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Categories of results in variable Lebesgue spaces theory

Nota del socio Alberto Fiorenza1,2

(Adunanza del 18 gennaio 2019)
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Abstract – Variable (exponent) Lebesgue spaces represent a relevant research area
within the theory of Banach function spaces. Much attention is devoted to look for
sufficient conditions on the variable exponent to establish the assertions within the the-
ory. In this Note we try to show the beauty of the research in this field, mainly quoting
some known results organized into “categories", each of them characterized by a com-
mon typology of conditions on the variable exponent. New results involve the failure of
rearrangement-invariant property, the rearrangement of the exponent, and a generaliza-
tion of a formula known for constant exponents.

Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un settore di
rilievo nell’ambito della teoria degli spazi funzionali di Banach. Di notevole interesse é la
ricerca di condizioni, da imporre alla funzione esponente, sufficienti ad assicurare il ve-
rificarsi di determinate affermazioni. In questa Nota ci proponiamo di mostrare il fascino
della ricerca in questo settore, segnalando essenzialmente alcuni noti risultati organizzati
in “categorie", ognuna delle quali caratterizzata da una comune tipologia di condizioni
sulla funzione esponente. I risultati originali sono relativi alla non invarianza per riordi-
namento, al riordinamento dell’esponente e ad una generalizzazione di una formula nota
per esponenti costanti.

1 - A SHORT HISTORY OF VARIABLE LEBESGUE SPACES

The introduction of a number of topological spaces, among which some fa-
milies of Banach function spaces, contributed indubitably to the development of
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2This Note contains an updated and enlarged revision of the introduction of the talk,
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the Functional Analysis. The continuous need to improve and refine mathemat-
ical models gave the opportunity to extend to more general frameworks several
classical results of Mathematical Analysis. In this order of ideas a fruitful re-
search area is that one of variable exponent Lebesgue spaces (variable Lebesgue
spaces, in short), actually available through several references (see, for instance,
Antontsev and Shmarev [10], Cruz-Uribe and the author [27], [31], Diening,
Harjulehto, Hästö and Růžička [39], Edmunds, Lang and Méndez [46], Izuki,
Nakai and Sawano [72], Kokilashvili, Meskhi, Rafeiro and Samko [76, 77], Lang
and Edmunds [85], Meskhi [95], Pick, Kufner, John and Fučík [104], Rădulescu
and Repovš [106], Růžička [111]).

Strictly speaking, variable Lebesgue spaces were born in a paper by Or-
licz [103] in 1931, where in a remark about functions f such that | f (x)|p(x) ∈
L1(0,1), 1 < p(x)< ∞, he established essentially a kind of sharpness of Hölder’s
inequality. However, Orlicz is actually known for the spaces called Orlicz spaces,
which he also introduced in 1931 in a joint paper with Birnbaum [16] (for the
early history of these spaces, see Krasnosel�skiı̆ and Rutickiı̆ [84]; for treatments
on Orlicz spaces, see e.g. also Maligranda [91], Rao and Ren [108], Harjulehto
and Hästö [68]).

An important step in the development of the variable Lebesgue spaces came
two decades later in the work of Nakano [98, 99] who originated the theory of
modular spaces, sometimes referred to as Nakano spaces. A modular space is a
topological vector space equipped with a “modular”: a generalization of a norm.
An important example of a modular space is the function space consisting of all
functions f on a (Lebesgue) measurable set Ω ⊂ Rn (in the following we will
assume that Ω has positive measure) such that for some λ > 0,

∫

Ω
Φ
(

x,
| f (x)|

λ

)
dx < ∞,

where Φ : Ω× [0,∞) → [0,∞] is a function such that for almost every x ∈ Ω,
Φ(x, ·) behaves like a Young function (i.e., roughly speaking, a convex function
whose graph has the shape “similar" to that one of a power having constant ex-
ponent greater or equal than 1). These spaces are referred to as Musielak-Orlicz
spaces or generalized (or variable) Orlicz spaces (see e.g. Musielak [97], Har-
julehto and Hästö [68]). They contain a number of function spaces as special
cases. If Φ(x, t) = Φ(t) is just a function of t, they are the Orlicz spaces, and if
Φ(x, t) = t pw(x), they become the weighted Lebesgue spaces. In [98], Nakano
introduced the variable Lebesgue spaces as specific examples of modular spaces:
if Φ(x, t) = t p(x), where 1 ≤ p(x) < ∞ is a measurable function on Ω, they are
the variable Lebesgue spaces Lp(·)(Ω), which are therefore defined as the set of
all measurable functions f on Ω such that for some λ > 0,

∫

Ω

∣∣∣∣
f (x)
λ

∣∣∣∣
p(x)

dx < ∞ . (1)

Lp(·)(Ω) becomes a Banach function space (i.e. a Banach space, whose elements
are measurable functions and whose norm verifies some further conditions; see

e.g. Bennett and Sharpley [15]) when equipped with the Luxemburg norm

� f�Lp(·)(Ω) = inf

{
λ > 0 :

∫

Ω

∣∣∣∣
f (x)
λ

∣∣∣∣
p(x)

dx ≤ 1

}
. (2)

When p(·)≡ p, p being a constant greater or equal than 1, then Lp(·)(Ω) = Lp(Ω)
and (2) reduces to the classical norm on Lp(Ω). This notion can be simply
adapted to allow p(x) = ∞ for a.e. x in a set Ω∞ ⊂ Ω (see Kováčik and Rákos-
ník [83]), replacing the left hand side in (1) (and the corresponding term in (2))
by ∫

Ω\Ω∞

∣∣∣∣
f (x)
λ

∣∣∣∣
p(x)

dx+
∥∥∥∥

f (x)
λ

∥∥∥∥
L∞(Ω∞)

.

A different way to allow the case p(x) = ∞ on some subset of Ω, nicer from
the formal point of view, has been suggested in Diening [38] (see also Diening,
Harjulehto, Hästö, Mizuta and Shimomura [44]): the positions (1) and (2) can
remain as they are, the trick is just to make the

convention : t+∞ =

{
0 if 0 < t ≤ 1
+∞ if t > 1

; (3)

the resulting norm is slightly different, but the resulting space Lp(·)(Ω) is the
same, up to equivalence of norms.

The variable Lebesgue spaces appeared independently in the Russian litera-
ture, where they were studied as spaces of interest in their own right. They were
introduced by Tsenov [123] in 1961, in the study of a minimization problem.
In 1979, Sharapudinov [119] begun to develop the function space theory of the
variable Lebesgue spaces on intervals on the real line, introducing the Luxem-
burg norm (drawing on ideas of Kolmogorov [78]), and showing that when p(·)
is bounded, Lp(·)([0,1]) is separable and its dual space is Lp�(·)([0,1]), where p�(·)
denotes the variable exponent p�(·) = p(·)/(p(·)− 1). In [120] he was the first
to consider questions that involved the regularity of the exponent function p(·),
and introduced the local log-Hölder continuity condition,

|p(x)− p(y)| ≤ C0

− log(|x− y|) , ∀x,y : |x− y|< 1
2
, (4)

that has proved to be of critical importance in the theory of variable Lebesgue
spaces. The most influential work is due to Zhikov, who, starting from [124],
begun to apply the variable Lebesgue spaces to problems in the Calculus of Va-
riations.

The “modern” period in the study of variable Lebesgue spaces begun with the
foundational paper of Kováčik and Rákosník [83] from 1991.

In the early 1990’s, Samko and Ross [118, 109] (see also Samko [113, 116])
introduced a Riemann-Liouville fractional derivative of variable order and the
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corresponding variable Riesz potential. Investigating the behavior of these ope-
rators led naturally to the study of convolution and potential operators on the
variable Lebesgue spaces: see Samko [114, 115] and Edmunds and Meskhi [48].

In the mid 1990’s, functionals with non-standard growth and the p(·)-Lapla-
cian were studied by Fan [54, 55], Fan and Zhao [58, 59], Marcellini [92, 93].

Partial differential equations with non-standard growth conditions have been
considered, among others, in Fan [56], Harjulehto, Hästö, Lê and Nuortio [69],
Mingione [96], Antontsev and Shmarev [10].

Interest in the variable Lebesgue spaces has increased since the 1990’s be-
cause of their use in a variety of applications. Foremost among these is the ma-
thematical modeling of electrorheological fluids, namely, fluids whose viscosity
changes when exposed to an electric field: see Růžička [111, 112], Diening and
Růžička [40, 43, 41, 42], Acerbi and Mingione [1, 2, 3].

The variable Lebesgue spaces have also been used to model the behavior of
other physical problems. Some examples include quasi-Newtonian fluids (see
Zhikov [125]), the thermistor problem (see Zhikov [126]), fluid flow in porous
media (see Amaziane, Pankratov and Piatnitski [6], Antontsev and Shmarev [11]),
magnetostatics (see Çekiç, Kalinin, Mashiyev and Avci [22]), and the study of
image processing (see Blomgren, Chan, Mulet and Wong [17]).

2 - A LIST OF CATEGORIES

Roughly speaking, from the pure mathematical point of view, the attempts to
generalize known classical statements to the variable exponent context lead in a
natural way to the problem of looking for sufficient conditions on the variable
exponent to establish the assertions within the theory. In the following we will
quote some known results organized into “categories", each of them character-
ized by a common typology of conditions on the variable exponent; their number
shows the richness of the phenomena encountered by researchers in the theory.

Before the beginning of our presentation, we recall that a kind of exposition
into categories appears in Section 1.3 of the book by Diening, Harjulehto, Hästö
and Růžička [39]; even if the present Note has some overlap with such reference,
the reader here finds a discussion on the results considered and a finer classifica-
tion, rather than just few collections of results.

This Note is based on the following observation: statements in terms of clas-
sical Lebesgue spaces (hence, say, true for constant exponents) may

(i) ... remain true for variable exponents and the extension is trivial

(ii) ... remain true for variable exponents but the proof needs some more effort

(iii) ... remain true only for certain variable exponents

(iv) ... are never true when exponents are not constant

The theory of variable Lebesgue spaces admits also another category of results,
which do not come from the classic theory and their main feature is based speci-
fically on the variability of the exponents:

(v) ... have no interest when exponents are constant

In Section we will shortly describe each of the above categories: we will treat
(i)-(v) in paragraphs 4.1-4.5, respectively. For the completeness of the exposition,
we need few prerequisites, which are the object of next Section .

3 - SOME STATEMENTS INVOLVING CLASSICAL LEBESGUE SPACES

For further needs, let us recall few definitions and results. Lebesgue spaces
are part of standard knowledge in Mathematical Analysis and are presented in
many textbooks and tracts, see e.g. Brezis [18, 19], Castillo and Rafeiro [21],
DiBenedetto [35], Okikiolu [102], Pick, Kufner, John and Fučík [104], Rudin
[110]. We will use also the notion of decreasing rearrangement, which is e.g. in
Bennett and Sharpley [15], Kawohl [73], Korenovskii [81], Leoni [86], Rakoto-
son [107].

The well known formula (see e.g. DiBenedetto, p.149 [35], Stein p.7 [121],
Lieb-Loss p.26 [90], Ambrosio, Fusco and Pallara p.34 [7], Okikiolu p.236 [102])

∫

Ω
| f (x)|p dx = p

∫ ∞

0
t p−1|{x ∈ Ω : | f (x)|> t}|dt (5)

shows that classical Lebesgue spaces are rearrangement-invariant Banach func-
tion spaces (see e.g. p.59 in Bennett and Sharpley [15]): in fact, the key property
needed to define these spaces is that the norms of every pair of functions f ,g
equimeasurable, i.e. such that

|{x ∈ Ω : | f (x)|> t}|= |{x ∈ Ω : |g(x)|> t}| ∀ t ≥ 0 ,

coincide. As a further consequence of this formula, the norm of every function f
in every rearrangement-invariant Banach function space coincides with that one
of its decreasing rearrangement, which we denote by f∗. The importance of this
class of spaces is the characterization given through the fundamental interpola-
tion theorem: on one hand every rearrangement-invariant Banach function space
is an interpolation space between L1 and L∞, and on the other every Banach func-
tion space which is an interpolation space between L1 and L∞ is rearrangement-
invariant. Being interpolation space implies, in turn, the boundedness of a wide
class of operators acting on them (see e.g. Ch.3 in Bennett and Sharpley [15] for
details).

However, even without involving directly the machinery of interpolation theo-
ry, (5) can be used directly for proving a result which is a milestone in real-
variable Harmonic Analysis. Given a function f ∈ L1

loc(R
n), the (uncentered)

Hardy-Littlewood maximal function M f is defined by

M f (x) = sup
Q�x

1
|Q|

∫

Q
| f (y)|dy ∀x ∈ Rn ,
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where the supremum is taken over all cubes Q ⊂ Rn containing x and whose
sides are parallel to the coordinate axes. If f ∈ L1

loc(Ω), then M f is defined by
extending f to be identically 0 on Rn \Ω. The following boundedness result
holds (see e.g. Stein [121, 122]):

Theorem 1. If f ∈ Lp(Rn), with 1 < p ≤ ∞, then M f ∈ Lp(Rn) and

�M f�Lp(Rn) ≤C� f�Lp(Rn) (6)

where C depends only on p and the dimension n.

It would be impossible to describe in few lines the importance of this classi-
cal result, which is a fundamental tool for proving, sometimes in a direct way,
the boundedness of many operators in Harmonic Analysis (see e.g. Cruz-Uribe,
Martell and Pérez [33], Duoandikoetxea [45], Kokilashvili and Krbec [75], Ko-
kilashvili, Meskhi, Rafeiro and Samko [76, 77], Stein [121, 122]); for our goals
we observe that since it provides an alternative proof of the classical Sobolev
inequality and its consequences (see e.g. Ziemer [128]), its versions for other
Banach function spaces, including variable Lebesgue spaces (see e.g. next Theo-
rem 3), became a tool for extensions of the Sobolev inequality and several other
classical results.

Incidentally, even if it is not among the goals of this Note, we notice that
Theorem 1 is someway involved also to get packing results in Geometry of fractal
sets (see Section 7.5 p. 109 in Falconer [53]).

4 - THE CATEGORIES IN DETAIL

The straightforward generalizations
When making research in Mathematics, sometimes the generalizations of the-

orems can be proved without any effort: one discovers that a certain argument
can work “as it is" because it has in fact a greater validity. Of course formally
such new theorems are “better" than the original ones, however, they can be clas-
sified as simple remarks, because no new ideas are needed to get the proofs. This
is the case, for instance, of the proof of the completeness of variable Lebesgue
spaces:

Theorem 2. If Ω ⊂ Rn and p(·) : Ω → [1,∞] is a measurable function, then
Lp(·)(Ω) is complete: every Cauchy sequence in Lp(·)(Ω) converges in norm.

The proof of Theorem 2 can be found, for instance, in Cruz-Uribe and the au-
thor [27] (see Theorem 2.71 therein). It is nice to observe that formally replacing
p(·) by p in any line of this reference, one gets the original proof which works
for classical Lebesgue spaces.

This kind of results occupies a minor part of the theory of variable Lebesgue
spaces; the proofs which can be written almost automatically have, of course, not
so much interest.

The case of longer proofs
The existence of much literature involving variable Lebesgue spaces (see e.g.

the enormous references list in the book by Cruz-Uribe and the author [27] or
in the book by Diening, Harjulehto, Hästö and Růžička [39]) is justified by the
fact that the majority of the results cannot be proved as Theorem 2. Maybe the
first reason is that the formal substitution of p into p(x) does not work already
since the beginning of the theory, namely, with the expression of the norm: the
“transformation"

(∫

Ω
| f (x)|p dx

) 1
p

→
(∫

Ω
| f (x)|p(x) dx

) 1
p(x)

(7)

does not give, as “output", a number, but a function. Note also that homogeneity
is lost: multiplying, for instance, f by 2 in the expression on the right, one does
not get the double.

However, the expression of the norm in (2) has been obtained using exactly
the formal substitution of p into p(x), which works fine if one, previously, writes

(∫

Ω
| f (x)|p dx

) 1
p

in the different form

inf
{

λ > 0 :
∫

Ω

∣∣∣∣
f (x)
λ

∣∣∣∣
p

dx ≤ 1
}
.

This trick, which is successful also in the case of Orlicz spaces and more ge-
nerally in the context of modular spaces (see e.g. Maligranda [91]), has a deep
topological validity (see Kolmogorov [78]); however, it reveals once more the
usual way to construct generalizations, which is to use some characterization and
to “discover" that the equivalent form is adapt to a new framework. A much more
known example in this sense is the notion of weak derivative to define Sobolev
spaces (see e.g. Brezis [18]).

In some cases the characterization leads to a significant change of the expres-
sion which is just apparent. Generalizations follow using the same ideas of the
classical argument: just some small extra effort is needed.

For instance, let 1 < p < ∞ and consider the classical Hölder’s inequality

∫

Ω
| f (x)g(x)| dx ≤

(∫

Ω
| f (x)|p dx

) 1
p
(∫

Ω
|g(x)|q dx

) 1
q

where
1
p
+

1
q
= 1. Its standard proof (see e.g. Brezis [18]) starts from the con-

cavity of the logarithm, from which one gets the Young’s inequality

ab ≤ 1
p

ap +
1
q

bq ∀a ≥ 0 , b ≥ 0 .
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Then one replaces a with | f (x)|, b with |g(x)|, and integrate. The conclusion

follows applying the previous argument to λ | f (x)| and
|g(x)|

λ
, λ being a positive

parameter, and finally choosing the “best" λ .
Looking at the corresponding result in the variable case (see e.g. Theorem

2.26 in Cruz-Uribe and the author [27]), when 1 < p(x)< ∞ the method does not
change: the Young’s inequality is applied pointwise and therefore one gets

ab ≤ 1
p(x)

ap(x) +
1

q(x)
bq(x) ∀a ≥ 0 , b ≥ 0 , x ∈ Ω ,

where
1

p(x)
+

1
q(x)

= 1 and, as before, one integrates over Ω.

It is clear that we are not in the same situation as in the previous paragraph:
the proof does not work word by word, because integrating, now, one does not
find immediately the norm. The fact that the expression of the norm is different
makes the proof a little bit longer (see details in [27]), and some small extra effort
must be spent to get the statement in the variable exponent case.

In some applications the effort to pass from the constant case to the variable
case must be much higher, even when the exponent is relatively “nice". For
instance, this may happen for exponents being continuous until the boundary of
the domain: see e.g. El Hamidi [50], where existence results to elliptic systems
involving the p(x)−laplacian are obtained.

The heart of the theory
Maybe the nicest feature of variable Lebesgue spaces theory is that the exten-

sion of results involving classical Lebesgue spaces does not hold for all variable
exponents, but just for a certain class of exponents. It may be a hazard to make
general assertions about mathematical theories, but, at least starting from our ex-
perience, this category of results includes the majority of the literature in this
field. The main features of a result in this category are:

• The result holds for constant exponents

• The result does not hold for all possible variable exponents (and therefore
an example is given)

• The result holds for some “really variable" (= not constant) exponents

• The class of exponents is studied: it is larger than the classes of exponents,
previously known, involved in sufficient conditions for the validity of cer-
tain assertions, or it is smaller than the classes of exponents, previously
known, involved in necessary conditions. The “full" result characterizes
the class of exponents for which a certain assertion holds

A consequence of the features above is that several results do not admit just
one variable version, but each of them may admit various “not full" extensions.

An entire “community" may work on the same assertion, producing results which
may improve (or simply overlap with) already existing ones.

Let us draw our attention to an example of result in this category. We choose,
because of its importance highlighted in Section , Theorem 1: the central problem
is therefore that one to study conditions on an exponent p(·) so that the Hardy-
Littlewood maximal operator is bounded on Lp(·)(Rn). The first major result in
this direction was due to Diening [36], who showed that it is sufficient to assume
that p(·) satisfies the local log-Hölder condition (4), is constant outside of a large
ball, and, finally, is bounded (i.e. esssupp(·) < ∞) and bounded away from 1
(i.e. ess infp(·) > 1). This result was generalized by Cruz-Uribe, Neugebauer
and the author in [29] (see also Capone, Cruz-Uribe and the author [20] for a
simpler proof), where a nearly optimal sufficient condition on the exponent p(·)
is given: it was shown that it is sufficient to assume (besides the boundedness and
the boundedness away from 1) that (4) holds and p(·) is log-Hölder continuous
at infinity, namely, there exist constants p∞ and C∞ such that

|p(x)− p∞| ≤ C∞

log(e+ |x|) ∀x ∈ Rn . (8)

A generalization which includes the constant case p(·)≡+∞ taking into account
of the

convention :
1
+∞

= 0 , (9)

and involves the log-Hölder continuity both locally (see (4)) and at infinity (see
(8)), is the following:

Theorem 3. Given an open set Ω ⊂ Rn, if p(·) : Ω → [p−,+∞] is such that
p− > 1 and such that 1/p(·) is log-Hölder continuous both locally and at infinity,
then M is bounded on Lp(·)(Ω):

�M f�Lp(·)(Ω) ≤C� f�Lp(·)(Ω). (10)

The proof of Theorem 3 borrows ideas from several papers. Expositions,
eventually with small variants in the assumptions, are e.g. in Diening, Harjule-
hto, Hästö, Mizuta and Shimomura [44] (see Theorem 1.2 therein), in Cruz-Uribe
and the author [27] (see Theorem 3.16 therein), in Cruz-Uribe, Diening and the
author [24], in Izuki, Nakai and Sawano [72], in Harjulehto and Hästö [68] (see
Corollary 4.5.5 therein), in Diening, Harjulehto, Hästö and Růžička [39] (see
Theorem 4.3.8 and Remark 4.3.10 therein). The condition p− > 1 for the maxi-
mal operator to be bounded is known to be necessary: this was first proved in
Cruz-Uribe, Neugebauer and the author [29, 30] with the additional assump-
tion that p(·) is upper semi-continuous. This hypothesis was removed by Dien-
ing [38] (see also Diening, Harjulehto, Hästö, Mizuta and Shimomura [44]). The
same references have to be quoted for the case when esssupp(·) = ∞ and the
idea of the requirement of the log-Hölder continuity imposed to 1/p(·). A very
different proof of this theorem when esssupp(·) < ∞, gotten by viewing Lp(·)
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from the perspective of abstract Banach function spaces, was given by Lerner
and Pérez [89]. Independently, Nekvinda [100] showed that it was sufficient to
assume that p(·) satisfies a somewhat weaker integral decay condition. The log-
Hölder conditions are the sharpest possible pointwise conditions (see Pick and
Růžička [105] and Cruz-Uribe, Neugebauer and the author [29, 30]) but they
are not necessary: see Nekvinda [101], Kopaliani [79] and Lerner [88]. Dien-
ing [37] has given a necessary and sufficient condition that is difficult to check
but has important theoretical consequences. The importance of these results was
reinforced by the work in Cruz-Uribe, Martell, Pérez and the author [28], Cruz-
Uribe and Hästö [32], where it was shown that the theory of Rubio de Francia
extrapolation could be extended to the variable Lebesgue spaces and generalized
Orlicz spaces. This allows the theory of weighted norm inequalities to be used
to prove the boundedness of a multitude of operators (such as singular integrals)
whenever the maximal operator is.

Of course, especially when full results are missing, in plenty of papers which
need the boundedness of the maximal operator, the authors assume it directly
(just to quote an example, see Kopaliani and Chelidze [80], where a Gagliardo-
Nirenberg inequality with norms having variable exponents is obtained). This so-
lution is reasonable as soon as from the literature it is known at least a set of suffi-
cient conditions for such boundedness, because this way, in principle, any future
result giving sufficient conditions can provide a new good set of assumptions.
Such policy appears frequently in literature. As a further example, some results
in the 2002 paper by the author [61] (see Hästö and Ribeiro [71], Ferreira, Hästö
and Ribeiro [60], Harjulehto and Hästö [68] as other references dealing with the
same topic) hold assuming the density of smooth functions in variable Sobolev
spaces and even actually - in spite of various papers on this subject, for instance
Cruz-Uribe and the author [26], Edmunds and Rákosník [49], Fan, Wang and
Zhao [57], Hästö [70], Samko [117], Zhikov [127], the latest being Kostopoulos
and Yannakakis [82] - a full result is still missing (while a full result exists for
variable Lebesgue spaces, see Edmunds, Lang and Nekvinda [47]). Another pa-
per where density of smooth functions in variable Sobolev spaces plays a key role
is by Giannetti [67], who proved a modular version of the Gagliardo-Nirenberg
inequality.

We mention now a “full" result in the sense above, due to Diening ([38]): in
this case there is no sequence of papers trying to find the exact class of exponents,
because it has been found already in the first reference on the topic. Consider the
problem to establish the embedding between classical Lebesgue spaces. The
result is simple to state and to be proved (see e.g. Theorem 3.10 in Castillo and
Rafeiro [21]): for Ω of finite measure, if 1 ≤ r ≤ p ≤ ∞, then Lp(Ω) ⊂ Lr(Ω)
(note that the inclusion as sets is equivalent to the continuous embedding because
they are particular Banach function spaces over the same measure space, see
Theorem 1.8 in Bennett and Sharpley [15]). Whatever proof of the result for
classical Lebesgue spaces is chosen (one may split Ω into the sets where | f | ≤ 1
and | f | > 1, or one may use Hölder’s inequality), the extension can be done
without too much effort. The surprise is that while for classical Lebesgue spaces
this result solves completely the problem to characterize the embedding (because

when Ω has not finite measure, two classical Lebesgue spaces over Ω cannot be
compared), in the case of variable Lebesgue spaces this is not true. Namely, the
embedding can hold in the case of exponents which become close each other,
very fast at infinity, in a sense we are going to make precise. This can never
happen for different, constant exponents: their distance is always constant. The
“full" result for variable Lebesgue spaces (whose proof is quite technical) is the
following (see Theorem 2.45 in Cruz-Uribe and the author [27], which is from
Diening [38])

Theorem 4. Given Ω ⊂ Rn and p(·), q(·) : Ω → [1,∞], then Lq(·)(Ω)⊂ Lp(·)(Ω)

and there exists K > 1 such that for all f ∈ Lq(·)(Ω), � f�p(·) ≤ K� f�q(·), if and
only if:

1. p(x)≤ q(x) for almost every x ∈ Ω;

2. there exists λ > 1 such that ∫

D
λ−r(x) dx < ∞, (11)

where D = {x ∈ Ω : p(x)< q(x)} and r(·) is the defect exponent defined by

1
p(x)

=
1

q(x)
+

1
r(x)

.

In the same order of ideas we recall the following extension of (6): the ine-
quality ∫

Rn
M f (x)p dx ≤ c1

∫

Rn
| f (x)|q dx+ c2

holds for every f ∈ Lq(Rn) and for some positive constants c1,c2 independent of
f if and only if 1 < p = q. We stress that it is an extension: in fact, if 1 < p = q,
from the existence of some positive constants c1,c2 such that

∫

Rn
M f (x)p dx ≤ c1

∫

Rn
| f (x)|p dx+ c2 ∀ f ∈ Lp(Rn) (12)

one gets that also (6) is true, applying (12) to λ f , dividing both sides by λ p, and
letting λ → ∞. We remark that such homogeneization procedure can be applied
in a general context (see e.g. D’Aristotile and the author [34]). The proof of
such extension is a consequence of the following “full" result (see Cruz-Uribe,
Di Fratta and the author [25])

Theorem 5. Let p(·), q(·) : Rn → [1,∞[. The inequality
∫

Rn
M f (x)p(x) dx ≤ c1

∫

Rn
| f (x)|q(x) dx+ c2

holds for every f ∈ Lq(x)(Rn) and for some positive constants c1,c2 independent
of f if and only if Lq(·)(Rn) ⊂ Lp(·)(Rn) and p(·) and q(·) “touch at infinity",
namely, for every E ⊂ Rn having infinite measure,

esssup
E

p(·) = esssup
Rn

p(·) = ess inf
Rn q(·) = ess inf

E
q(·) .
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D
λ−r(x) dx < ∞, (11)

where D = {x ∈ Ω : p(x)< q(x)} and r(·) is the defect exponent defined by

1
p(x)

=
1

q(x)
+

1
r(x)

.
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Rn
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∫

Rn
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Rn
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∫

Rn
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∫

Rn
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∫

Rn
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esssup
E

p(·) = esssup
Rn

p(·) = ess inf
Rn q(·) = ess inf

E
q(·) .
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Let us close this paragraph with one more result, where again the class of
exponents has been fully characterized. Here the symbol Lp(·)

w (Ω) stands for the
weighted version of Lp(·)(Ω), built as in Section using

∫

Ω\Ω∞

∣∣∣∣
f (x)
λ

∣∣∣∣
p(x)

w(x)dx+
∥∥∥∥

f (x)
λ

w(x)
∥∥∥∥

L∞(Ω∞)

,

where w is a weight, i.e. w : Ω →]0,∞[, w ∈ L1
loc(Ω).

Theorem 6. Let Ω ⊂ Rn, and let p(·) : Ω → [1,∞] be such that esssup
Ω\Ω∞

p(·)< ∞.

The weight w is noneffective, i.e. Lp(·)(Ω) = Lp(·)
w (Ω), if and only if w≈ constant.

For the proof and the details about the optimality of the condition esssup
Ω\Ω∞

p(·)<
∞ see Krbec and the author [64].

Classic statements are the best ones
One of the features of the previous category of results is that the generaliza-

tion to the variable setting holds for some non-constant exponents. However,
there are results which, if written in terms of variable exponents, hold if and
only if the exponents are constant. A collection of results in this category ap-
pears explicitly in Section 1.3 of the book by Diening, Harjulehto, Hästö and
Růžička [39] already quoted above, and an overlapping collection is someway
“hidden" in the Subject Index of the book by Cruz-Uribe and the author [27] (see
non-constant vs. constant in p. 306 therein).

It is not our goal to make one, maybe more complete, list of results in this
category. Just to give an idea of the category, we state and prove the following

Theorem 7. Let Ω ⊂ Rn and p(·) : Ω → [1,∞]. The space Lp(·)(Ω) is rearran-
gement-invariant if and only if p(·) is constant.

Its proof is in Kováčik and Rákosník [83], where an extra assumption of conti-
nuity of the exponent appears, and another proof, where the exponent is assumed
just measurable, is in Cruz-Uribe and the author [27] (see Example 3.14 p. 87
therein), but it is wrong. In the case Ω = Rn, Theorem 7 can be seen as a corol-
lary of Proposition 3.6.1 p. 95 in Diening, Harjulehto, Hästö and Růžička [39],
where it is shown that if an exponent p(·) is such that every translation opera-
tor maps Lp(·)(Rn) to Lp(·)(Rn), then it must be constant. In fact, suppose that
Lp(·)(Rn) is rearrangement-invariant. Since every translation of any f ∈ Lp(·)(Rn)
is equimeasurable with f , its norm equals that one of f . Therefore every transla-
tion operator maps Lp(·)(Rn) to Lp(·)(Rn) from which, by the proposition above,
p(·) must be constant.

Here we are going to show a direct argument.

Proof.
Fix E ⊂ Ω of finite measure on which p(·) is non-constant, so that

p+ := esssupE p(·)> ess infE p(·) =: p− .

Let p∗(·) be the decreasing rearrangement of the restriction of p(·) to E, p∗(·)
being defined in (0, |E|). Let p ∈ (p−, p+). Since p∗(·) is a decreasing function,
then it is limit a.e. of an increasing sequence of step functions, therefore there
exists s1(·) step function such that

s1(t) =
K1

∑
i=1

αiχ(t(1)i−1,t
(1)
i )

≤ p∗(t) , t(1)0 = 0 < t(1)1 < · · ·< t(1)K1
= |E| ,

and such that p∗(t) > α1 > p for t ∈ (t(1)0 , t(1)1 ); arguing analogously on −p∗(·),
we can get s2(·) step function such that

s2(t) =
K2

∑
j=1

β jχ(t(2)j−1,t
(2)
j )

≥ p∗(t) , t(2)0 = 0 < t(2)1 < · · ·< t(2)K2
= |E| ,

and such that p∗(t)< βK2 < p for t ∈ (t(2)K2−1, t
(2)
K2

). Set

ε = min
{

t(1)1 , t(2)K2
− t(2)K2−1

}
,

and set
g1(t) = t−

1
α1 ∀t ∈ (0,ε)

g2(t) = (|E|− t)−
1

α1 ∀t ∈ (|E|− ε, |E|) .
Of course g1(·) and g2(·) are equimeasurable.

By Ryff’s theorem (see e.g. Theorem 7.5 p. 82 in Bennett and Sharpley [15]),
p = p∗ ◦σ where σ : E → (0, |E|) is a measure-preserving transformation, i.e.
a map such that the measure of any subset in (0, |E|) equals the measure of the
pre-image in E. Set f1 = g1 ◦σ and f2 = g2 ◦σ . By Proposition 7.2 p. 82 in
Bennett and Sharpley [15], f1(·) and g1(·) are equimeasurable and, analogously,
f2(·) and g2(·) are equimeasurable. Since g1(·) and g2(·) are equimeasurable,
also f1(·) and f2(·) are as well.

On the other hand, for any λ > 0 the function (λ f1(·))p(·) = (λg1 ◦σ)p∗◦σ =
[(λg1)

p∗ ] ◦ σ is not integrable, because again by the proposition above, it is
equimeasurable with (λg1)

p∗ which is not integrable (because for t small we

have that (λg1(t))p∗(t) > (λ t−
1

α1 )α1 = λ α1t−1), while the function ( f2(·))p(·) =
(g2 ◦σ)p∗◦σ = [(g2)

p∗ ]◦σ is integrable, because it is equimeasurable with (g2)
p∗

which is integrable (because (g2(t))p∗(t) < (|E| − t)−
βK2
α1 for t close to |E|, and

βK2 < p < α1). The conclusion is that if p(·) is non-constant, there exist two
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equimeasurable functions f1(·) and f2(·) such that f1 /∈ Lp(·)(Ω), f2 ∈ Lp(·)(Ω),
and the theorem is proved. �

One more result in this category is a consequence of Theorem 5 above (see
Corollary 1.22 in Cruz-Uribe, Di Fratta and the author [25]), which generalizes
a result by Lerner [87]:

Theorem 8. Let p(·) : Rn → [1,∞[. The inequality
∫

Rn
M f (x)p(x) dx ≤ c1

∫

Rn
| f (x)|p(x) dx+ c2

holds for every f ∈ Lp(x)(Rn) and for some positive constants c1,c2 independent
of f if and only if p(·) equals a constant p > 1 almost everywhere.

We may insert in this category also another result, which holds if and only
if the exponent is constant because it seems that it cannot even be stated in the
variable setting. The result is formula (5) above, which we recall here:

∫

Ω
| f (x)|p dx = p

∫ ∞

0
t p−1|{x ∈ Ω : | f (x)|> t}|dt .

Its generalization to the variable case seems “forbidden": in the book by Diening,
Harjulehto, Hästö and Růžička [39] (see the Warnings! in p.9; see also p. 4 in
Harjulehto and Hästö [68]) it is written that it has no variable exponent analogue,
because of course the formula

∫

Ω
| f (x)|p(x) dx = p

∫ ∞

0
t p(x)−1|{x ∈ Ω : | f (x)|> t}|dt

has no interest at all: similarly as in the case of (7), on the right hand side one has
a function and not a number. Note that since (5) governs the proof of Theorem
1, the proofs of Theorem 3 must be done with much different arguments (and in
fact they use Theorem 1).

In spite of the considerations above, we wish here to record the following
simple formulas.

Proposition 1. If Ω ⊂ Rn and p(·) : Ω → [1,∞[, then for all measurable func-
tions f in Ω the following equalities hold, the first one with the extra assumption
f (x) �= 0 for a.e. x ∈ Ω:

∫

Ω
| f (x)|p(x) dx =

∫

R
et |{x ∈ Ω : p(x) log | f (x)|> t}|dt (13)

∫

Ω
| f (x)|p(x) dx =

∫

R
et |{x ∈ Ω : | f (x)|> e

t
p(x) }|dt (14)

∫

Ω
| f (x)|p(x) dx =

∫ +∞

0
|{x ∈ Ω : | f (x)|> t

1
p(x) }|dt (15)

Proof.

Proof of (13): for any measurable g : Ω → R we may apply (5) to the positive
function exp(g(x)), in the case p = 1. After the substitution log t = s, we get

∫

Ω
exp(g(x))dx =

∫

R
es|{x ∈ Ω : g(x)> s}|ds .

If f : Ω → R is a.e. nonzero, setting g(x) = p(x) log | f (x)| in the above equality
we get the assertion.

Proof of (14): immediate after (13) for functions f such that f (x) �= 0 for a.e.
x∈Ω. If f (x) = 0 in a set Ω0 ⊂Ω, equality (14) holds with Ω replaced by Ω\Ω0;
however, the same equality is equivalent to the final assertion because the points
of Ω0 do not affect both members.

Proof of (15): apply the substitution et = s in (14). �

We note that, in the case p(·) constant, the substitution t
1
p = τ in (15) gives

back (5).
Finally, we remark that making the conventions in the spirit of (3), (9), one

can extend the validity of (13): for instance, writing

convention : log0 =−∞ ,

one can remove the assumption f (x) �= 0 for a.e. x ∈ Ω made for (13): in fact,
the set Ω0 ⊂ Ω where f = 0 a.e. does not influence both sides of (13) (note that
in the right hand side, for any given t ∈ R, any x such that f (x) = 0 would never
satisfy the inequality p(x) log | f (x)|= p(x) log0 =−∞ > t).

Essentially variable results
This last category concerns results which – in some opposite sense with re-

spect to the previous category – have no interest or no meaning at all when the
exponent is constant.

Let us state and prove the following proposition, where the problem of com-
parability in the sense of inclusion (or, equivalently, the continuous embedding)
is considered for two variable Lebesgue spaces whose exponents are linked by
the decreasing rearrangement operator.

Proposition 2. Let p(·) : (0,1)→ [1,∞[. The spaces Lp(·)(0,1) and Lp∗(·)(0,1)
are never comparable, unless p(·) = p∗(·), i.e. unless p(·) is decreasing.

Proof.
Let us assume that they are comparable. By condition 1. in Theorem 4, it must
be p(·)≤ p∗(·) or p(·)≥ p∗(·). If the first option holds and the second one does
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parability in the sense of inclusion (or, equivalently, the continuous embedding)
is considered for two variable Lebesgue spaces whose exponents are linked by
the decreasing rearrangement operator.

Proposition 2. Let p(·) : (0,1)→ [1,∞[. The spaces Lp(·)(0,1) and Lp∗(·)(0,1)
are never comparable, unless p(·) = p∗(·), i.e. unless p(·) is decreasing.

Proof.
Let us assume that they are comparable. By condition 1. in Theorem 4, it must
be p(·)≤ p∗(·) or p(·)≥ p∗(·). If the first option holds and the second one does
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not, it would exist a set E, |E|> 0, where p(·)< p∗(·). As a consequence, since
p(·) ≤ p∗(·), it must be �p(·)�L1(0,1) < �p∗(·)�L1(0,1), which is absurd because
by Theorem 7 the space L1(0,1) is rearrangement-invariant. In the other case
we can argue similarly, and the conclusion is that both options are true, hence
p(·) = p∗(·). �

As in the previous result, next one (see Theorem 3 in Rakotoson and the
author [65]) involves, for a function f , the notion of decreasing rearrangement
(denoted by f∗). Denoting by f ∗ the increasing rearrangement of f , all the norms
in next chain of inequalities (16) coincide in the case of constant exponents:

Proposition 3. If Ω ⊂ Rn, p(·) : Ω → [1,∞[ and f ≥ 0 in Ω, then

1
2(1+ |Ω|)� f∗�Lp∗(·) ≤ � f�Lp(·) ≤ 2(1+ |Ω|)� f∗�Lp∗(·) . (16)

Other results involving rearrangement of exponents are in Rakotoson, Sbor-
done and the author [66].

The crucial notion of the last result (see Krbec and the author [62]) is the
exponential summability: a function g measurable on Ω ⊂ Rn, |Ω| < ∞, is said
to belong to the Orlicz space EXPa(Ω), a > 0, if for some λ > 0

∫

Ω
exp(λ |g(x)|a) dx < ∞ .

Theorem 9. Let Ω ⊂ Rn be bounded and p(·) ∈ EXPa(Ω) for some a > 0. If
f ∈ Lp(·)(Ω), f �≡ 0, then p(·) log(M f ) ∈ EXPa/(a+1)(Ω).

It is clear that if p(·) is constant and finite, it is in particular in L∞(Ω) which
is contained in every EXPa(Ω), a > 0. In this case Theorem 9 tells that if
f ∈ Lp(Ω), f �≡ 0, then log(M f ) ∈ EXPa/(a+1)(Ω), for every a > 0. Note that
a/(a+ 1) < 1, hence the result is weaker than log(M f ) ∈ EXP1(Ω), which is
true because, since Ω is bounded, M f is bounded below by a positive number,
and therefore by Theorem 1

∫

Ω
exp(p| log(M f )|) dx < ∞ .

The weakness of the thesis is readily explained: it is the “price" to pay because
of the assumption p(·)∈ EXPa(Ω), which includes a class of non-constant expo-
nents (in fact, not bounded ones).

We close this Section pointing out that there exist essentially variable re-
sults which in the case of constant exponents have interest and meaning, but
phenomena are new, the novelty being due exactly to the variability of the expo-
nent. This happens for instance in Mercaldo, Rossi, Segura de León and Trom-
betti [94], where the authors consider an exponent having just two values, one of
them being 1, in a Dirichlet problem involving the p(x)−laplacian.

5 - CONCLUSION AND NEW PERSPECTIVES

The categories of results in variable Lebesgue spaces theory presented in this
Note could never pretend to be complete or rigorous. Moreover, even if nowa-
days the field is still very active, recently some new directions of research are
becoming of interest among researchers. Just to quote a few of them, the interest
in Musielak-Orlicz spaces is actually increasing, especially for their applications,
because they are also the natural framework to generalize the conditions coming
from variable Lebesgue spaces theory (see e.g. Ahmida, Chlebicka, Gwiazda
and Youssfi [4], Baruah, Harjulehto, and Hästö [14], Cruz-Uribe and Hästö [32],
Harjulehto and Hästö [68], Hästö[51, 52]); some special Musielak-Orlicz spaces,
which are also generalizations of variable Lebesgue spaces, are generated by the
functions Φ(x, t) = t p+a(x)tq, p < q, which give raise to the double phase func-
tional (see e.g. Baroni, Colombo and Mingione [12, 13], Colombo and Min-
gione [23]); there exist a huge development of variable variants of classical func-
tion spaces, for instance the Lorentz spaces with variable exponents (see Kempka
and Vybíral [74]), grand variable Lebesgue spaces and their weighted version
(see e.g. Kokilashvili, Meskhi and the author [63] and references therein) or the
variable exponent Besov and Triebel-Lizorkin spaces (see e.g. Almeida, Diening
and Hästö [5]).

Finally, let us mention that in principle, there are even papers where vari-
able exponents appear, but the topic has no connections at all with variable
Lebesgue spaces: for instance, in Anatriello, Chill and the author [8] (see also
references therein), the norm � · �Lp(x) which, for a given x, is a norm in the clas-
sical Lebesgue spaces, is considered. In Anatriello, Vincenzi and the author [9],
starting from a variable exponent which is a simple function (i.e. with a finite
number of values), the function spaces themselves “vary", and norms on product
of quasinormed spaces which are roots of polynomials are considered.
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