangle with the two primaries. Again, the three
bodies move on their own orbits, but in the synodic reference frame the
equilateral configuration is permanently preserved. Unlike the col-
linear points, the triangular positions are shown to be stable for a wide
range of the mass-ratios of the primaries.

Although raved by his fantastic discovery, Lagrange was not con-
vinced that real bodies could move in such peculiar configurations with
an equilateral triangle shape. This is why he concluded that “Cette
recherche n’est a la vérité que de pure curiosité” ([18]). Humankind
will need to wait about a century to discover real objects around the
two triangular Lagrangian points of the Jupiter—Sun system. Inspired
by the Trojan war mythology, the two groups of asteroids are named
Trojan asteroids (located at L5 and following Jupiter on its orbit, since
they lost the war) and Greek asteroids (located at L4 and preceding
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Jupiter, being the winners). It must be noted that, due to an initial
hesitation in the assignment of the names, the asteroids 617 Patroclus
and 624 Hector belong to the enemies’ group (®).

1.2 — Conley: how knowledge will be applied

Charles C. Conley gave seminal contributions in Dynamical Systems
theory. Among the others, a remarkable result concerns the homotopy
index theory, hence the name of Conley index, to investigate the to-
pological properties of invariant sets ([6]). After having worked for
some time as consultant for NASA, Conley wrote a visionary paper ([4],
see also [5]), where he provided new concepts to travel within the Solar
system at low-cost. The first ingredient of his paper is the use of the
collinear points in the three-body problem, since — as we mentioned
before — one can take advantage of their instability. The second in-
gredient is a suitable version of Lyapunov’s theorem provided by J.
Moser, who was the Ph.D. advisor of Conley; this theorem ensures that
the results obtained within the linearized setting are valid also in the
nonlinear framework ([19]). Combining these ingredients, he was able
to prove the existence of transit orbits between the primaries for sui-
table energy levels.

In the last part of his paper Conley studies an example in which the
primaries are the Earth and the Moon, and he provides the design of a
mission with the requisites to be low-cost and flexible. The price to pay
is that to go from the Earth to the Moon without consuming too much
fuel and just exploiting the routes of chaos, one needs a time which is
much longer with respect to the 3 days that the Apollo 11 required in
1969 to bring the first astronauts on the Moon. This remark justifies
one of the final sentences of Conley’s paper about the use of transit
orbits around the collinear points: “Unfortunately, orbits such as this

(®) Objects in the triangular Lagrangian positions Ly and Ls are usually referred to as
simply Trojans, without making a distinction between Greeks and Trojans. Trojan objects
are found also around the Earth, Mars, Uranus and Neptune. An updated list is maintained
by the Minor Planet center at http://www.minorplanetcenter.net/iaw/lists/Trojans.html
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require a long time to complete a cycle (e.g., 6 months, though a mo-
dification of the notion might improve that)”.

However, he also added a sentence that leaves a ray of hope as far as
possible applications of his ideas in Astrodynamics are concerned;
precisely, he stated that “One cannot predict how knowledge will be
applied — only that it often is”.

The prediction will soon be verified, thus becoming a paradigm of
how mathematical ideas are often applied in concrete problems.

1.3 — Interplanetary highways

It was necessary to wait only 10 years to see that Conley’s new ideas
in Astrodynamiecs can be applied in a very effective way. The first
mission using the collinear points was the NASA/ESA “International
Sun/Earth Explorer 3”, known with the acronym ISEE-3; launched in
1978, it was initially placed on a periodic orbit around the collinear
point L; between the Earth and the Sun to monitor the Earth’s in-
terplanetary medium. In 1982 the spacecraft was moved to transfer
orbits between the Earth and the collinear point Lo, before being
ejected by the Earth—Moon system in order to travel on a trajectory
making a rendezvous with the Giacobini-Zinner comet in 1985.

After ISEE-3 an increasing number of space missions have been
designed taking advantage of the peculiarities of the collinear points
(see Section 6, compare with [11], [17]). Nowadays, the branch of
Astrodynamics using the concepts of Dynamical Systems to design
space missions is so wide that it deserves a specific name and it is
commonly known as Space Manifold Dynamics.

The missions to which we will refer in Section 6.2 exploit the
features of the collinear points, but also the triangular positions can
be effectively used to place a spacecraft. Indeed, the triangular po-
sitions L4 and L; came to the fore much earlier then the space ex-
ploration era, precisely when the first asteroid, 588 Achilles, was
found to orbit on a triangular position by the astronomer M. Wolf. It
was the year 1906 and nowadays more than 6 000 asteroids (com-
monly known as Trojan asteroids) are currently known to move in
the triangular points L4 or Ls.
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As a conclusion of the whole story, let us say that although the
triangular positions seemed to Lagrange quite exotic and the collinear
points were for Conley possibly inappropriate in space missions, the
development of science tells us that what might seem just a ma-
thematical curiosity, without practical consequences, can have indeed
spectacular applications.

This paper is organized as follows. The basic of Astrodynamics
is given by Kepler’s laws, which are discussed in Section 2. The
Keplerian ellipses can be used to transfer probes between two bodies,
e.g. the Earth and the Moon; these are the so-called Hohmann tran-
sfers presented in Section 3. In passing from the Keplerian 2-body
problem to the more complicated 3-body problem, the increasing
complexity is compensated by the discovery of the Euler-Lagrange
equilibrium solutions in the rotating reference frame as presented in
Section 4. The features of the equilibrium solutions which are collinear
with the primaries are studied in Section 5. The peculiarities of the
collinear points are finally exploited to design low-energy missions as
described in Section 6.

2. — Kepler’s laws

Johannes Kepler (1571-1630) laid the foundations of orbital dyna-
mics by means of three laws which bring his name. Kepler worked as
assistant of the Danish astronomer Tycho Brahe (1546-1601). Thanks
to the generosity of the King of Denmark and Norway Frederik 11,
Brahe was able to build an astronomical observatory on the Hven
island in Sweden. The observatory was called Uraniborg and it had an
underground facility called Stjerneborg, the star castle. By using his
very elaborated astronomical instruments, Tycho Brahe was able to
collect very accurate data about the position of stars and planets.
These data were later analyzed by Kepler to determine the laws go-
verning the celestial motions. It is remarkable that Kepler discovered
such laws without knowing about the existence and properties of the
force acting between the celestial bodies, since the gravitational law
was formulated by Isaac Newton in his “Philosophise Naturalis Principia
Mathematica”, published only in 1687, well beyond Kepler’s death.
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Within the approximation of the 2-body problem, namely a model
composed by two bodies moving under the mutual gravitational at-
traction (e.g., a planet and the Sun), Kepler formulated three laws that
tell us on which trajectories the planets move (they are elliptic orbits),
how these trajectories are span by the bodies and, finally, where the
orbits are located according to their revolution times.

The first Kepler’s law states that the planets move on ellipses
around the Sun and our star is placed in one of the two foci of the ellipse
(when applied to artificial satellites, the first law states that the spa-
cecraft moves on an ellipse with the Earth at one of its foci). The di-
scovery of elliptic orbits was announced in the “Astronomia Nova”,
where Kepler stated “hic quasi e somno expergefactus, et novam lucem
intuitus, sic coepi ratiocinari” (3).

According to second Kepler’s law (see [16]), along the ellipse the
body sweeps equal areas in equal times. This law is also known as the
law of areas, and its consequence is that the bodies move faster at
periastrum (namely, the point on the ellipse closer to the primary) and
slow down at apoastrum (that is, the point farther from the primary).

The third Kepler’s law relates the semimajor axis a of the ellipse
with the period 7' of motion, according to the following formula (in
suitable units of measure, precisely in years for the period and in
Astronomical Units (%) for the semimajor axis):

(2.1) T? = a? .

As a consequence, the bigger is the distance of the celestial body from
the primary, the longer is the time necessary to complete a full orbit.
As we will see later, the third law, formulated in Chapter 5 of Kepler’s
masterpiece “Harmonices Mundi”, has many practical consequences
and will help us to understand how long an interplanetary travel might
be. Before turning to Astrodynamics, it is worth exploring the power of

() “Like suddenly awakened from sleep, and seeing a new light, thus I started to
think” ([16]). The author thanks A. Giorgilli for letting her know about this sentence.

(*) One Astronomical Unit (AU) is a measure of the average Earth—Sun distance and
it is about equal to 1.5 - 10° km.
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Kepler’s third law by looking at the data provided in Table 2.1, which
compares the values of the planetary semimajor axes as given by (2.1)
with those measured by NASA as reported in [21]. It is immediate to
realize that the agreement is remarkable especially for the bodies
closer to the Sun.

TABLE 1. — Values of the semimajor axes of the planets computed from Kepler’s
third law (2.1) using the periods in the first column (see the second column) and
values of the semimajor axes provided by NASA in [21] (see the third column). For
fast reference, the figures in bold in the last column are those which agree with the
values obtained by implementing Kepler’s third law (2.1) in the second column.

Period in years Semimajor axis Semimajor axis
in AU from (2.1) in AU from [21]
Mercury 0.2408 0.3870 0.38709927
Venus 0.6152 0.7233 0.72333566
Earth 1 1 1
Mars 1.8808 1.5237 1.52371034
Jupiter 11.8626 5.2014 5.20288700
Saturn 29.4475 9.5360 9.53667594
Uranus 84.0168 19.1827 19.18916464
Neptune 164.7913 30.0577 30.06992276

3. — Hohmann transfers

While designing a space mission, the first trivial consideration is
that natural orbits are not straight lines (as one could naively think),
but rather elliptic trajectories, shaped by gravity, namely by the
attraction of the primary. This is why, although Kepler’s laws are a
well-known topic widely discussed in classical textbooks, a deep
insight in the Astrodynamical concepts cannot leave aside the
treatment of the laws ruling the 2-body problem. These basic laws
were used in modern times to launch spacecraft, paying attention to
reduce the costs as much as possible. The problem of traveling in
space by minimizing the fuel consumption was thoroughly inve-
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stigated by Walter Hohmann (1880-1945), who published in 1925 the
treatise “Die Erreichbarkeit der Himmelskoérper” ([14]). His ideas
were extensively used in the Apollo programs as well in inter-
planetary missions.

Hohmann suggested the following strategy that we apply to the
case of a spacecraft from Earth to Mars. Assume that the Earth and
Mars move on circular orbits around the Sun, respectively labeled as 1
and 3 in Figure 1; a spacecraft leaving from the Earth can reach Mars
by covering the semi-ellipse (labeled 2 in Figure 1) with focus in the
Sun and semimajor axis equal to half of the sum of the radii of Earths’
and Mars’ circular orbits. A variation of the velocity (which corre-
sponds to a fuel consumption) is necessary to place the spacecraft on
the elliptic orbit; we will say that this maneuver costs AV;. At the end,
we will need a second maneuver to put the spacecraft along Mars’ orbit
and we will say that it costs 4V». Rather than launching on a straight
orbit from Earth to Mars, the Hohmann transfer orbit corresponding
to the Keplerian (semi-)ellipse is the most natural trajectory with a
very limited cost AV; + AVe. Hohmann transfer orbits provide the
basis of Flight Dynamics.

Kepler’s third law allows us to estimate the time necessary to travel

Fig. 1. — A Hohmann transfer from the Earth (circular orbit n. 1) to Mars (circular
orbit n. 3) along the semi-ellipse n. 2. The fuel cost to insert the spacecraft on the
right orbit is provided by the quantity AV; + AVs.



LOW-COST TRAVELS WITHIN THE SOLAR SYSTEM 165

from the Earth to Mars along a Hohmann transfer. In fact, given that
the semimajor axes (that we assume equal to the radii of the circles) of
Earth and Mars are, respectively, equal to 1 AU and 1.52 AU, the
semimajor axis of the transfer ellipse is equal to 2.52/2 =1.26 AU.
From (2.1) we obtain that the period to run the semi-ellipse is equal to

1
T :5(1.26)3 = 0.707 years (about 8.5 months). This is a realistic

estimate of the time needed to reach Mars.

4. — The Euler-Lagrange equilibrium points

Things become very much complicated, when considering a
model including the action of a third body. Unlike Kepler’s two
body problem, the three—body system becomes non-integrable
and one cannot infer the existence of simple orbits like the
Keplerian ellipses in the two—body framework. Nevertheless, some
special solutions exist, precisely equilibrium solutions of the
equations of motion in a reference frame, called synodic frame,
rotating with the angular velocity of the primaries. To be precise,
let (O, ¢&,n,{) denote a sidereal reference frame with origin coinci-
ding with the barycenter of three—bodies Py, P2, P3, whose masses
are, respectively, mq, mg, mg with m; > mg > my. The bodies P;
and P3 are called primaries, while Py denotes a small body whose
mass is much smaller than that of the primaries. We assume that
the axes of the reference frame are oriented as follows: the & axis
has the same direction of the line joining the primaries P; and Ps,
the # axis is taken orthogonally in the orbital plane and the { axis is
perpendicular to the orbital plane. Assume that the units of
measure are such that the distance between P; and P3 is equal to
one and that G(m; +mg) = 1. Moreover, let 1 = &, so that

my + mg
o =9my =1—7, u3 =Ggmg = L.

We denote by (&;,#;,{;) the coordinates of P;, i =1,2,3, in the
sidereal frame. The equations of motion of the small body Ps can
be written as
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TR

b3 3
. =1 Ny — 1

4.1) N =14 = + U3 3
s -0 {3 =0

lo =1 3 + u3 7

with

=& — &P =)+ (G- B

vy = (& — &P+ gy — ) + (G — G

Let (O, x,y,z) denote the synodic reference frame, which we assume
to rotate with the angular velocity, say n, of the primaries around their
common barycenter, where 7 has been normalized to one due to the
choice of the units of measure. The «x axis coincides with the direction
joining the primaries, so that P; and Pj lie at fixed positions with
coordinates (x1,¥1,21) = (— 13,0,0), (x3,¥3,23) = (11,0,0). By imple-
menting the change of variables relating the sidereal and synodic
frames:

¢ =xcost—ysint

n=xsint+ycost

é/ =<,

and denoting by (x, %, ) the coordinates of Ps in the synodic frame, the
equations of motion (4.1) become:

oUu

o9y U

v Y ox

oUu

4.2 i om —9Y
(4.2) iy + 2 3
.U

oz

where the function U is defined as
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_ _1 .5 2 2y, M1, Mg
U=U(y,z) _z(oc +y +z )+T1 +T3
with the distances transformed as
(4.3) rlz\/(ac+u3)2+y2+z2, rgz\/(ac—ul)2+y2+z2.

From (4.3) and taking into account that 14 + 15 = 1, one obtains that
(7% + ugrs = 2% + y? + 2% + 1y 5, which provides for U the alterna-
tive expression:

2 1 2 1 1
w  ven(Ged) (i) b
(4.4) U= o Ty ) T 2+T3 ot
Then, from the equations of motion (4.2), multiplying the three equa-
tions respectively by &, ¥, 2, adding the results and integrating with
respect to time one obtains the expression:

(4.5) & 4P+ 22 =2U0—-Cy,

where Cj is a constant called the Jacobi integral. Given (4.4) and (4.5),
we get that the motion is allowed in the region satisfying the following
constraint:

av (el n(Fel)) a0,

where C; = tiis + Cy. For a fixed value of the Jacobi integral, the
zero—velocity curve obtained by taking the equality in (4.6) is the
boundary of a region, called Hill’s surface, which separates the domain
where the motion is allowed from that in which the motion is forbidden
(see Figure 2).

Let us have a look at the last plot in Figure 2, which shows five
equilibrium positions, namely the five stationary points of the po-
tential in the synodic reference frame. Three positions, named L,
Lo, L3, are those discovered by Leonhard Euler and are called the
collinear equilibrium points, since they lie along the line joining
the primaries. The other two positions, L4, Ls, are those found by
Joseph-Louis Lagrange and are called the triangular equilibrium
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:

L ]
L]
L
L
L

Fig. 2. — Hill’s surfaces for x; = 0.9, 13 = 0.1; the last plot shows the position of

the triangular and collinear equilibrium points (all other plots show only the
triangular points). The admissible region is marked in grey. From upper left to
bottom right Cj: 4, 3.8, 3.7, 3.687, 3.6, 3.5, 3.25, 3.19284, 3.08.

points, since they form two equilateral triangles with the primaries
(see, e.g., [2], [20] for the mathematical derivation of the collinear
and triangular equilibria). The collinear points are unstable for any
value of the mass—ratio of the primaries. The triangular points are
stable, provided that the following bound on the mass of Pj3 is sa-
tisfied:
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27 — /621
[y < % ~ 0.0385 .

This value is greater than all planet—Sun mass—ratios as well as
than the Moon—Earth mass—ratio, thus ensuring stability of the
triangular positions in these cases. In the Moon—-Earth system the
point L is located at 8.26 - 10° km from the Earth (for comparison
the Moon is at 3.84 - 10° km), Lo is at distance 4.49 - 10° km, Ls at
about 3.82-10° km from the Earth, while the Earth—Moon trian-
gular positions lie on the orbit of the Moon, thus at a distance of
3.84 - 10° km from the Earth.

The plots shown in Fiigure 2 will be the centerpiece of the rest of our
discussion. The remarkable observation is that the admissible regions
are completely different as the energy level varies; in the upper plots,
the motion is allowed only in some regions (with increasing size)
around the primaries. In the left plot of the middle line the regions
around the primaries touch at the Lagrangian point L;. For lower
values of C; the bottleneck at L; opens (see the center plot of the
middle line). At the corresponding energy level a route from the two
primaries is allowed and the minor body can travel through the bot-
tleneck to reach both primaries. At all other values the extent of the
admissible region increases considerably.

We stress that a slight change of C; around the value 3.687 makes a
huge difference: for (even slightly) higher values the two primaries are
isolated and a spacecraft can travel only around one of the primaries,
without reaching the other; for (even slightly) smaller values of the
Jacobi integral the spacecraft can leak through the small escape route
connecting one body to the other.

5. — Around the collinear points

To explore the dynamics around the collinear points, we start by
linearizing the equations of motion and by computing the corre-
sponding eigenvalues (see Section 5.1). We anticipate the result by
saying that for any of the three collinear points one finds 2 real ei-
genvalues (say + 1) and 4 imaginary eigenvalues (that we shall call



170 ALESSANDRA CELLETTI

+ twe, + 1wg). This means that the dynamics is of the type
saddle x center x center

and it implies that in the neighborhood of the collinear points we find
the composition of one hyperbolic behavior and two oscillators. Orbits
around the collinear point L; can then be classified in different cate-
gories (see Section 5.2), which include also transit orbits: they allow
one to move from one primary to the other through the neck around
the collinear point.

When dealing with the nonlinear approximation, we need to use
Moser’s version of Lyapunov’s theorem to establish that the results
found within the linearized framework are valid also in the context of
the full nonlinear equations.

We can get rid of the instability due to the hyperbolic component by
performing a center manifold reduction (see Section 5.3) and we
conclude by defining different kinds of trajectories within such center
manifold, known as halo and Lissajous orbits (see Section 5.4).

5.1 — The linearized flow

To study the linearized flow, we adopt a procedure, which consists of
two main steps (details can be found, e.g., in [15], see also [22]). With
reference to (4.2), the first one consists in computing a suitable change
of variables in order to shift and scale the equilibrium point. The se-
cond step aims at reducing the quadratic part of the Hamiltonian
function to a simpler form: a diagonal form for the hyperbolic com-
ponents and harmonic oscillators along the stable directions.

We skip the details which can be found for example in [15], [12], [3],
and we provide the final result as follows. Using a suitable set of
coordinates, say q = (q1,¢2,q3), and associated momenta, say p =
(p1, P2, p3), the Hamiltonian of the linearized flow around the collinear
points can be written as
2

2

w3

5 (D5 +a3)

(51) Hlineow(pv q) - jJolql + (]05 + q%) +
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where 4, we, w3 are real positive quantities connected to the roots of the
characteristic polynomial associated to the linearized matrix.
Hamilton’s equations associated to (5.1) are given by

q1 =Aq1 Je = wep2 ¢s = wsPs
Pr=—/Ap1  P2=—weq2  P3=—wsq3,

with admit the solution:

@@ =q0e”,  p®) =p10)e
for the hyperbolic direction and

() = q2(t) +ip2(t) = 2200, 23(t) = g3(t) + ip3(t) = 23(0)e "

for the center directions.

5.2 — The categories of the orbits

The geometry associated to the Hamiltonian (5.1) allows us to get a
picture of the dynamics around the collinear point L; and to establish
the types of orbits that a spacecraft can travel.

We proceed to fix a level energy slightly above the critical value at
which we have the appearance of a neck; through this passage there
exist transit orbits between the two primaries. We will also show the
existence of non-transit as well as asymptotic trajectories. These
three categories of orbits are found by carefully inspecting the geo-
metry associated to (5.1). Afterwards, we will use Moser’s version of
Lyapunov’s theorem to establish that the flow in a specific region is
homeomorphic to the flow obtained in the same region by using the
linearized equations of motion ([4]).

Following [4], we consider a region R setting Hjjeqr = h and
Ip1 — q1| < cfor some constants /2, ¢ > 0. Within the plane (p1,q1) € RZ,
the region R is bounded by the two lines p; — ¢ = £ ¢. On the other
hand, setting p% + ¢5 = 0 and p2 + ¢2 = 0, the region R is crossed by
the two branches of the hyperbola p1q; = /4 (see Figure 3). Another
hyperbola is given by the expression p;q; = d with d < 0 constant; the
two branches are shown in the second and fourth quadrant of Figure 3.
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NT p 1
1

P;9;,=d<0

p,-g,=¢

pa,=h/a>0

Fig. 3. — The geometry associated to the linearized Hamiltonian (5.1). The saddle
point is located at the origin; the region R is bounded by the thick lines p; — q; = —¢
and p; — q; = c. Transit orbits are labeled by T, while non-transit orbits are denoted
as NT.

Within the plane (p1,q1) shown in Figure 3 with the saddle point
located at the origin, we distinguish between three categories of orbits:

(1) asymptotic orbits, forming the stable and unstable manifolds
defined, respectively, by the equations

(0)] :

SR 5 Wi r@ =k, @=0
and

w2 (0]

ST 5 i@ =k, p=0;

(1) transit orbits: determined by the hyperbolic segments p1q; =
h/ 2, where h/1is a positive quantity and bounded by the lines
P1—q1==¢;
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(121) mon-tramsit orbits: determined by the hyperbolic segments
p1q1 = d, where d is a negative constant.

We refer to Figure 3 for a schematic illustration of these orbits.
Such classification suggests to use the transit orbits around the col-
linear point L; to move from one primary to the other. A mission de-
sign based upon this strategy will be the content of Section 6.

5.3 — The center manifold reduction
When considering the nonlinear flow, the Hamiltonian is composed
by the linear part (5.1) to which we add the nonlinear terms, say:

@2
2

w3

n>3

(5-2) Hnonlinear(p, Q) = /1})1(]1 + (p% + qg) +

where we assume that the H,’s denote homogeneous polynomials of
degree n. A seminal ingredient is now provided by Moser’s version of
Lyapunov’s theorem ([19]), according to which the results found in the
context of the linearized system are valid also for the full nonlinear
equations. This result allows us to transpose the definition of asymp-
totic, transit and non-transit orbits also to the nonlinear case.

In order to study the dynamics in the proximity of the collinear
point, it is convenient to get rid of the instability associated to the
hyperbolic direction, through the so-called center manifold reduction.
This procedure consists in the implementation of a suitable tran-
sformation of coordinates (typically obtained through a Lie series
transformation). This normal form aims at removing the hyperbolic
direction (see, e.g., [15]) and it allows us to analyze the stable compo-
nents in the neighborhood of the collinear point.

More precisely, within the linear approximation the center manifold
is computed just by setting the hyperbolic coordinates to zero: p; =
q1 = 0. Ifwe impose that p;(0) = ¢1(0) = 0, whenever p;(0) = ¢;(0) = 0,
we get that ¢q;(t) = p1(f) = 0 for any time, due to the fact that the
Hamiltonian function is autonomous. Let us now consider the nonlinear
problem with Hamiltonian H = H,,,,jineqr- Assume that each function
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H, in (5.2) is expanded as a sum of monomials of the form yp*q’ for
some coefficients y;;. From Hamilton’s equations associated to H in

(5.2), namely
OH ) OH

q; ap; Pi oq;

we need to require that all monomials of the type ){kjp"qj with k; # j1
are such that 71 = 0, where we used the convention that k = (kq, ko, k3)
and j = (j1,J2,J3)-

Let us denote by (p,, py, v, %, ¥, 2) the coordinates after the normal
form reduction. We denote by H (P, Pys P2, 2, Y, 2) the transformed
Hamiltonian after the center manifold reduction up to the order
N € Z,,N > 3, which can be written as follows:

w
H(p%'7py7p27x7ya Z) :j’pw% + ?1(]93 + yz) +

(0]
7%92 +2%)

+ Hs(pyit, y, 2y Y, 2) + Ha(pat, Dy, P2, 9, 2)
+ ... +[~{N(p9€xapy7pza Y, z)+RN+l(px7py7p27xaya Z),

where H,, n = 3, ..., N, denotes a homogeneous polynomial of degree
n, depending on the product of p, and «, while the function Ry de-
notes the remainder of order N + 1.

5.4 — Halo and Lissajous orbits

After performing the center manifold reduction, we investigate
the dynamics which pertains to the center x center part. Due to
Lyapunov’s center theorem (see, e.g., [13]), the oscillations which oc-
cur in the plane of motion give birth to the so-called planar Lyapunov
trajectories, while the oscillations in the orthogonal direction generate
the spatial Lyapunov orbits. On each fixed energy level, we also find
the Lissajous orbits, carrying out an irrational flow (or possibly fo-
liated by periodic orbits) and connecting the Lyapunov families.

Let us now look at the behavior of the system as the energy
varies. Assume to start with low values of the energy and let it
gradually increase the energy level. Then, the stability character
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of the orbits varies and bifurcations occur at specific energy levels.
At the bifurcation point, new families of periodic orbits are gene-
rated. Precisely, the family bifurcating from the planar Lyapunov
orbit (namely the outermost orbit in the Poincaré section of
Figure 4, left panel) is the so-called halo family ([8], see also [9]),
which is characterized by the fact that the frequency of the planar
Lyapunov trajectory equals the frequency of its vertical pertur-
bation (see Figure 4, right panel). Other bifurcations can be found
at higher energy levels (see, e.g., [12], [1]). The energy transition
value at the bifurcation can be evaluated on the basis of the
graphical results provided by the Poincaré surfaces of section, as
provided in Figure 4. An analytical method to estimate the energy
level at which the bifurcation occurs has been devised in [3] (see
also [1]) by computing a proper resonant normal form. It is
remarkable to notice that the analytical results show a very good
agreement with the numerical expectation provided by the
Poincaré surfaces of section.

Fig. 4. — Poincaré sections of the center manifold corresponding to L; on the plane
(y, p,); the mass-ratio of the primaries is fixed to 1.36 - 1071 (this value is of the order
of magnitude of an asteroid—Sun mass ratio, compare with [1]). Left panel: » = 0.3,
the outermost curve corresponds to the planar Lyapunov orbit, while the center of
the curves corresponds to the vertical Lyapunov orbit. Right panel: 2 = 0.6, a
bifurcation of the planar Lyapunov trajectory generates the halo orbits, correspon-
ding to the left and right lobes appearing in the figure.
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6. — Low-cost interplanetary missions

The results of the previous sections allow us to plan travels at low-
cost within the Solar system. Being ahead of his time, a mission design
was already envisaged by Conley ([4]) and it is sketched in Section 6.1.
It will not be necessary to wait many years to appreciate the ideas of
exploiting chaos and collinear points to realize low-energy space mis-
sions, as described in Section 6.2.

6.1 — A mission design

In his visionary paper, Conley ([4]) makes a bridge between his
beautiful mathematical approach and an astrodynamical application to
design a space mission from Earth to Moon with the following requisites:

(a) the cost should be as small as possible;

(b) have an easy control and guarantee the stability of the tra-
jectory;

(c) try to get as much flexibility as possible.

The first requirement is met by the fact that the spacecraft should
move on an energy level just above that of the collinear point ;. This
ensures a minimal fuel consumption, although one needs to be careful
that the chaotic character might possibly lead from transit to non-
transit orbits. On the other hand, one can use the sensitivity to the
choice of the initial conditions to ensure the other two requirements.

The mission design will then be the following: from a loop orbit
around the Earth, the spacecraft is given an impulse to be transferred
on a transit orbit passing through the neck. Once in the proximity of
the Moon, another impulse will be necessary to move the spacecraft on
a loop orbit about our satellite. Of course, the whole journey might
require a time quite long, at least when compared to other space
missions which however request a much larger amount of fuel. For this
reason Conley concludes that one cannot predict how knowledge will
be applied. However, it will suffice to wait only a decade to have the
first space mission using Conley’s seminal ideas.
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6.2 — In the deep sky

The orbits around the libration points, known with the acronym of
LPOs (“Libration Point Orbits”), have several desirable features in
Astrodynamics. From the practical point of view, we mention the fol-
lowing advantages of using LPOs (see [10]):

(1) the Ly point in the Earth-Moon system allows us to have a
permanent contact between the Earth and the hidden side of
the Moon,;

(22) the collinear points of the Earth—Sun system can be reached
easily and in a quite inexpensive way;

(721) in the Earth—Sun system, the collinear points L; and Ly pro-
vide good sites where to place, respectively, solar and astro-
nomical observatories;

(tv) the hyperbolic character of the collinear points makes possible
to use the stable/unstable manifolds to transfer a spacecraft to/
from the libration points;

(v) the low-energy missions around LPOs can be used to provide
interplanetary transfers in order, for example, to establish a
base on the Moon or Mars, as well as to transport raw material
from the other celestial bodies.

Nowadays, the technique of using LPOs for space missions is widely
implemented. We give below a small sample of the main missions
launched during the last decades, using collinear points, halo orbits
and Lissajous trajectories.

(1) The first mission using LPOs was ISEE-3 (“International Sun/
Earth Explorer 3”); launched by NASA/ESA in 1978 to study
the interaction of the solar wind when crossing the magnetic
field of the Earth, it was placed on a halo orbit around the point
L1 in the Earth—Sun system.

(2) SOHO, standing for “Solar and Heliospheric Observatory”,
was launched in 1995; it is still active and provides very useful
space weather predictions, thanks to its location on a halo orbit
around the collinear point L; of the Earth—Sun system.



178 ALESSANDRA CELLETTI

(3) WMAP, standing for “Wilkinson Microwave Anisotropy Probe”,
launched in 2001 it had the ambitious project of measuring the
Cosmic Microwave Background Radiation, namely the thermal
radiation which occurs as a remnant of the Big Bang. Again,
orbits around the Earth—Sun Ly point and Lissajous trajecto-
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Fig. 5. — The flight plans of WMAP (top panel) and Genesis missions (bottom
panel). Credits: NASA/JPL.
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ries have been used to design the mission plan of WMAP (see
Figure 5, top panel).

(4) GENESIS was launched in 2001 as a sample return mission
with the goal of collecting solar wind; after crossing the Earth—
Sun point L;, GENESIS was placed on a Lissajous orbit, before
ending on an elliptical orbit about L; (see Figure 5, bottom
panel). After spending a little more than 2 years collecting solar
wind, GENESIS made five halo orbits around L1, then it star-
tedits travel back to the Earth, which included a loop around L,
just to let it arrive during daytime, thus making easier the re-
covery of the collected sample.

(5) HERSCHEL-PLANCK: launched in 2009, the Herschel-
Planck Space Observatory was placed in orbit around the
collinear point Lz of the Earth—Sun system as a continuation of
WMAP with the aim to detect anisotropies of the cosmic mi-
crowave background, again bringing us back to the origin of
the Universe.

These missions are indeed a tribute to the scientists that worked
over the centuries with vivid imagination and deep mathematical in-
sight to pave the space with new dynamical routes.
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