La Matematica nella Società e nella Cultura

RIVISTA DELL'UNIONE MATEMATICA ITALIANA

GAETANO SICILIANO

Alcuni problemi variazionali per equazioni di campo accoppiate con le equazioni di Maxwell

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Serie 1, Vol. 3 (2010), n.1 (Fascicolo Tesi di Dottorato), p. 83–86.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=RIUMI_2010_1_3_1_83_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Alcuni problemi variazionali per equazioni di campo accoppiate con le equazioni di Maxwell

GAETANO SICILIANO

Nella Tesi si è studiata l'esistenza di soluzioni per due classi di sistemi di equazioni differenziali ellittiche alle derivate parziali. Questi sistemi descrivono l'interazione di una funzione d'onda con il proprio campo elettromagnetico (\mathbf{E},\mathbf{B}) determinato dai potenziali di gauge \mathbf{A} e ϕ tramite le relazioni $\mathbf{E} = -\nabla \phi - \partial_t \mathbf{A}$, $\mathbf{B} = \nabla \times \mathbf{A}$. In particolare si sono studiate l'equazione di Schrödinger e l'equazione di Klein-Gordon.

L'interazione tra "materia" e campo elettromagnetico è ottenuta tramite la regola di accoppiamento minimale usato nelle Teorie di Gauge. Formalmente, si considera la Lagrangiana \mathcal{L}_S dell'equazione di Schrödinger (o di Klein-Gordon, \mathcal{L}_{KG}) e si sostituiscono le derivate ordinarie con le derivate covarianti $(\partial_t + iq\phi, \nabla - iq\mathbf{A})$, dove q denota la costante (non nulla) d'accoppiamento. Infine, tenendo conto che il campo (\mathbf{E}, \mathbf{B}) è anch'esso un'incognita del problema, si giunge alla lagrangiana totale del sistema, che nel caso dell'equazione di Schrödinger ha l'espressione

$$\mathcal{L}_{SM} = \frac{1}{2} \left[i \frac{\partial \psi}{\partial t} \, \bar{\psi} - q \phi |\psi|^2 - \left| (\nabla - i q \mathbf{A}) \psi \right|^2 \right] + \frac{1}{8\pi} \left(|\nabla \phi + \partial_t \mathbf{A}|^2 - |\nabla \times \mathbf{A}|^2 \right).$$

Analogamente si procede nel caso di Klein-Gordon. Le equazioni di Eulero-Lagrange di dette Lagrangiane danno origine ai sistemi che si sono studiati (si vedano i sistemi (2) e (4)).

Questi sistemi sono per natura nonlineari a causa dell'accoppiamento. Eventualmente si può anche aggiungere una nonlinearità alla Lagrangiana, $W(|\psi|)$ con opportune condizioni di crescita rispetto a $|\psi|$. Fisicamente ciò viene interpretato come autointerazione nel campo. In questa nota consideriamo la nonlinearità modello $W(|\psi|) = |\psi|^p$, p > 0.

Per affrontare questi problemi, ci si restringe a particolari classi di soluzioni, in modo che il sistema risulti semplificato. Principalmente si sono considerate "onde stazionarie", cioè soluzioni del tipo

(1)
$$\psi(x,t) = u(x)e^{-i\omega t}, \quad \omega \in \mathbf{R}$$

in equilibrio con un campo puramente elettrostatico: $\mathbf{E} = -\nabla \phi(x)$, $\mathbf{B} = \mathbf{0}$ in un dominio limitato e regolare $\Omega \subset \mathbf{R}^3$, con opportune condizioni al bordo. Pertanto le incognite dei problemi sono il campo u ed il potenziale scalare ϕ . Chiaramente siamo interessati all'esistenza di soluzioni non banali, precisamente coppie (u, ϕ) con $u \neq 0$.

Seguendo l'approccio introdotto da Benci e Fortunato ([2,3]), le soluzioni vengono trovate come punti critici di un funzionale di classe C^1 definito su spazi di Sobolev o opportune varietà. I funzionali coinvolti sono fortemente indefiniti e, per ottenerne i punti critici, si adotta una procedura di riduzione che fa scomparire la forte indefinitezza.

I primi risultati riguardano il sistema

(2)
$$\begin{cases} -\Delta u - (q\phi - \omega)u = |u|^{p-2}u, \\ \Delta \phi = qu^2, \end{cases}$$

con le seguenti condizioni al bordo: u = 0 e $\phi = h$.

Questo problema è stato studiato in [2] nel caso W=0 e $u=\phi=0$ sul bordo, sotto il vincolo $\int_{\Omega} u^2 dx = 1$. Gli autori provano l'esistenza di infinite soluzioni (u_k, ϕ_k, ω_k) , dove ω_k appaiono in modo naturale come moltiplicatori di Lagrange rispetto al suddetto vincolo. Tuttavia è facile vedere che lo stesso risultato vale anche in presenza di una nonlinearità con crescita bassa: $p \in (2, 10/3)$.

In realtà è possibile anche studiare il problema senza la condizione di normalizzazione $\int_{\Omega} u^2 dx = 1$; in questo caso ω viene visto come un parametro. I valori di p condizionano fortemente il comportamento del funzionale ed infatti otteniamo vari risultati riguardo l'esistenza di soluzioni:

- 1. Se $p \in (2,3]$, otteniamo soluzioni non banali per ω più piccolo di un determinato valore.
- 2. Se $p \in (3,4)$, allora risulta che l'esistenza di soluzioni dipende dal valore del parametro q.
- 3. Se $p \in (4,6)$, allora si prova l'esistenza di infinite soluzioni per ogni valore del parametro ω e ogni valore di q.

Questi risultati sono ottenuti utilizzando il Teorema del Passo Montano [1], o opportune varianti che permettono di stabilire risultati di molteplicità di soluzioni.

Nel caso W=0 una questione interessante è l'influenza dei dati al bordo sull'esistenza di soluzioni. Di fatto in questo caso l'insieme degli ω per cui il sistema ha soluzioni è limitato inferiormente da una quantità che dipende dal parametro q e dalla norma del dato al bordo h.

È altresì possibile studiare il problema (2) con le seguenti condizioni al bordo

$$\begin{cases} u = 0, \\ \frac{\partial \phi}{\partial \mathbf{n}} = h, \end{cases}$$

dove \mathbf{n} è la normale uscente dal bordo $\partial\Omega$. In questo caso, poiché $q \neq 0$, con un opportuno cambio di variabile, è possibile rendere il problema indipendente dalla frequenza ω , per cui cercare soluzioni stazionarie (1) è equivalente a cercare soluzioni

statiche, i.e. $\psi(x,t) = u(x)$. Inoltre, se si considera il sistema ottenuto dalla seconda equazione in (2) e dalla condizione di Neumann sul potenziale ϕ ,

(3)
$$\begin{cases} \Delta \phi = q u^2 & \text{in } \Omega, \\ \frac{\partial \phi}{\partial \mathbf{n}} = h & \text{in } \partial \Omega, \end{cases}$$

è ben nota la condizione necessaria per l'esistenza di soluzioni:

$$\int_{\partial O} h \, d\sigma = q \int_{O} u^2 dx.$$

Per cui appare naturale imporre il vincolo $\int u^2 dx = 1$. In questo caso la condizione di compatibilità per il sistema (3) diviene

$$\int_{\partial\Omega} h \, d\sigma = q$$

la quale non è altro che la legge di Gauss $\int_{\partial\Omega} \mathbf{E} \cdot \mathbf{n} \, d\sigma = -q$. Per questo problema riusciamo a provare l'esistenza di infinite soluzioni, sia nel caso W=0 che nel caso $p\in(2,10/3)$.

La ricerca di soluzioni stazionarie per il problema di Klein-Gordon-Maxwell conduce, invece, al seguente sistema

(4)
$$\begin{cases} -\Delta u - (q\phi - \omega)^2 u + m^2 u = |u|^{p-2} u, \\ \Delta \phi = q(q\phi - \omega) u^2 \end{cases}$$

che si è studiato con varie condizioni al bordo:

$$\begin{cases} u = h \\ \phi = \eta \end{cases} \quad \text{oppure} \quad \begin{cases} u = h \\ \frac{\partial \phi}{\partial \mathbf{n}} = \theta \end{cases}.$$

Anche questo problema è più interessante quando W = 0. Nella tesi stabiliamo alcuni risultati di esistenza di soluzioni per piccoli valori del parametro q.

Una particolarità del problema di Klein-Gordon-Maxwell è che c'è un comportamento differente delle soluzioni nel caso limite q=0 a seconda delle condizioni al bordo. Infatti con condizioni di Dirichelet l'esistenza di soluzioni non banali è continua rispetto a $q\to 0$; la continuità è invece persa con condizioni al bordo di Neumann. Inoltre si segnala che, in questo secondo caso, il funzionale associato è singolare in u=0.

In presenza della nonlinearità W, con 2 ed <math>h = 0, è garantita l'esistenza di infinite soluzioni.

Nell'ultimo capitolo della Tesi, prendendo spunto da lavoro [4], si è studiata per il sistema Klein-Gordon-Maxwell, l'esistenza in \mathbb{R}^2 di soluzioni di tipo vortice, i.e.

 $\psi(x,t)=u(x)e^{i(k\theta(x)-\omega t)}$, nel caso puramente magnetostatico ($\mathbf{E}=\mathbf{0},\mathbf{A}=\mathbf{A}(x)$). Il sistema a cui si giunge è

(5)
$$\begin{cases} -\Delta u + |k\nabla\theta - q\mathbf{A}|^2 u = |u|^{p-2} u, \\ \nabla \times (\nabla \times \mathbf{A}) = q(k\nabla\theta - q\mathbf{A})u^2, \end{cases}$$

dove $\theta(x) = \operatorname{Im} \ln(x_1 + ix_2)$ e $k \in \mathbf{Z} \setminus \{0\}$ è la vorticità. In questo caso, prima perturbiamo il problema introducendo un parametro $\varepsilon > 0$ e troviamo delle soluzioni u_{ε} . In secondo luogo proviamo che le soluzioni u_{ε} convergono ad una soluzione radiale e con divergenza nulla del problema (5).

BIBLIOGRAFIA

- [1] A. Ambrosetti e P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal, 14 (1973), 349-381.
- [2] V. Benci e D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.
- [3] V. Benci e D. Fortunato, Solitary waves of the nonlinear Klein-Gordon field equation coupled with the Maxwell equations, Rev. Math. Phys., 14 (2002), 409-420.
- [4] V. Benci e D. Fortunato, Three dimensional vortices in Abelian Gauge Theories, Nonlinear Anal., 70 (2009), 4402-4421.

Dipartimento di Matematica, Università degli Studi di Bari e-mail: siciliano@dm.uniba.it

Dottorato in Matematica con sede presso l'Università di Bari – Ciclo XXI Direttore di Ricerca: Prof. L. Pisani, Università degli Studi di Bari