La Matematica nella Società e nella Cultura

RIVISTA DELL'UNIONE MATEMATICA ITALIANA

GIAMPIERO PALATUCCI

Una classe di problemi di transizione di fase con l'effetto di tensione di linea

La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana, Serie 1, Vol. 1 (2008), n.2 (Fascicolo Tesi di Dottorato), p. 323–326.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=RIUMI_2008_1_1_2_323_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Una classe di problemi di transizione di fase con l'effetto di tensione di linea

GIAMPIERO PALATUCCI

1. - Transizioni di fase con tensione di linea.

Il nostro lavoro di ricerca nell'ambito del Dottorato in Matematica è legato allo studio di problemi di transizione di fase liquido-liquido, da un punto di vista variazionale.

In letteratura vi sono molte varianti di funzionali del Calcolo delle Variazioni che descrivono fenomeni di transizioni di fase. Il punto di partenza della nostra ricerca è in alcuni lavori di Alberti, Bouchitté e Seppecher, che trattano di un problema collegato a transizioni di fase in un contenitore $\Omega \subset \mathbb{R}^3$ con effetti sul bordo di tipo "tensione di linea". Questo problema è descritto da un funzionale costituito da una perturbazione singolare dall'effetto regolarizzante e da due potenziali a più "buche" (le fasi, appunto), uno sul dominio Ω e l'altro sulla frontiera $\partial\Omega$. In [1], Alberti, Bouchitté e Seppecher hanno analizzato, in termini di Γ -convergenza, il comportamento asintotico, per ε che va a 0, della seguente famiglia di energie

$$E_{arepsilon}(u) := arepsilon \int\limits_{\Omega} |Du|^2 dx + rac{1}{arepsilon} \int\limits_{\Omega} W(u) dx + \lambda_{arepsilon} \int\limits_{\partial\Omega} V(Tu) d\mathcal{H}^2 \quad (u \in H^1(\Omega)),$$

dove W e V sono i potenziali a doppio pozzo, con zeri rispettivamente in $\{a,\beta\}$ e $\{a',\beta'\}$, Tu indica la traccia di u su $\partial\Omega$, \mathcal{H}^k indica la misura di Hausdorff k-dimensionale e λ_{ε} soddisfa

(1)
$$\varepsilon \log \lambda_{\varepsilon} \to c \in (0, +\infty)$$
 quando $\varepsilon \to 0$.

Il problema di cui ci siamo occupati riguarda il caso in cui la perturbazione singolare è super-quadratica. Siamo, quindi, interessati all'analisi asintotica della seguente famiglia di funzionali definita in $W^{1,p}(\Omega)$.

$$(2) \qquad F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega}|Du|^{p}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}\int\limits_{\partial U}W(u)dx+\frac{1}{\varepsilon}\int\limits_{\partial \Omega}V(Tu)d\mathcal{H}^{2} \qquad (p>2).$$

Sia u_{ε} una successione equilimitata per F_{ε} . Il comportamento asintotico delle energie F_{ε} è descritto da un funzionale limite Φ , che è la somma di tre contributi: un'energia di superficie concentrata su Su, insieme dei salti di u (dove u_{ε} ha una transizione da a a β); un'energia di bordo su $\partial\Omega$ (dove u_{ε} ha una transizione da Tu a v); un'energia di linea su Sv (dove Tu_{ε} ha una transizione da a' a a').

Quindi, Φ dipende da due variabili u e v in $BV(\Omega, \{a, \beta\}) \times BV(\partial \Omega, \{a', \beta'\})$:

(3)
$$\Phi(u,v) = \sigma_p \mathcal{H}^2(Su) + c_p \int_{\partial \Omega} |\mathcal{W}(Tu) - \mathcal{W}(v)| d\mathcal{H}^2 + \gamma_p \mathcal{H}^1(Sv),$$

dove \mathcal{W} è una primitiva di $W^{(p-1)/p}$; $c_p := \frac{p}{(p-1)^{p/(p-1)}}$; σ_p è la tensione di superficie data da $\sigma_p := c_p |\mathcal{W}(\beta) - \mathcal{W}(a)|$; γ_p è la tensione di linea ed è data dal problema di profilo ottimale

$$(4) \quad \gamma_p := \inf \bigg\{ \int\limits_{\mathbf{R}^2_+} |Du|^p dx + \int\limits_{\mathbf{R}} V(Tu) d\mathcal{H}^1 : u \in L^1_{\mathrm{loc}}(\mathbf{R}^2_+), \lim_{t \to -\infty} Tu(t) = a', \lim_{t \to +\infty} Tu(t) = \beta' \bigg\}.$$

Osserviamo che la variazione della potenza del gradiente nel termine di perturbazione non è una semplice generalizzazione rispetto al caso quadratico. Occorre tener conto dei differenti termini di riscalamento in ε (che seguono da un'analisi di scala). Nel caso quadratico, infatti, il riscalamento logaritmico (1) rende il profilo della transizione irrilevante; non abbiamo "equipartizione dell'energia". Al contrario, tale profilo diventa cruciale nel caso super-quadratico, dove vi è equipartizione dell'energia. Questa caratteristica è stata un'arma a doppio taglio nella dimostrazione del risultato di Γ -convergenza: alcuni argomenti sono risultati semplificati dalla presenza di un problema di profilo ottimale, altri hanno richiesto maggiore attenzione.

Il risultato principale di convergenza è nel seguente teorema.

TEOREMA 1. – [5, Theorem 2.1]. Siano $F_{\varepsilon}:W^{1,p}(\Omega)\to \mathbb{R}\ e\ \Phi:BV(\Omega,\{a,\beta\})\times BV(\Omega,\{a',\beta'\})\to \mathbb{R}\ definiti\ da\ (2)\ e\ (3).\ Allora$

- (i) (Compattezza) $Se(u_{\varepsilon}) \subset W^{1,p}(\Omega)$ è una successione tale che $F_{\varepsilon}(u_{\varepsilon})$ è limitato, allora $(u_{\varepsilon}, Tu_{\varepsilon})$ è precompatta in $L^{1}(\Omega) \times L^{1}(\partial \Omega)$ e ogni punto di accumulazione appartiene a $BV(\Omega, \{a, \beta\}) \times BV(\partial \Omega, \{a', \beta'\})$.
- (ii) (Disuguaglianza del Lim Inf) $Per\ ogni\ (u,v)\in BV(\Omega,\{a,\beta\})\times BV(\partial\Omega,\{a',\beta'\})\ e\ per\ ogni\ successione\ (u_{\varepsilon})\subset W^{1,p}(\Omega)\ tali\ che\ u_{\varepsilon}\to u\ in\ L^1(\Omega)\ e\ Tu_{\varepsilon}\to v\ in\ L^1(\partial\Omega),$

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(u_{\varepsilon}) \geq \varPhi(u, v).$$

(iii) (Disuguaglianza del Lim Sup) $Per \ ogni \ (u,v) \in BV(\Omega, \{a,\beta\}) \times BV(\partial\Omega, \{a',\beta'\})$ esiste una successione $(u_{\varepsilon}) \subset W^{1,p}(\Omega)$ tale che $u_{\varepsilon} \to u$ in $L^1(\Omega)$, $Tu_{\varepsilon} \to v$ in $L^1(\partial\Omega)$ e

$$\lim_{\varepsilon \to 0} \sup F_{\varepsilon}(u_{\varepsilon}) \le \varPhi(u, v).$$

La dimostrazione del Teorema 1 necessita di varie tappe, nelle quali deduciamo i termini dell'energia limite Φ localizzando tre effetti: l'effetto "bulk", l'effetto delle pareti del recipiente e l'effetto di bordo.

Nell'effetto "bulk", l'energia limite è valutata come in [3]. È evidente che occorre utilizzare la versione super-quadratica del funzionale di Modica-Mortola. Dunque, è sufficiente eseguire le dovute modifiche per poter sfruttare la proprietà di riscalamento ottimale del funzionale super-quadratico e, come nel caso studiato da Modica, la formula di coarea.

Il secondo termine di Φ può essere ottenuto adattando dei risultati di Modica in un articolo del 1987. In [4], Modica ha studiato un funzionale con crescita quadratica nel termine di perturbazione singolare e con un contributo di bordo del tipo $\lambda \int_{\partial\Omega} g(Tu) d\mathcal{H}^2$, dove λ non dipende da ε e g è una funzione continua e positiva. Occorre, quindi, modificare parte dei risultati ([4, Proposizione 1.2] e [4, Proposizione 1.4]) per il nostro scopo.

L'effetto di bordo necessita di un'analisi più delicata. Vediamo la strategia a grandi tratti. Prima, ci riduciamo al caso in cui il bordo è piatto, poi studiamo il comportamento asintotico dell'energia originale su semi-palle tridimensionali; quindi riduciamo il problema di una dimensione con un argomento di "slicing". A questo punto, il problema principale diventa l'analisi del comportamento asintotico del funzionale bidimensionale seguente:

$$H_{arepsilon}(u):=arepsilon^{p-2}\int\limits_{D_1}|Du|^pdx+rac{1}{arepsilon}\int\limits_{E_1}V(Tu)d\mathcal{H}^2,$$

dove D_1 è il semi-disco in \mathbb{R}^2 ed E_1 è il suo "diametro" (cfr. [5, Section 3]).

Infine, con un argomento di riarrangiamento monotono lungo una direzione, abbiamo provato che il minimo in (4) è raggiunto da una funzione φ in $W^{1,p}(\mathbb{R}^2_+)$, la cui traccia su \mathbb{R} è una funzione non decrescente ([5, Proposition 4.7]).

2. – Un risultato di perturbazione singolare con una norma frazionaria.

Un primo passo per la comprensione del problema principale della nostra tesi di Dottorato è costituito dallo studio di un funzionale unidimensionale del tipo di Modica-Mortola con perturbazione non locale con crescita super-quadratica. Nel Capitolo 3 della tesi (cfr. anche [2]), abbiamo analizzato il comportamento asintotico in termini di Γ -convergenza della seguente famiglia di energie in $W^{1-\frac{1}{p},p}(I)$, con I intervallo in R:

$$(5) \hspace{1cm} G_{\varepsilon}(u):=\varepsilon^{p-2}\!\int\!\!\int\limits_{I\times I}\left|\frac{u(x)-u(y)}{x-y}\right|^p\!\!dxdy+\frac{1}{\varepsilon}\int\limits_{I}V(u)\,dx, \quad (p>2),$$

dove V è un potenziale a doppio pozzo con buche in a' e β' . Il funzionale G_{ε} soddisfa una proprietà di buon riscalamento e quindi il limite è caratterizzato da un problema di profilo ottimale; i.e., G_{ε} Γ -converge (in $L^1(I)$) a

(6)
$$G(u) := \gamma \mathcal{H}^0(Su),$$

dove γ rappresenta il costo minimo, in termini dell'energia non riscalata, di una transizione da a' a β' sull'intera retta reale:

$$(7) \quad \gamma := \inf \left\{ \int \int \limits_{\mathbf{R} \times \mathbf{R}} \left| \frac{v(x) - v(y)}{x - y} \right|^p dx dy + \int \limits_{\mathbf{R}} V(v) \, dx : v \in W_{\text{loc}}^{1 - \frac{1}{p}, p}(\mathbf{R}), \\ \lim_{x \to -\infty} v(x) = a', \lim_{x \to +\infty} v(x) = \beta' \right\}.$$

TEOREMA 2. – [2, Theorem 2.1]. – Siano $G_{\varepsilon}:W^{1-\frac{1}{p},p}(I)\to \mathbb{R}\ e\ G:BV(I,\{a',\beta'\})\to \mathbb{R}\ definiti\ in$ (5) e (6). Allora

- (i) (Compattezza) Se $(u_{\varepsilon}) \subset W^{1-\frac{1}{p}p}(I)$ è una successione tale che $G_{\varepsilon}(u_{\varepsilon})$ è limitato. Allora (u_{ε}) è precompatta in $L^{1}(I)$ e ogni punto di accumulazione appartiene a $BV(I, \{a', \beta'\})$.
- (ii) (Disuguaglianza del Lim Inf) Per ogni $u \in BV(I, \{a', \beta'\})$ e per ogni successione $(u_{\varepsilon}) \subset W^{1-\frac{1}{p},p}(I)$ tale che $u_{\varepsilon} \to u$ in $L^1(I)$,

$$\liminf_{\varepsilon \to 0} G_{\varepsilon}(u_{\varepsilon}) \geq G(u).$$

(iii) (Disuguaglianza del Lim Sup) $Per\ ogni\ u\in BV(I,\{a',\beta'\})\ esiste\ una\ successione\ (u_{\varepsilon})\subset W^{1-\frac{1}{p},p}(I)\ tale\ che\ u_{\varepsilon}\to u\ in\ L^1(I)\ e$

$$\limsup_{\varepsilon \to 0} G_{\varepsilon}(u_{\varepsilon}) \leq G(u).$$

Nella dimostrazione del Teorema 2, abbiamo utilizzato fortemente la "localizzazione" e le proprietà di riscalamento di G_{ε} . Inoltre, un ruolo importante è stato giocato dalle proprietà di monotonia di G_{ε} rispetto a troncature e a riarrangiamenti monotoni. Grazie a un argomento di riarrangiamento monotono, abbiamo anche provato che il minimo in (7) è raggiunto e non banale ([2, Proposition 3.3]).

BIBLIOGRAFIA

- [1] Alberti G., Bouchitté G. and Seppecher P., Phase Transition with Line-Tension Effect, Arch. Rational Mech. Anal., 144 (1998), 1-46.
- [2] GARRONI A. and PALATUCCI G., A singular perturbation result with a fractional norm, in Variational problems in material science, Progress in NonLinear Differential Equations and Their Applications, Birkhäuser, Basel, 68 (2006), 111-126.
- [3] Modica L., Gradient theory of phase transitions and minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.
- [4] Modica L., Gradient theory of phase transitions with boundary contact energy, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1987), 487-512.
- [5] Palatucci G., Phase transitions with the line tension effect: the super-quadratic case, submitted paper (2007).

Dipartimento di Matematica, Università degli Studi "Roma Tre" e-mail: palatucci@mat.uniroma3.it

Dottorato in Matematica (sede amministrativa: Università di Roma Tre) - Ciclo XVIII Direttore di tesi: prof. Adriana Garroni, Università di Roma "La Sapienza"