
SOCIETÀ NAZIONALE DI SCIENZE LETTERE E ARTI IN NAPOLI

RENDICONTO DELL’ACCADEMIA

DELLE SCIENZE FISICHE E MATEMATICHE

Antonio Corbo Esposito, Cristian Tirelli

A review about public cryptography protocols based on RSA
or elliptic curves

Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche, Serie 4, Vol. 86 (2019),
n.1, p. 123–146.
Società Nazione di Scienze, Lettere e Arti in Napoli; Giannini

<http://www.bdim.eu/item?id=RASFMN_2019_4_86_1_123_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio.
Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono
riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RASFMN_2019_4_86_1_123_0
http://www.bdim.eu/

Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche, Società Nazione di Scienze, Lettere e
Arti in Napoli; Giannini, 2019.

123

A review about public cryptography protocols based on RSA or
elliptic curves

Nota di Antonio Corbo Esposito1, Cristian Tirelli1

Presentata dal socio Antonio Corbo Esposito
(Adunanza del 15 novembre 2019)

Key words: RSA, Diffie-Hellman, Discrete Logarithm, Elliptic Curve, ECDSA

Abstract – We provide the basic definitions regarding computational complexity theory
and review some basic cryptography protocols based on RSA or elliptic curves. These
protocols summarize the history of the last fifty years in cryptography and are actually
ubiquitous in applications, as for example SSL (secure socket layers), smartcards, cre-
ation of a bitcoin wallet etc. Since it is known they are in the polynomial class for the
Shor’s algorithm, the possible development of quantum computers, needed to run such
algorithm, will represent a dramatic shift in cryptography research and in applications.

Riassunto – In questa nota forniamo le definizioni di base relative alla teoria della com-
plessitá computazionale ed esaminiamo alcuni semplici protocolli crittografici basati su
RSA e curve ellittiche. Questi protocolli riassumono la storia degli ultimi cinquant’anni
della crittografia e sono onnipresenti nelle applicazioni, come ad esempio SSL (secure
socket layers), smartcards, creazione di portafogli per bitcoin etc. Poiché é noto che rien-
trano nella classe di problemi polinomiali per l’algoritmo di Shor, un possibile sviluppo
dei computer quantistici, necessari per eseguire questi algoritmi, rappresenterebbe un
drammatico cambiamento nella ricerca crittografica e nelle applicazioni.

1 - INTRODUCTION

In this review we summarize the basic concepts about complexity theory and
provide an overview of main public cryptography protocols actually used for a
widespread range of applications, from the protections of money transactions
over internet to the creation of a bitcoin wallet to the digital signature of docu-
ments.
While these algorithms are ubiquitous in the present ICT world they all share a
common feature: they are all vulnerable to the Shor’s algorithm, meaning that if

1Dipartimento di Ingegneria Elettrica e dell’ Informazione "Maurizio Scarano", Uni-
versità degli studi di cassino e del Lazio meridionale, Via G. Di Biasio 43, 03043,
Cassino, Italia. e-mail: corbo@unicas.it, cristiantirelli@gmail.com

Rend. Acc. Sc. fis. mat. Napoli
Vol. LXXXVI, (2019) pp. 123-146

DOI 10.32092/1021

124 125

a "quantum computer" is ever realized managing a suitable number (i.e. >128)
of qubits, the complexity to solve these problems will fall into the polynomial
class.
The only problems present in this review which will resist to "quantum comput-
ers" are NP-complete problems, as MQ problem. However MQ problem, as other
"post quantum" cryptographic problems has failed so far to provide adequate and
practical public cryptography protocols. This review therefore provides an out-
look directed to the recent history of cryptography: this history has provided
exceptionally beautiful topics in mathematics, as RSA algorithm or the theory
of elliptic curves, while the fate of the protocols based upon these algorithms is
already sealed.
The world of cryptography is actively preparing for the upcoming paradigm shift.
New algorithms are proposed and NIST (National Institute of Standards and
Technology) has already started the selection for the next generation of proto-
cols that will resist even attacks running on "quantum computers".
The present situation and perspectives will be addressed in an upcoming report.

2 - COMPUTATIONAL COMPLEXITY THEORY

Computational complexity theory is a tool that help us to classify and analyze
computational problem to their inherent difficulty.
Information Theory tells us that every cryptographic algorithm is insecure, but
with the study of computational complexity we can tell after how much time this
algorithm can be broken.

2.1 - Algorithms complexity
The complexity of an algorithm is defined like the power needed to compute

it. Usually it’s measured considering two variables: T the time complexity and
S the spatial complexity. The complexity of an algorithm is expressed using the
Big O notation, that allow us to approximate the result using a superior limit.

Figure 1: Big O notation

Definition 1. f (n) = O(g(n)) means that k · g(n) is the superior limit of f (n).
So there exists a constant k such that f (n)≤ k ·g(n) for values bigger enough of
n

Definition 2. f (n) = Ω(g(n)) means that k ·g(n) is the inferior limit of f (n). So
there exists a constant k such that f (n)≥ k ·g(n), for values bigger enough of n

Definition 3. f (n) = Θ(g(n)) means that k1 · g(n) is the superior limit of f (n)
and k2 ·g(n) is the inferior limit for each n ≥ n0. So there exists some constants
k1 and k2 for which f (n) ≤ k1 · g(n) and f (n) ≥ k2 · g(n) with this we can say
g(n) is a good approximation of f (n).

This notation is usefull to group in the same class of complexity different
algorithm. The most common class of complexity are:

• Constant functions: f (n) = 1 when we don’t have a dependence of n

• Logarithmic functions: f (n) = logn

• Linear functions: f (n) = n

• Superlinear functions: f (n) = n logn

• Quadratic functions: f (n) = n2

• Cubic functions: f (n) = n3

• Exponential function: f (n) = cn

• Factorial functions: f (n) = n!

Figure 2: Execution time

To have a better gasp of the running time associate to each complexity function
we can read the following table:

124 125

a "quantum computer" is ever realized managing a suitable number (i.e. >128)
of qubits, the complexity to solve these problems will fall into the polynomial
class.
The only problems present in this review which will resist to "quantum comput-
ers" are NP-complete problems, as MQ problem. However MQ problem, as other
"post quantum" cryptographic problems has failed so far to provide adequate and
practical public cryptography protocols. This review therefore provides an out-
look directed to the recent history of cryptography: this history has provided
exceptionally beautiful topics in mathematics, as RSA algorithm or the theory
of elliptic curves, while the fate of the protocols based upon these algorithms is
already sealed.
The world of cryptography is actively preparing for the upcoming paradigm shift.
New algorithms are proposed and NIST (National Institute of Standards and
Technology) has already started the selection for the next generation of proto-
cols that will resist even attacks running on "quantum computers".
The present situation and perspectives will be addressed in an upcoming report.

2 - COMPUTATIONAL COMPLEXITY THEORY

Computational complexity theory is a tool that help us to classify and analyze
computational problem to their inherent difficulty.
Information Theory tells us that every cryptographic algorithm is insecure, but
with the study of computational complexity we can tell after how much time this
algorithm can be broken.

2.1 - Algorithms complexity
The complexity of an algorithm is defined like the power needed to compute

it. Usually it’s measured considering two variables: T the time complexity and
S the spatial complexity. The complexity of an algorithm is expressed using the
Big O notation, that allow us to approximate the result using a superior limit.

Figure 1: Big O notation

Definition 1. f (n) = O(g(n)) means that k · g(n) is the superior limit of f (n).
So there exists a constant k such that f (n)≤ k ·g(n) for values bigger enough of
n

Definition 2. f (n) = Ω(g(n)) means that k ·g(n) is the inferior limit of f (n). So
there exists a constant k such that f (n)≥ k ·g(n), for values bigger enough of n

Definition 3. f (n) = Θ(g(n)) means that k1 · g(n) is the superior limit of f (n)
and k2 ·g(n) is the inferior limit for each n ≥ n0. So there exists some constants
k1 and k2 for which f (n) ≤ k1 · g(n) and f (n) ≥ k2 · g(n) with this we can say
g(n) is a good approximation of f (n).

This notation is usefull to group in the same class of complexity different
algorithm. The most common class of complexity are:

• Constant functions: f (n) = 1 when we don’t have a dependence of n

• Logarithmic functions: f (n) = logn

• Linear functions: f (n) = n

• Superlinear functions: f (n) = n logn

• Quadratic functions: f (n) = n2

• Cubic functions: f (n) = n3

• Exponential function: f (n) = cn

• Factorial functions: f (n) = n!

Figure 2: Execution time

To have a better gasp of the running time associate to each complexity function
we can read the following table:

126 127

Classes Complexity #operation for n = 106 Time
Constant O(1) 1 1 μsec.
Linear O(n) 106 1 sec.
Quadratic O(n2) 1012 11.6 days
Cubic O(n3) 1018 32000 yrs.
Exponential O(2n) 10301030 10301006 y.u.

We can see that bruteforce attack for problems of exponential complexity are
not practically possible, since they will require enormous amount of time, in fact
this is the strengths of cryptographic algorithms.

2.2 - Complexity class
Cryptography is a science that was developed together with writing, in fact

there are numerous example of "secret writing" in the history. In the past all
the algorithm used to communicate secretly where based on the secrecy of the
algorithm itself, but right know it’s the complete opposite. Modern cryptography
made possible for two strangers to communicate securely using a channel secured
by the application of some mathematical problems and everything is done with
public algorithms.
Computational complexity theory classify not only the complexity of algorithms,
but also the complexity of problems in general. The objective is to find, using
less time and space possible , the solution to a problem on a theoretic computer
called Turing machine. Problems are divided in various class of complexity,
determinated on the base of their difficulty. In the following image we can see
various class and their relation, however mathematical a lot of topics still need to
be demonstrated.

Figure 3: Diagram of the complexity class

2.3 - P vs NP
Definition 4. The class P contains all the problem that can be solved in a poly-
nomial time.

Definition 5. The class NP contains all the problem of which the solution can be
verified in a polynomial time.

Like we can guess from the definitions the membership to a class NP require
less then the memebershipt to the class P. The class NP contains P because
every problem that can be resolved in polynomial time can also be verified in
polynomial time. It seems easy to prove that NP problems are more difficult of
P problems, but right now a mathematical demonstration still has to be made.
If NP = P will be demonstrated, a lot o cryptographic algorithms could become
useless. Some of this NP problems are more difficult than others and are called
NP− complete.

Definition 6. A P problem is called NP− complete is every other problem Q,
contained in NP, can be reduced to P in a polynomial time

Example 1. NP-complete problems:

• The knapsack problem. Given a set of items, each with a weight and a
value, determine the number of each item to include in a collection so that
the total weight is less than or equal to a given limit and the total value is
as large as possible

• Graph coloring problem. Given n colors, find a way to color the vertex of
a graph such that two adjacent vertex doesn’t have the same color.

• Travelling salesman problem. A traveler need to visit n different cities fol-
lowing the shortest route possible.

If at least one of this problems would be verified with an algorithm that run
in polynomial time, then we can say that NP �= P. All this problems are easy to
verify, but hard to solve. They complexity is exponential, but that doens’t mean
that every NP problem is exponential and this is what brings us to ask ourselves
if P = NP. Nowday no mathematical demonstration has succeeded in giving us
an answer.

2.4 - Boolean satisfiability problem
Boolean satisfiability problem (SAT) is a fundamental problem in the math-

ematical logic and in the theory of computational complexity. In practice it’s a
tool used for a variety of problems, for example there are numerous application
of it for solving design problem of integrated circuits.
Given a set of n variables: x1, . . . ,xn, a set of literals (a literals is a variable Q= x),
a set of distinct rules C1, . . . ,Cn, and each rules is a set of literals bound together
by the logic operation or (∨).
The objective of SAT problems is to find the value that associate to the literals,
make the following formula true.

C1 ∧C2 ∧ ...∧Cm

126 127

Classes Complexity #operation for n = 106 Time
Constant O(1) 1 1 μsec.
Linear O(n) 106 1 sec.
Quadratic O(n2) 1012 11.6 days
Cubic O(n3) 1018 32000 yrs.
Exponential O(2n) 10301030 10301006 y.u.

We can see that bruteforce attack for problems of exponential complexity are
not practically possible, since they will require enormous amount of time, in fact
this is the strengths of cryptographic algorithms.

2.2 - Complexity class
Cryptography is a science that was developed together with writing, in fact

there are numerous example of "secret writing" in the history. In the past all
the algorithm used to communicate secretly where based on the secrecy of the
algorithm itself, but right know it’s the complete opposite. Modern cryptography
made possible for two strangers to communicate securely using a channel secured
by the application of some mathematical problems and everything is done with
public algorithms.
Computational complexity theory classify not only the complexity of algorithms,
but also the complexity of problems in general. The objective is to find, using
less time and space possible , the solution to a problem on a theoretic computer
called Turing machine. Problems are divided in various class of complexity,
determinated on the base of their difficulty. In the following image we can see
various class and their relation, however mathematical a lot of topics still need to
be demonstrated.

Figure 3: Diagram of the complexity class

2.3 - P vs NP
Definition 4. The class P contains all the problem that can be solved in a poly-
nomial time.

Definition 5. The class NP contains all the problem of which the solution can be
verified in a polynomial time.

Like we can guess from the definitions the membership to a class NP require
less then the memebershipt to the class P. The class NP contains P because
every problem that can be resolved in polynomial time can also be verified in
polynomial time. It seems easy to prove that NP problems are more difficult of
P problems, but right now a mathematical demonstration still has to be made.
If NP = P will be demonstrated, a lot o cryptographic algorithms could become
useless. Some of this NP problems are more difficult than others and are called
NP− complete.

Definition 6. A P problem is called NP− complete is every other problem Q,
contained in NP, can be reduced to P in a polynomial time

Example 1. NP-complete problems:

• The knapsack problem. Given a set of items, each with a weight and a
value, determine the number of each item to include in a collection so that
the total weight is less than or equal to a given limit and the total value is
as large as possible

• Graph coloring problem. Given n colors, find a way to color the vertex of
a graph such that two adjacent vertex doesn’t have the same color.

• Travelling salesman problem. A traveler need to visit n different cities fol-
lowing the shortest route possible.

If at least one of this problems would be verified with an algorithm that run
in polynomial time, then we can say that NP �= P. All this problems are easy to
verify, but hard to solve. They complexity is exponential, but that doens’t mean
that every NP problem is exponential and this is what brings us to ask ourselves
if P = NP. Nowday no mathematical demonstration has succeeded in giving us
an answer.

2.4 - Boolean satisfiability problem
Boolean satisfiability problem (SAT) is a fundamental problem in the math-

ematical logic and in the theory of computational complexity. In practice it’s a
tool used for a variety of problems, for example there are numerous application
of it for solving design problem of integrated circuits.
Given a set of n variables: x1, . . . ,xn, a set of literals (a literals is a variable Q= x),
a set of distinct rules C1, . . . ,Cn, and each rules is a set of literals bound together
by the logic operation or (∨).
The objective of SAT problems is to find the value that associate to the literals,
make the following formula true.

C1 ∧C2 ∧ ...∧Cm

128 129

2.5 - Multivariate quadratic polinomial (MQ) problem
Another importan NP−Complete problem is the Multivariate Quadratic poli-

nomial (MQ) problem that sees its application in the public key cryptography. A
system of this kind have a set of quadratic polynomials on a finite field and solv-
ing this problems on a finite field is not easy. This kind of problem is considered
to be one of the few that could resist to a quantic computer. The public key
cryptosystem depends on the existance of a class of function called trapdoor;
this function are easy to calculate, but very difficult to invert (for example the
multiplication between two prime numbers). In the PKV (public key cryptosys-
tem) that uses MQ systems, the trapdoor function is a polynomial equation with
more then one boolean variables. Usually the key is generated with a system of
quadratic polynomials:

P = (p1(ω1, . . . ,ωn), . . . , pm(ω1, . . . ,ωn))

where pi is a non linear quadratic polynomial system over w = (ω1, . . . ,ωn):

pk(w) := ∑
i

Pikωi +∑
i

Qikω2
i +∑

i> j
Ri jkωiω j

in which each coefficient and each variable is in Fq.

3 - CRYPTOGRAPHIC PROTOCOLS

Sharing data and information on a secure channel between two endpoint was
something needed also during the egyptian times and only with the evolution of
society and the improvement in technologies was possible to create more sophis-
ticated methodologies to communicate. The real breakthrough there was in the
1976 with the publication of the Diffie-Hellman algorithm which got us a secure
way to exchange information on an insecure channel and after a few years, in
the 1978 another important algorithm, RSA(from it’s creators Rivest, Shamir e
Adleman) was born. The publication of this algorithms helped to develop and re-
search new area of math, contributing with the improvement of the general cryp-
tography technique. We can divide cryptographic protocol in two big branches:
symmetric and asymmetric cryptography. In the symmetric cryptography the
key used to encrypt the data is also used to decrypt it, meaning that the two part
need to share the same key. However with asymmetric cryptography we don’t
have this problem since it uses two different keys, one to encrypt and one to
decrypt. Usually this is used only to exchange the key and then use symmetric
cryptography, since asymmetric cryptography it’s not so efficient when dealing
with large quantities of data.

3.1 - Prime number generation
Prime number play an important role in cryptography, but generating those

number in a deterministic way and in a small amount of time is not possible;
what we can to is do generate random number and then check if they are prime
with a probability test.

Theorem 1. Prime number theorem
This theorem describe the asymptotic distribution of prime number and gives

use an approximation of how many prime exists under a certain integer n.
Let π(x) be the prime-counting function then

lim
x→∞

π(x)
x

log(x)
= 1

That can be approximated like this π(x)≈ x
log(x)

Algorithms like RSA and D-H use prime number of 512 bit that, using the
previous theorem, gives us around 10150 prime number that we can pick. Gener-
ating prime number is not easy, we could pick a random number and then try to
factorize it, but with number of 512 bit this is not possible since this operation
while require too much time. We need to use some probabilistic algorithms like
the following one.

Lehmann Algorithm
1. Pick a random number a less then p

2. Compute a
p−1

2 (mod p)

3. If a
p−1

2 �= (mod p) or a
p−1

2 �=−1 (mod p) then p is not prime

4. If a
p−1

2 ≡ 1 (mod p) or a
p−1

2 ≡ −1 (mod p) then the probability that p is
not prime doesn’t exceed 50%

Repeating this algorithm decrease the probability of p to not be prime.

Rabin-Miller Algorithm Let’s pick a random number p. Compute b that is
the number of times that 2 divide p−1 e let’s compute m so that p = 1+2bm.

1. Pick a random number a less then p

2. j = 0 and z = am (mod p)

3. If z = 1 or z = p−1 then p is probably prime

4. If j > 0 and z = 1 then p is not prime

5. j = j+1

6. If j < b and z �= p−1 then z = z2 (mod p) and repeat from the third point.
If z = p−1 then p is probably prime.

7. If j = b and z �= p−1 then p is not prime.

This is the most used algorithm because the probability of a number to not
be prime decrease faster than other algorithms, since it’s about 1

4t where t is the
number of iteration.

128 129

2.5 - Multivariate quadratic polinomial (MQ) problem
Another importan NP−Complete problem is the Multivariate Quadratic poli-

nomial (MQ) problem that sees its application in the public key cryptography. A
system of this kind have a set of quadratic polynomials on a finite field and solv-
ing this problems on a finite field is not easy. This kind of problem is considered
to be one of the few that could resist to a quantic computer. The public key
cryptosystem depends on the existance of a class of function called trapdoor;
this function are easy to calculate, but very difficult to invert (for example the
multiplication between two prime numbers). In the PKV (public key cryptosys-
tem) that uses MQ systems, the trapdoor function is a polynomial equation with
more then one boolean variables. Usually the key is generated with a system of
quadratic polynomials:

P = (p1(ω1, . . . ,ωn), . . . , pm(ω1, . . . ,ωn))

where pi is a non linear quadratic polynomial system over w = (ω1, . . . ,ωn):

pk(w) := ∑
i

Pikωi +∑
i

Qikω2
i +∑

i> j
Ri jkωiω j

in which each coefficient and each variable is in Fq.

3 - CRYPTOGRAPHIC PROTOCOLS

Sharing data and information on a secure channel between two endpoint was
something needed also during the egyptian times and only with the evolution of
society and the improvement in technologies was possible to create more sophis-
ticated methodologies to communicate. The real breakthrough there was in the
1976 with the publication of the Diffie-Hellman algorithm which got us a secure
way to exchange information on an insecure channel and after a few years, in
the 1978 another important algorithm, RSA(from it’s creators Rivest, Shamir e
Adleman) was born. The publication of this algorithms helped to develop and re-
search new area of math, contributing with the improvement of the general cryp-
tography technique. We can divide cryptographic protocol in two big branches:
symmetric and asymmetric cryptography. In the symmetric cryptography the
key used to encrypt the data is also used to decrypt it, meaning that the two part
need to share the same key. However with asymmetric cryptography we don’t
have this problem since it uses two different keys, one to encrypt and one to
decrypt. Usually this is used only to exchange the key and then use symmetric
cryptography, since asymmetric cryptography it’s not so efficient when dealing
with large quantities of data.

3.1 - Prime number generation
Prime number play an important role in cryptography, but generating those

number in a deterministic way and in a small amount of time is not possible;
what we can to is do generate random number and then check if they are prime
with a probability test.

Theorem 1. Prime number theorem
This theorem describe the asymptotic distribution of prime number and gives

use an approximation of how many prime exists under a certain integer n.
Let π(x) be the prime-counting function then

lim
x→∞

π(x)
x

log(x)
= 1

That can be approximated like this π(x)≈ x
log(x)

Algorithms like RSA and D-H use prime number of 512 bit that, using the
previous theorem, gives us around 10150 prime number that we can pick. Gener-
ating prime number is not easy, we could pick a random number and then try to
factorize it, but with number of 512 bit this is not possible since this operation
while require too much time. We need to use some probabilistic algorithms like
the following one.

Lehmann Algorithm
1. Pick a random number a less then p

2. Compute a
p−1

2 (mod p)

3. If a
p−1

2 �= (mod p) or a
p−1

2 �=−1 (mod p) then p is not prime

4. If a
p−1

2 ≡ 1 (mod p) or a
p−1

2 ≡ −1 (mod p) then the probability that p is
not prime doesn’t exceed 50%

Repeating this algorithm decrease the probability of p to not be prime.

Rabin-Miller Algorithm Let’s pick a random number p. Compute b that is
the number of times that 2 divide p−1 e let’s compute m so that p = 1+2bm.

1. Pick a random number a less then p

2. j = 0 and z = am (mod p)

3. If z = 1 or z = p−1 then p is probably prime

4. If j > 0 and z = 1 then p is not prime

5. j = j+1

6. If j < b and z �= p−1 then z = z2 (mod p) and repeat from the third point.
If z = p−1 then p is probably prime.

7. If j = b and z �= p−1 then p is not prime.

This is the most used algorithm because the probability of a number to not
be prime decrease faster than other algorithms, since it’s about 1

4t where t is the
number of iteration.

130 131

3.2 - RSA
The security of this particular algorithm is based on the difficulty to factorize

large number. There are some technique developed trying to break this algorithm,
but right now nobody found a solution that can be run on polynomial time.
RSA is not so difficult to understand, there are just three main step:

1. Generation of the public and private key

• Generate two big number p and q both with the same lenght in bit.
• Compute n = pq and φ = (p−1)(q−1)
• Pick a random integer e such that 1 < e < φ and gcd(e,φ) = 1
• With the extended Euclidean algorithm compute d such that 1< d < φ

and ed ≡ 1 (mod φ)
• The public key is given by the pair (n,e), while the private key is d

2. Data Encryption

• The part interested in the communication get the public key (n,e)
• Represented the message like a big integer m ∈ [0,n−1]
• Compute c = me (mod n)
• The encrypted message to send is c

3. Data Decryption

• The receiver, who provided the public key and who recived the en-
crypted text c, can get the original text use its private key d to get
m = cd (mod n).

Demonstration
Since ed ≡ 1 (mod φ) exist a value k such that ed = q+ kφ . If gcd(m, p) = 1
then for Fermat’s last theorem we have:

mp−1 ≡ 1 (mod p)

raising for k(q−1) and multiplicand for m we get:

m1+k(p−q)(q−1) ≡ m (mod p)

Else if gcd(m, p) = p then the last congruency hold since its congruent to 0
modulo p. So we always have that:

med ≡ m (mod p)

med ≡ m (mod q)

med ≡ m (mod n)

So it holds that:
cd ≡ (me)d ≡ m (mod n)

The encryption phare used in RSA can be speed up if we choose e equal to 4,
16 or 65537 since are more easy to calculate and they choice don’t make weak,
from a secuirty prospective, the algorithm.

3.3 - Diffie-Hellman
The first public key protocol was published in 1976 by Whitfield Diffie e

Martin Hellman and its the first example of public key exchange. Usually a
secure communication required a key exchange on a physical channel, but with
the introduction of D-H it become possible to exchange a secret key on a pub-
lic(insecure) channel.
Conceptually the algorithm is represented in the following image

Figure 4: Diffie-Hellman key exchange

Mathematically we define D-H algorithm on a multiplicative group of a finete

130 131

3.2 - RSA
The security of this particular algorithm is based on the difficulty to factorize

large number. There are some technique developed trying to break this algorithm,
but right now nobody found a solution that can be run on polynomial time.
RSA is not so difficult to understand, there are just three main step:

1. Generation of the public and private key

• Generate two big number p and q both with the same lenght in bit.
• Compute n = pq and φ = (p−1)(q−1)
• Pick a random integer e such that 1 < e < φ and gcd(e,φ) = 1
• With the extended Euclidean algorithm compute d such that 1< d < φ

and ed ≡ 1 (mod φ)
• The public key is given by the pair (n,e), while the private key is d

2. Data Encryption

• The part interested in the communication get the public key (n,e)
• Represented the message like a big integer m ∈ [0,n−1]
• Compute c = me (mod n)
• The encrypted message to send is c

3. Data Decryption

• The receiver, who provided the public key and who recived the en-
crypted text c, can get the original text use its private key d to get
m = cd (mod n).

Demonstration
Since ed ≡ 1 (mod φ) exist a value k such that ed = q+ kφ . If gcd(m, p) = 1
then for Fermat’s last theorem we have:

mp−1 ≡ 1 (mod p)

raising for k(q−1) and multiplicand for m we get:

m1+k(p−q)(q−1) ≡ m (mod p)

Else if gcd(m, p) = p then the last congruency hold since its congruent to 0
modulo p. So we always have that:

med ≡ m (mod p)

med ≡ m (mod q)

med ≡ m (mod n)

So it holds that:
cd ≡ (me)d ≡ m (mod n)

The encryption phare used in RSA can be speed up if we choose e equal to 4,
16 or 65537 since are more easy to calculate and they choice don’t make weak,
from a secuirty prospective, the algorithm.

3.3 - Diffie-Hellman
The first public key protocol was published in 1976 by Whitfield Diffie e

Martin Hellman and its the first example of public key exchange. Usually a
secure communication required a key exchange on a physical channel, but with
the introduction of D-H it become possible to exchange a secret key on a pub-
lic(insecure) channel.
Conceptually the algorithm is represented in the following image

Figure 4: Diffie-Hellman key exchange

Mathematically we define D-H algorithm on a multiplicative group of a finete

132 133

set of prime number. The two part Alice (A) and Bob(B) choose a big prime
number n and g such that g is a primitive element of G. The values n and g must
be kept secret and can be shared on a public channel following this procedure:

• A Pick a big integer x and sends to B X = gx (mod n)

• B Pick a big integer y and sends to A Y = gy (mod n)

• A Compute k0 = Y x (mod n)

• B Compute k1 = Xy (mod n)

Since (gx)y = (gy)x = gxy we have that k = k0 = k1. Knowing only n, g, X and Y
is not possible find x or y without first solving a discrete logarithm problem.

3.4 - Man in the middle
One thing that D-H cannot do is to protect ourself from MITM attack.

Figure 5: Diffie-Hellman MitM

Looking at the image is easy to notice that Alice cannot know if she is com-
municating with Eve or Bob, the only way to know the other interlocutor is to
meet him physically, same thing for Bob.

3.5 - Discrete logarithm problem
The D-H algorithm is the application of a mathematical problem called dis-

crete logarithm.

Definition 7. Let (G,◦) be a cyclic group of order n and let g be a generator of
G. Having y = gx = g◦g...◦g find x.

We basically need to calculate x = logg y (discrete logarithm). One thing to
notice is that the solution to this problem is not unique. If G is a cyclic group with
g as generator then gx = gz ⇔ x ≡ z (mod n). The difficulty in solving a discrete
logarithm problem depends also from the chosen group and from the operation
defined in it. In fact solving the DLP on additive group modulo n is a lot easier
that solving DLP on multiplicative group(like in D-H).

4 - ELLIPTIC CURVE

A lot of public key algorithms, protocols and cryptocurrency (recently born)
are based on elliptic curve that allows to have a security level comparable with
the one offered by RSA and D-H, but with faster encryption and decryption time.

Definition 8. An elliptic curve E on a field K written as E/K is given by the
Weierstraβ equation:

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6

with a1,a2,a3,a4,a6 ∈K such that for every point (x1,y1) with coordinate in
K satisfy E and its partial derivatives 2y1+a1x1+a3 and 3x2

1+2a2x1+a4−a1y1
do not become null.
Another condition to satisfy is that of non-singularity. A point of a curve is
singular if both the partial derivatives are null. More formally we can write:

Definition 9. Let:

b2 = a2
1 +4a2

b4 = a1a3 +2a4

b6 = a2
3 +4a6

b8 = a2
1a6 −a1a3a4 +4a2a6 +a2a2

3 +a2
4

Using the transformation y → y− (a1x+a3)/2 we get an isomorphic curve

y2 = x3 +
b2

4
x2 +

b4

2
x+

b6

4

whose cubic polynomial have the roots in the closure of K if and only if the
discriminant is not null.

The equation is useful to find out if a curve is elliptic or not.

Definition 10. Let E a curve defined over K. The discriminant of E denoted by
Δ satisfies

Δ =−b2
2b8 −8b3

4 −27b2
6 +9b2b4b6

The curve is not singular and so its elliptic if and only if Δ is not null. That
assure the existence of one unique tangent for each point on the curve.

132 133

set of prime number. The two part Alice (A) and Bob(B) choose a big prime
number n and g such that g is a primitive element of G. The values n and g must
be kept secret and can be shared on a public channel following this procedure:

• A Pick a big integer x and sends to B X = gx (mod n)

• B Pick a big integer y and sends to A Y = gy (mod n)

• A Compute k0 = Y x (mod n)

• B Compute k1 = Xy (mod n)

Since (gx)y = (gy)x = gxy we have that k = k0 = k1. Knowing only n, g, X and Y
is not possible find x or y without first solving a discrete logarithm problem.

3.4 - Man in the middle
One thing that D-H cannot do is to protect ourself from MITM attack.

Figure 5: Diffie-Hellman MitM

Looking at the image is easy to notice that Alice cannot know if she is com-
municating with Eve or Bob, the only way to know the other interlocutor is to
meet him physically, same thing for Bob.

3.5 - Discrete logarithm problem
The D-H algorithm is the application of a mathematical problem called dis-

crete logarithm.

Definition 7. Let (G,◦) be a cyclic group of order n and let g be a generator of
G. Having y = gx = g◦g...◦g find x.

We basically need to calculate x = logg y (discrete logarithm). One thing to
notice is that the solution to this problem is not unique. If G is a cyclic group with
g as generator then gx = gz ⇔ x ≡ z (mod n). The difficulty in solving a discrete
logarithm problem depends also from the chosen group and from the operation
defined in it. In fact solving the DLP on additive group modulo n is a lot easier
that solving DLP on multiplicative group(like in D-H).

4 - ELLIPTIC CURVE

A lot of public key algorithms, protocols and cryptocurrency (recently born)
are based on elliptic curve that allows to have a security level comparable with
the one offered by RSA and D-H, but with faster encryption and decryption time.

Definition 8. An elliptic curve E on a field K written as E/K is given by the
Weierstraβ equation:

E : y2 +a1xy+a3y = x3 +a2x2 +a4x+a6

with a1,a2,a3,a4,a6 ∈K such that for every point (x1,y1) with coordinate in
K satisfy E and its partial derivatives 2y1+a1x1+a3 and 3x2

1+2a2x1+a4−a1y1
do not become null.
Another condition to satisfy is that of non-singularity. A point of a curve is
singular if both the partial derivatives are null. More formally we can write:

Definition 9. Let:

b2 = a2
1 +4a2

b4 = a1a3 +2a4

b6 = a2
3 +4a6

b8 = a2
1a6 −a1a3a4 +4a2a6 +a2a2

3 +a2
4

Using the transformation y → y− (a1x+a3)/2 we get an isomorphic curve

y2 = x3 +
b2

4
x2 +

b4

2
x+

b6

4

whose cubic polynomial have the roots in the closure of K if and only if the
discriminant is not null.

The equation is useful to find out if a curve is elliptic or not.

Definition 10. Let E a curve defined over K. The discriminant of E denoted by
Δ satisfies

Δ =−b2
2b8 −8b3

4 −27b2
6 +9b2b4b6

The curve is not singular and so its elliptic if and only if Δ is not null. That
assure the existence of one unique tangent for each point on the curve.

134 135

Figure 6: Curve y2 = x3 with a singular point
of cusp y2 = x3 −3x+2

Figure 7: Curve y2 = x3 −3x+2 with a
node(singular point)

4.1 - Group law
The set of point described by the curve together with a group operation define

a group on R. Since we are in an abelian group we can write P+Q+R = Θ
like P+Q = −R. This allows us to derive a geometric way to sum two points
P(x1,y1) and Q= (x2,y2). The result of the operation can be obtained by drawing
a straight line that pass on the two points P and Q, the third point R is given by
the intersection of the straight line with the curve. The result of the sum is the
point R with its y coordinate multiplied by −1.

Figure 8: Curve over R Figure 9: Curve over F

Figure 10: Sum over R
Figure 11: Doubling over F

From the Weierstraβ equation we can obtain different kind of curve and each
curve have a different group law which depends on the group.

Group law on a field K= Fp with p>3

y2 = x3 +ax+b

1. Identity: P+Θ = P for every P on the curve

2. Opposite: Let P = (x,y) then (x,y) + (x,−y) = Θ. The point (x,−y) is
written as −P

3. Addition: Let P = (x1,y1) and Q = (x2,y2) points on the curve with P �=
±Q. Then R = P+Q = (x3,y3) with:

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

4. Doubling: Let P = (x1,y1) a point on the curve and P �= −P. Then R =
P+P = (x3,y3) with:

x3 =

(
3x2

1 +a
2y1

)2

−2x1

y3 =

(
3x1 +a

2y1

)
(x1 − x3)− y1

Group law of super singular curve over K= F2m

y2 + cy = x3 +ax+b

134 135

Figure 6: Curve y2 = x3 with a singular point
of cusp y2 = x3 −3x+2

Figure 7: Curve y2 = x3 −3x+2 with a
node(singular point)

4.1 - Group law
The set of point described by the curve together with a group operation define

a group on R. Since we are in an abelian group we can write P+Q+R = Θ
like P+Q = −R. This allows us to derive a geometric way to sum two points
P(x1,y1) and Q= (x2,y2). The result of the operation can be obtained by drawing
a straight line that pass on the two points P and Q, the third point R is given by
the intersection of the straight line with the curve. The result of the sum is the
point R with its y coordinate multiplied by −1.

Figure 8: Curve over R Figure 9: Curve over F

Figure 10: Sum over R
Figure 11: Doubling over F

From the Weierstraβ equation we can obtain different kind of curve and each
curve have a different group law which depends on the group.

Group law on a field K= Fp with p>3

y2 = x3 +ax+b

1. Identity: P+Θ = P for every P on the curve

2. Opposite: Let P = (x,y) then (x,y) + (x,−y) = Θ. The point (x,−y) is
written as −P

3. Addition: Let P = (x1,y1) and Q = (x2,y2) points on the curve with P �=
±Q. Then R = P+Q = (x3,y3) with:

x3 =

(
y2 − y1

x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1

4. Doubling: Let P = (x1,y1) a point on the curve and P �= −P. Then R =
P+P = (x3,y3) with:

x3 =

(
3x2

1 +a
2y1

)2

−2x1

y3 =

(
3x1 +a

2y1

)
(x1 − x3)− y1

Group law of super singular curve over K= F2m

y2 + cy = x3 +ax+b

136 137

1. Identity: P+Θ = P for every P on the curve

2. Opposite: Let P = (x,y) ∈ E, the point P
�
= (x,x+ c) be on the curve and

P+P
�
= Θ. P

�
is the opposite of P and is written as −P

3. Addition: Let P = (x1,y1) and Q = (x2,y2) points on the curve, P �= ±Q.
Then R = P+Q = (x3,y3) where:

x3 =

(
y2 + y1

x2 + x1

)2

+ x1 + x2

y3 =

(
y2 + y1

x2 + x1

)
(x1 + x3)+ y1 + c

4. Doubling: Let P = (x1,y1) a point on the curve and P �= −P. Then R =
P+P = (x3,y3) with:

x3 =

(
x2

1 +a
c

)2

y3 =

(
x2

1 +a
c

)
(x1 + x3)+ y1 + c

Group law of non super singular curve over K= F2m

y2 + cy = x3 +ax+b

1. Identity: P+Θ = P for every P on the curve

2. Opposite: Let P = (x,y) ∈ E the point P
�
= (x,x+c) is a point on the curve

and P+P
�
= Θ. P

�
is the opposite of P witten as −P

3. Addition: Let P = (x1,y1) and Q = (x2,y2) points on the curve, P �= ±Q.
Then R = P+Q = (x3,y3) where:

x3 = λ 2 +λ + x1 + x2 +a
y3 = λ (x1 + x3)+ x3 + y1

with λ = (y1 + y2)/(x1 + x2)

4. Doubling: Let P = (x1,y1) a point on the curve and P �= −P. Then R =
P+P = (x3,y3) with:

x3 = λ 2 +λ +a = x2
1 +

b
x2

1

y3 = x2
1 +λx3 + x3

where λ = x1 + y1/x2

Observation 1. From the group law we can obtain another operation i.e. the
scalar multiplication:

n ·P = P+P+ ...+P︸ ︷︷ ︸
n times

Looking at the formula we can notice that if n have k bit then the sum would
spend about O(2k), that’s practically not feasible. What we can to do speed up
this operation is to use a technique similar to the Square and Multiply.
Example 2. Let n = 151, in binary becomes 100101112 that we can write like:

151 = 1 ·27 +0 ·26 +0 ·25 +1 ·24 +0 ·23 +1 ·22 +1 ·21 +1 ·20

and in our case:

151 ·P = 27P+24P+27P+22P+21P+20P

That’s a lot easier to calculate and take only O(logn) to be computed.
4.2 - Order of a group

In general is not easy to calculate how many points are on a EC, what we can
to is to write and approximation of it using the following theorem:
Theorem 2. Hasse-Wail theorem
Let E an elliptic curve define over Fq. Then

|E(Fq)|= q+1− t

with |t| ≤ 2
√

q

4.3 - Discrete logarithm problem
Definition 11. Let (G,⊕) a cyclic group of order p, with p prime. Let P,Q ∈ G
and let P be a generator of G.
The DL in G of Q respect to P is n = logP Q so that:

Q = n ·P = P⊕P⊕ ...⊕P︸ ︷︷ ︸
n times

We need to find n, modulo p, knowing only P and Q.
The security of a system that uses a DLP on elliptic curve depends also from

the group operation ⊕ and from the choice of G.
In our case we have:

Q = P+P+ ...+P︸ ︷︷ ︸
n times

= n ·P

4.4 - Elliptic curve over finite fields
We only talked about elliptic curve defined over R but real application uses

only finite fields.
Definition 12. An elliptic curve on Fp with p > 3 is the set of all the point
(x,y) ∈ Fp

y2 ≡ x3 +ax+b (mod p)

together with an imaginary point at infinity and with a,b ∈ Fp and 4a4 +27b2 �=
0 (mod p)

136 137

1. Identity: P+Θ = P for every P on the curve

2. Opposite: Let P = (x,y) ∈ E, the point P
�
= (x,x+ c) be on the curve and

P+P
�
= Θ. P

�
is the opposite of P and is written as −P

3. Addition: Let P = (x1,y1) and Q = (x2,y2) points on the curve, P �= ±Q.
Then R = P+Q = (x3,y3) where:

x3 =

(
y2 + y1

x2 + x1

)2

+ x1 + x2

y3 =

(
y2 + y1

x2 + x1

)
(x1 + x3)+ y1 + c

4. Doubling: Let P = (x1,y1) a point on the curve and P �= −P. Then R =
P+P = (x3,y3) with:

x3 =

(
x2

1 +a
c

)2

y3 =

(
x2

1 +a
c

)
(x1 + x3)+ y1 + c

Group law of non super singular curve over K= F2m

y2 + cy = x3 +ax+b

1. Identity: P+Θ = P for every P on the curve

2. Opposite: Let P = (x,y) ∈ E the point P
�
= (x,x+c) is a point on the curve

and P+P
�
= Θ. P

�
is the opposite of P witten as −P

3. Addition: Let P = (x1,y1) and Q = (x2,y2) points on the curve, P �= ±Q.
Then R = P+Q = (x3,y3) where:

x3 = λ 2 +λ + x1 + x2 +a
y3 = λ (x1 + x3)+ x3 + y1

with λ = (y1 + y2)/(x1 + x2)

4. Doubling: Let P = (x1,y1) a point on the curve and P �= −P. Then R =
P+P = (x3,y3) with:

x3 = λ 2 +λ +a = x2
1 +

b
x2

1

y3 = x2
1 +λx3 + x3

where λ = x1 + y1/x2

Observation 1. From the group law we can obtain another operation i.e. the
scalar multiplication:

n ·P = P+P+ ...+P︸ ︷︷ ︸
n times

Looking at the formula we can notice that if n have k bit then the sum would
spend about O(2k), that’s practically not feasible. What we can to do speed up
this operation is to use a technique similar to the Square and Multiply.
Example 2. Let n = 151, in binary becomes 100101112 that we can write like:

151 = 1 ·27 +0 ·26 +0 ·25 +1 ·24 +0 ·23 +1 ·22 +1 ·21 +1 ·20

and in our case:

151 ·P = 27P+24P+27P+22P+21P+20P

That’s a lot easier to calculate and take only O(logn) to be computed.
4.2 - Order of a group

In general is not easy to calculate how many points are on a EC, what we can
to is to write and approximation of it using the following theorem:
Theorem 2. Hasse-Wail theorem
Let E an elliptic curve define over Fq. Then

|E(Fq)|= q+1− t

with |t| ≤ 2
√

q

4.3 - Discrete logarithm problem
Definition 11. Let (G,⊕) a cyclic group of order p, with p prime. Let P,Q ∈ G
and let P be a generator of G.
The DL in G of Q respect to P is n = logP Q so that:

Q = n ·P = P⊕P⊕ ...⊕P︸ ︷︷ ︸
n times

We need to find n, modulo p, knowing only P and Q.
The security of a system that uses a DLP on elliptic curve depends also from

the group operation ⊕ and from the choice of G.
In our case we have:

Q = P+P+ ...+P︸ ︷︷ ︸
n times

= n ·P

4.4 - Elliptic curve over finite fields
We only talked about elliptic curve defined over R but real application uses

only finite fields.
Definition 12. An elliptic curve on Fp with p > 3 is the set of all the point
(x,y) ∈ Fp

y2 ≡ x3 +ax+b (mod p)

together with an imaginary point at infinity and with a,b ∈ Fp and 4a4 +27b2 �=
0 (mod p)

138 139

5 - STUDY OF A CURVE

Let’s take for example the curve y2 = x2 −5x+11 over F317. Graphically on
the set of real number and in the finite set we have:

Figure 12: Curve over R Figure 13: Curve over F

Graphically representing the sum and the doubling we get:

Figure 14: Sum over R Figure 15: Sum over F

Applying the formulas defined in the group law we get:

• Real field:

P = (3,4.7958)
Q = (−2.9054,1)
R = P+Q = (x3,y3)

x3 =

(
4.7958−1
2.9054−3

)2

−3+2.9054 = 0.3186

y3 =

(
1−4.7958
−2.9054−3

)
(3−0.3186)−4.7958 =−3.0723

R = (0.3186,−3.0723)

• Finite field:

P = (36,34)
Q = (90,27)
R = P+Q = (x3,y3)

x3 =

(
34−27
90−36

)2

−36−90 = 227 (mod 317)

y3 =

(
27−34
90−36

)
(36−227)−34 = 161 (mod 317)

R = (227,161)

For the doubling:

Figure 16: Doubling over R Figure 17: Doubling over F

138 139

5 - STUDY OF A CURVE

Let’s take for example the curve y2 = x2 −5x+11 over F317. Graphically on
the set of real number and in the finite set we have:

Figure 12: Curve over R Figure 13: Curve over F

Graphically representing the sum and the doubling we get:

Figure 14: Sum over R Figure 15: Sum over F

Applying the formulas defined in the group law we get:

• Real field:

P = (3,4.7958)
Q = (−2.9054,1)
R = P+Q = (x3,y3)

x3 =

(
4.7958−1
2.9054−3

)2

−3+2.9054 = 0.3186

y3 =

(
1−4.7958
−2.9054−3

)
(3−0.3186)−4.7958 =−3.0723

R = (0.3186,−3.0723)

• Finite field:

P = (36,34)
Q = (90,27)
R = P+Q = (x3,y3)

x3 =

(
34−27
90−36

)2

−36−90 = 227 (mod 317)

y3 =

(
27−34
90−36

)
(36−227)−34 = 161 (mod 317)

R = (227,161)

For the doubling:

Figure 16: Doubling over R Figure 17: Doubling over F

140 141

• Real field:

P = (2,3)
R = 2 ·P = (x2,y2)

x2 =

(
3 ·22 −5

2 ·3
)2

−2 ·2 =−2.6388

y2 =

(
3 ·22 −5

2 ·3
)
(2+2.6388)−3 = 2.4120

R = (−2.6388,2.4120)

• Finite field:

P = (63,43)
R = 2 ·P = (x2,y2)

x2 =

(
3 ·632 −5

2 ·43

)2

−2 ·63 = 153 (mod 317)

y2 =

(
3 ·632 −5

2 ·43

)
(63−153)−43 = 292 (mod 317)

R = (153,292)

To estimate the order of the curve we use the Hasse-Weil theorem and we get
that :

282 ≤ |E(Fq)| ≤ 353

Calculating the exact order of a curve is not an easy task, to get a precise
result we could calculate and the count every point in the group, but this is not
feasible we using group with a big prime number.
In our case since p is very small this approach can be used and after calculating
and counting every point we get 312.

6 - ELLIPTIC CURVE APPLICATION IN CRYPTOGRAPHY

A lot of the algorithms defined on finite field can be readapted to be used on
group build upon elliptic curve. In the following section we will see two ap-
plication of it, just to have an idea and to see how much they differ from they
corresponding defined only on finite filed.

6.1 - Diffie-Hellman
Compared to the original algorithm, the basic principle is the same we only

need to change the group and its operations.
Let’s considere the curve y2 ≡ x3 + ax+ b (mod p) with p > 3. Alice (A) and
Bob (B) choose a primitive elements P of G then:

• A and B generate their private key dA and dB

• A and B generate their public key QA = dAP and QB = dBP, with P ∈ G
public

• A and B exchange QA and QB

• A compute S = nAQB and B compute S = nBQA

Since P is know by multiplying with they private key the message of the other
they get a common key to use to encrypt data and after that they can start to com-
municate.

6.2 - ECDSA
A digital signature is a mathematical scheme used to verify the authenticity

of a message. It guarantees to the receiver that the sender is authentic and that
the message didn’t change on the communication channel.
There are numerous DSA (Digital Signature Algorithm) based, for example, on
elliptic curve, but the overall procedure is the same.

Algorithm
Let’s suppose that Alice wants to send a signed message to Bob, the first thing
that they have to do is decide the parameters of the curve, (C,G,n) where:

• C is the equation of the elliptic curve and it include the field on which is
defined

• G is a generatore of the curve with order n

• n is an integer that’s the order of G and that verify: nG = 0

Then Alice generate a private key dA ∈ [1,n−1] and a public key QA = dA ·G.
Since the parameters QA and G are public in theory it’s possible to find the secret
key dA and so impersonate Alice.
In practice this is not possible, since finding dA means solving a discrete log-
arithm problem on elliptic curve. In the following chapter we will see some
common algorithm that try to solve the DLP and they execution time.

6.3 - Signature
Alice can sign a massage m by following this steps:

1. Compute e = HASH(m) with an hashing function (like SHA)

2. Let z composed by the Ln leftmost bit of e where Ln is the length in bit of
the order of the group n.

3. Pick a random integer k ∈ [1,n−1]

4. Compute the point (x1,y1) = k ·G
5. Compute r = x1 (mod n). If r = 0 go back to 3

6. Compute s = k−1(z+ rdA) (mod n). If s = 0 go back to 3

140 141

• Real field:

P = (2,3)
R = 2 ·P = (x2,y2)

x2 =

(
3 ·22 −5

2 ·3
)2

−2 ·2 =−2.6388

y2 =

(
3 ·22 −5

2 ·3
)
(2+2.6388)−3 = 2.4120

R = (−2.6388,2.4120)

• Finite field:

P = (63,43)
R = 2 ·P = (x2,y2)

x2 =

(
3 ·632 −5

2 ·43

)2

−2 ·63 = 153 (mod 317)

y2 =

(
3 ·632 −5

2 ·43

)
(63−153)−43 = 292 (mod 317)

R = (153,292)

To estimate the order of the curve we use the Hasse-Weil theorem and we get
that :

282 ≤ |E(Fq)| ≤ 353

Calculating the exact order of a curve is not an easy task, to get a precise
result we could calculate and the count every point in the group, but this is not
feasible we using group with a big prime number.
In our case since p is very small this approach can be used and after calculating
and counting every point we get 312.

6 - ELLIPTIC CURVE APPLICATION IN CRYPTOGRAPHY

A lot of the algorithms defined on finite field can be readapted to be used on
group build upon elliptic curve. In the following section we will see two ap-
plication of it, just to have an idea and to see how much they differ from they
corresponding defined only on finite filed.

6.1 - Diffie-Hellman
Compared to the original algorithm, the basic principle is the same we only

need to change the group and its operations.
Let’s considere the curve y2 ≡ x3 + ax+ b (mod p) with p > 3. Alice (A) and
Bob (B) choose a primitive elements P of G then:

• A and B generate their private key dA and dB

• A and B generate their public key QA = dAP and QB = dBP, with P ∈ G
public

• A and B exchange QA and QB

• A compute S = nAQB and B compute S = nBQA

Since P is know by multiplying with they private key the message of the other
they get a common key to use to encrypt data and after that they can start to com-
municate.

6.2 - ECDSA
A digital signature is a mathematical scheme used to verify the authenticity

of a message. It guarantees to the receiver that the sender is authentic and that
the message didn’t change on the communication channel.
There are numerous DSA (Digital Signature Algorithm) based, for example, on
elliptic curve, but the overall procedure is the same.

Algorithm
Let’s suppose that Alice wants to send a signed message to Bob, the first thing
that they have to do is decide the parameters of the curve, (C,G,n) where:

• C is the equation of the elliptic curve and it include the field on which is
defined

• G is a generatore of the curve with order n

• n is an integer that’s the order of G and that verify: nG = 0

Then Alice generate a private key dA ∈ [1,n−1] and a public key QA = dA ·G.
Since the parameters QA and G are public in theory it’s possible to find the secret
key dA and so impersonate Alice.
In practice this is not possible, since finding dA means solving a discrete log-
arithm problem on elliptic curve. In the following chapter we will see some
common algorithm that try to solve the DLP and they execution time.

6.3 - Signature
Alice can sign a massage m by following this steps:

1. Compute e = HASH(m) with an hashing function (like SHA)

2. Let z composed by the Ln leftmost bit of e where Ln is the length in bit of
the order of the group n.

3. Pick a random integer k ∈ [1,n−1]

4. Compute the point (x1,y1) = k ·G
5. Compute r = x1 (mod n). If r = 0 go back to 3

6. Compute s = k−1(z+ rdA) (mod n). If s = 0 go back to 3

142 143

7. The digital signature is the pair (r,s)

The parameter k doesn’t have to be private, but it’s important that it’s different
every time that we sign a message else we can compute dA with the information
of two signed message.

Verification of the signature
To verify the signature of Alice, Bob must have the point QA then checks if the
point is on the curve:

• Check that QA is not the identity

• Check that QA is on the curve

• Check that n ·QA = 0

Next he verify the digital signature.

1. Checks that r and s are both integer in [1,n−1]. If this is not the case then
the signature is not valid.

2. Compute e = HASH(m) where the hashing function is the same used for
the signature

3. Compute w = s−1 (mod n)

4. Compute u1 = zw (mod n) and u2 = rw (mod n)

5. Compute a point on the curve (x1,y1) = u1 ·G+u2 ·QA. If (x1,y1) = Θ then
the signature is not valid

6. The signature is valid if r ≡ x1 (mod n) else is not valid

It’s easy to verify that the algorithm gives the correct result.

C = u1 ·G+u2 ·G = (u1 +u2dA) ·G
=
(
zs−1 + rdAs−1) ·G = (z+ rdA)s−1 ·G

= (z+ rdA)(z+ rdA)
−1 (k−1)−1 ·G

= k ·G

7 - COMPUTING THE DISCRETE LOGARITHM

The best algorithms to solve discrete logarithm problem on cyclic group have
a complexity of O(

√
n) and they are called square root algorithms. In general

those algorithm use the birthday paradox as main idea, trying to exploit the col-
lision during the execution. The most famous are: giant-step, baby-step and
Pollard-ρ .

7.1 - Baby-step, giant-step
This algorithm use as main idea the following remark:

Observation 2. Let x a positive integer. We can write x like :

x = am+b

with a,m,b integer

We can define the DLP on elliptic curve such as:

Q = xP
Q = (am+b)P
Q = amP+bP

Q−amP = bP

The steps that we need to follow to execute our algorithm are:

• Compute m =
√

n

• For each b in 0...m compute bP and save the result into an hash table

• For each a in 0, ...,m compute:

– amP
– Q−amP
– Check if in the hash table exist a point such that Q−amP = bP
– If it exist then we found x = am+b

The points bP are the baby step (computed with small increments), while in
the second part of the algorithm we calculate the giant step (computed with big
increments) A more direct way to explain the overall algorithm is the following.
Let’s take the equation Q = amP+bP and consider the case:

• When a = 0 we check that Q is equal to bP with b in 0, ...,m. So we are
comparing Q with the points ranging from 0P to mP

• When a = 1 we check that Q is equal to mP+bP. So we are comparing Q
with all the points ranging from mP to 2mP

• When a = 2 we are comparing Q with all the points ranging from 2mP to
3mP

• ...

• When a = m − 1 we are comparing Q with all the points ranging from
(m−1)mP to m2P = nP

142 143

7. The digital signature is the pair (r,s)

The parameter k doesn’t have to be private, but it’s important that it’s different
every time that we sign a message else we can compute dA with the information
of two signed message.

Verification of the signature
To verify the signature of Alice, Bob must have the point QA then checks if the
point is on the curve:

• Check that QA is not the identity

• Check that QA is on the curve

• Check that n ·QA = 0

Next he verify the digital signature.

1. Checks that r and s are both integer in [1,n−1]. If this is not the case then
the signature is not valid.

2. Compute e = HASH(m) where the hashing function is the same used for
the signature

3. Compute w = s−1 (mod n)

4. Compute u1 = zw (mod n) and u2 = rw (mod n)

5. Compute a point on the curve (x1,y1) = u1 ·G+u2 ·QA. If (x1,y1) = Θ then
the signature is not valid

6. The signature is valid if r ≡ x1 (mod n) else is not valid

It’s easy to verify that the algorithm gives the correct result.

C = u1 ·G+u2 ·G = (u1 +u2dA) ·G
=
(
zs−1 + rdAs−1) ·G = (z+ rdA)s−1 ·G

= (z+ rdA)(z+ rdA)
−1 (k−1)−1 ·G

= k ·G

7 - COMPUTING THE DISCRETE LOGARITHM

The best algorithms to solve discrete logarithm problem on cyclic group have
a complexity of O(

√
n) and they are called square root algorithms. In general

those algorithm use the birthday paradox as main idea, trying to exploit the col-
lision during the execution. The most famous are: giant-step, baby-step and
Pollard-ρ .

7.1 - Baby-step, giant-step
This algorithm use as main idea the following remark:

Observation 2. Let x a positive integer. We can write x like :

x = am+b

with a,m,b integer

We can define the DLP on elliptic curve such as:

Q = xP
Q = (am+b)P
Q = amP+bP

Q−amP = bP

The steps that we need to follow to execute our algorithm are:

• Compute m =
√

n

• For each b in 0...m compute bP and save the result into an hash table

• For each a in 0, ...,m compute:

– amP
– Q−amP
– Check if in the hash table exist a point such that Q−amP = bP
– If it exist then we found x = am+b

The points bP are the baby step (computed with small increments), while in
the second part of the algorithm we calculate the giant step (computed with big
increments) A more direct way to explain the overall algorithm is the following.
Let’s take the equation Q = amP+bP and consider the case:

• When a = 0 we check that Q is equal to bP with b in 0, ...,m. So we are
comparing Q with the points ranging from 0P to mP

• When a = 1 we check that Q is equal to mP+bP. So we are comparing Q
with all the points ranging from mP to 2mP

• When a = 2 we are comparing Q with all the points ranging from 2mP to
3mP

• ...

• When a = m − 1 we are comparing Q with all the points ranging from
(m−1)mP to m2P = nP

144 145

7.2 - Pollard-ρ
This algorithm use as main idea the birthday paradox.

Definition 13. Birthday paradox
Given a set of n random people we need to find a pair of person with the same
birthday. For the pigeonhole principle we have a probability of 100% if n is 367,
but we can get to 99.9% only with 70 people.

This algorithm have the same time complexity of baby-step giant-step, but it
doesn’t require large amount of space since its spatial complexity is negligible.
We divide a group G in three subset S1,S2,S3 of approximately the same order.
Let’s also suppose that 1 /∈ S2 and define the sequence x0,x1, ...,xh, ... with x0 = 1
and

xi+1 = f (xi) =

⎧⎨
⎩

β · xi, if xi ∈ S1

x2
i , if xi ∈ S2

α · xi, if xi ∈ S3

with i ≥ 0, ord(G) = n, α generator of G and β in G. This sequence, in turn,
defines another two sequence a0,a1, . . . and b0,b1, . . . that fulfill xi = αaiβ bi for
i ≥ 0. Then defining a0 = 0,b0 = 0 for i ≥ 0 we get:

ai+1 =

⎧⎨
⎩

ai, if xi ∈ S1

2ai (mod n), if xi ∈ S2

ai +1 (mod n), if xi ∈ S3

bi+1 =

⎧⎨
⎩

bi +1 (mod n), if xi ∈ S1

2bi (mod n), if xi ∈ S2

bi, if xi ∈ S3

We can now use the Floyd’s algorithm to find two elements on the group, xi
and x2i, such that xi = x2i. So we obtain αaiβ bi = αa2iβ b2i that we can write as
β bi−b2i = αa2i−ai . After doing the logarithm in base α on both side, we get:

(bi −b2i) · logα β ≡ (a2i −ai) (mod n)

Considering bi �≡ b2i (mod n) (the probability that they are equal is very low
so we can neglect it).

On elliptic curve the problem is the same. We need to find an x that satisfy
Q = xP, to do so we use some integer a,b,A,B such that aP+bQ = AP+BQ.
In short we have:

aP+bQ = AP+BQ
aP+bxP = AP+BxP
(a−A)P = (B−b)xP

Then:

a−A ≡ (B−b)x (mod n)

x = (a−A)(B−b)−1 (mod n)

where n is the order of the cyclic group G that we are using.
There are different versions of this algorithm but the overall behavior is the same.

7.3 - Baby-step giant-step vs Pollard-ρ vs bruteforce
In this final section we report some execution times of the previous algorithms

run on PC for some quite small groups:

Example 3. Low order curve
Curve order: 10331
Using bruteforce
Computing all logarithms: 100.00% done
Took 2m 31s (5193 steps on average)
Using babygiantstep
Computing all logarithms: 100.00% done
Took 0m 6s (152 steps on average)
Using pollardsrho
Computing all logarithms: 100.00% done
Took 0m 21s (138 steps on average)

Example 4. High order curve
Curve order: 123779
Using bruteforce
Computing all logarithms: 100.00% done
Took 5h 51m 31s (61866 steps on average)
Using babygiantstep
Computing all logarithms: 100.00% done
Took 3m 56s (527 steps on average)
Using pollardsrho
Computing all logarithms: 100.00% done
Took 14m 11s (481 steps on average)

The worst algorithm is the brute force one, like we expected and we can notice
that Baby-step Giant-Step is three times faster then Pollard-ρ .
To understand this result we must remind that the advantage of Pollard-ρ over
BS-GS is the requirement in terms of memory. One require a huge amount of
memory(which depends on the order of the group) the other require a negligible
amount of memory and so can be used with larger group.
The last thing to notice is the number of steps that each algorithm took to run;
we can see that the square root methods needed about half of the step of the brute
force, in according with the theory.

144 145

7.2 - Pollard-ρ
This algorithm use as main idea the birthday paradox.

Definition 13. Birthday paradox
Given a set of n random people we need to find a pair of person with the same
birthday. For the pigeonhole principle we have a probability of 100% if n is 367,
but we can get to 99.9% only with 70 people.

This algorithm have the same time complexity of baby-step giant-step, but it
doesn’t require large amount of space since its spatial complexity is negligible.
We divide a group G in three subset S1,S2,S3 of approximately the same order.
Let’s also suppose that 1 /∈ S2 and define the sequence x0,x1, ...,xh, ... with x0 = 1
and

xi+1 = f (xi) =

⎧⎨
⎩

β · xi, if xi ∈ S1

x2
i , if xi ∈ S2

α · xi, if xi ∈ S3

with i ≥ 0, ord(G) = n, α generator of G and β in G. This sequence, in turn,
defines another two sequence a0,a1, . . . and b0,b1, . . . that fulfill xi = αaiβ bi for
i ≥ 0. Then defining a0 = 0,b0 = 0 for i ≥ 0 we get:

ai+1 =

⎧⎨
⎩

ai, if xi ∈ S1

2ai (mod n), if xi ∈ S2

ai +1 (mod n), if xi ∈ S3

bi+1 =

⎧⎨
⎩

bi +1 (mod n), if xi ∈ S1

2bi (mod n), if xi ∈ S2

bi, if xi ∈ S3

We can now use the Floyd’s algorithm to find two elements on the group, xi
and x2i, such that xi = x2i. So we obtain αaiβ bi = αa2iβ b2i that we can write as
β bi−b2i = αa2i−ai . After doing the logarithm in base α on both side, we get:

(bi −b2i) · logα β ≡ (a2i −ai) (mod n)

Considering bi �≡ b2i (mod n) (the probability that they are equal is very low
so we can neglect it).

On elliptic curve the problem is the same. We need to find an x that satisfy
Q = xP, to do so we use some integer a,b,A,B such that aP+bQ = AP+BQ.
In short we have:

aP+bQ = AP+BQ
aP+bxP = AP+BxP
(a−A)P = (B−b)xP

Then:

a−A ≡ (B−b)x (mod n)

x = (a−A)(B−b)−1 (mod n)

where n is the order of the cyclic group G that we are using.
There are different versions of this algorithm but the overall behavior is the same.

7.3 - Baby-step giant-step vs Pollard-ρ vs bruteforce
In this final section we report some execution times of the previous algorithms

run on PC for some quite small groups:

Example 3. Low order curve
Curve order: 10331
Using bruteforce
Computing all logarithms: 100.00% done
Took 2m 31s (5193 steps on average)
Using babygiantstep
Computing all logarithms: 100.00% done
Took 0m 6s (152 steps on average)
Using pollardsrho
Computing all logarithms: 100.00% done
Took 0m 21s (138 steps on average)

Example 4. High order curve
Curve order: 123779
Using bruteforce
Computing all logarithms: 100.00% done
Took 5h 51m 31s (61866 steps on average)
Using babygiantstep
Computing all logarithms: 100.00% done
Took 3m 56s (527 steps on average)
Using pollardsrho
Computing all logarithms: 100.00% done
Took 14m 11s (481 steps on average)

The worst algorithm is the brute force one, like we expected and we can notice
that Baby-step Giant-Step is three times faster then Pollard-ρ .
To understand this result we must remind that the advantage of Pollard-ρ over
BS-GS is the requirement in terms of memory. One require a huge amount of
memory(which depends on the order of the group) the other require a negligible
amount of memory and so can be used with larger group.
The last thing to notice is the number of steps that each algorithm took to run;
we can see that the square root methods needed about half of the step of the brute
force, in according with the theory.

146

8 - REFERENCES

Bernstein D.J., Buchmann J., Dahmen E. (2009) Post-Quantum Cryptography. Springer,
pp.1-32

Blackburn S. R., Cid C., Mullan C. (2010) Group Theory in Cryptography. Department
of Mathematics, Royal Holloway, University of London Egham, Surrey TW20 0EX,
United Kingdom, pp. 2-6

Cohen H., Frey G., Avanzi R., Doche C., Lange T., Nguyen K., Vercauteren F. (2005)
Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hall/CRC,
pp. 19-35, 268-285, 591-607

Corbellini A. (2015) Elliptic Curve Cryptography: A gentle introduction
http://andrea.corbellini.name/2015/05/17/elliptic-curve-cryptography-a-gentle-
introduction

Hankerson D., Menezes A., Vanstone S.A. (2004) Guide to Elliptic Curve Cryptography,
Springer-Verlag, pp. 76-83

Koblitz N. (1998), Algebraic Aspects of Cryptography. Springer(Corrected Second Print-
ing 1999),pp. 18-21, 133-136

McEliece R. J. (1979) Finite Fields for Computer Scientists and Engineers. Springer, pp.
3-28

Mermin N. D. (March 28, 2006). Breaking RSA Encryption with a Quantum Computer:
Shorś Factoring Algorithm, Cornell University, Physics 481-681 Lecture Notes

Schneier B. (1996), Applied Cryptography. John Wiley & Sons, pp. 238-241, 233-263
Shor P.W. (1994) Algorithms for quantum computation: Discrete logarithms and factor-

ing, Proc. 35th Annu. Symp. Foundations of Computer Science, pp. 124-134.
Silverman J. H. (1986). The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-

ics, Springer-Verlag, pp. 137-139

