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Regularity for minimizers of non-autonomous non-quadratic
functionals in the case 1 < p < 2: an a priori estimate

Nota di Andrea Gentile 1
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Abstract – We establish an a priori estimate for the second derivatives of local minimizers
of integral functionals of the form

F (v,Ω) =

ˆ

Ω
f (x,Dv(x))dx,

with convex integrand with respect to the gradient variable, assuming that the function
that measures the oscillation of the integrand with respect to the x variable belongs to
a suitable Sobolev space. The novelty here is that we deal with integrands satisfying
subquadratic growth conditions with respect to gradient variable.

Riassunto – Ricaviamo una stima a priori per le derivate seconde di minimi locali di
funzionali integrali del tipo

F (v,Ω) =

ˆ

Ω
f (x,Dv(x))dx,

con integranda convessa rispetto alla variabile gradiente, assumendo che la funzione che
misura l’oscillazione dell’integranda rispetto alla variabile x appartenga ad un opportuno
spazio di Sobolev. La novità, qui, è che si tratta del caso in cui l’integranda soddisfi
condizioni di crescita subquadratica rispetto alla variabile gradiente.

1 - INTRODUCTION

In this paper we consider integral functionals of the form
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Actually, it has been shown that the weak differentiability of the partial map
x �→ f (x,ξ ) transfers to the gradient of the minimizers of the functional (1.1) (see
(Carozza M. et al., 2011), (Eleuteri M. et al., 2016), (Eleuteri M. et al., 2016),
(Giova R. and Passarelli di Napoli A., 2017), (Kristensen J. and Mingione G.,
2010), (Passarelli di Napoli, 2014)) as well as to the gradient of the solutions of
non linear elliptic systems (see (Baisón A. L. et al., 2017), (Clop A. et al., 2009),
(Clop A. et al., 2017), (Cruz-Uribe D. et al., 2016), (Giova R., 2015), (Kuusi T.
and Mingione G., 2012), (Passarelli di Napoli, 2014)) and of non linear systems
with degenerate ellipticity in case p ≥ 2. (see (Giova R., 2015)).
It is worth mentioning that the continuity of the coefficients is not sufficient to
establish the higher differentiability of integer order of the minimizers, that has
often revealed to be a crucial step in the investigation of other regularity proper-
ties.

As far as we know, no higher differentiability results are available for vecto-
rial minimizers under the so-called subquadratic growth conditions, i.e. when the
assumptions (1.2)–(1.4) hold true for an exponent 1 < p ≤ 2 in case of Sobolev
coefficients.
The aim of this paper is to start the study of the higher differentiability properties
of local minimizers of integral functional (1.1) under subquadratic growth condi-
tion. As a first step in this direction, here we shall establish the following a priori
estimate for the second derivatives of the local minimizers.

Theorem 1.1. Let u∈W 2,p
loc (Ω;RN) be a local minimizer of the functional F (v,Ω)

under the assumptions (1.2)–(1.4). If q ≥ 2n
p , than the following estimate

�D2u�Lp(Br) ≤C
(�Du�Lp(BR) +1

)
(1.5)

holds true for every 0< r <R such that BR �Ω with C =C(α, p,n,N,�g�Lq(BR)).

The main tool in the proof is the use of the so called difference quotient
method and a double iteration argument that allows us to reabsorb terms with
critical summability. Respect to previous papers on this subject, new technical
difficulties arise since in the subquadratic growth case some of the regularity
properties of the integrand, valid in the superquadratic one, are lost.

2 - PRELIMINARY RESULTS

In this section we recall some standard definitions and collect several lemmas
that we shall need to establish our results. We shall follow the usual convention
and denote by C or c a general constant that may vary on different occasions,
even within the same line of estimates. Relevant dependencies on parameters
and special constants will be suitably emphasized using parentheses or subscripts.
All the norms we use on Rn, RN and Rn×N will be the standard Euclidean ones
and denoted by | · | in all cases. In particular, for matrices ξ , η ∈ Rn×N we write
�ξ ,η� := trace(ξ T η) for the usual inner product of ξ and η , and |ξ | := �ξ ,ξ � 1

2

for the corresponding Euclidean norm. When a∈RN and b∈Rn we write a⊗b∈

F (v,Ω) =

ˆ

Ω
f (x,Dv(x))dx, (1.1)

where Ω ⊂ Rn is a bounded open set, f : Ω×RN×n → R is a Carathéodory map,
such that ξ �→ f (x,ξ ) is of class C1(RN×n), and for an exponent p ∈ (1,2) and
some constants L1,L2,α > 0 and μ ≥ 0 the following conditions are satisfied:

L1(μ2 + |ξ |2) p
2 ≤ f (x,ξ )≤ L2(μ2 + |ξ |2) p

2 , (1.2)
〈
Dξ f (x,ξ )−Dξ f (x,η),ξ −η

〉≥ α
(
μ2 + |ξ |2 + |η |2)

p−2
2 |ξ −η |2, (1.3)

for every ξ ,η ∈ RN×n and for almost every x ∈ Ω.
For what concerns the dependence of the energy density on the x-variable,

we shall assume that the function Dξ f (x,ξ ) is weakly differentiable with respect
to x and that Dx(Dξ f ) ∈ Lq(Ω×RN×n), for some q > n.
By the point-wise characterization of the Sobolev functions due to Hajlasz (Ha-
jlasz P., 1996) this is equivalent to assume that there exists a nonnegative function
g ∈ Lq

loc(Ω) such that

|Dξ f (x,ξ )−Dξ f (y,ξ )| ≤ (g(x)+g(y)) |x− y|(μ2 + |ξ |2)
p−1

2 (1.4)

for all ξ ∈ RN×n and for almost every x,y ∈ Ω.

The regularity properties of minimizers of such integral functionals have been
widely investigated in case the energy density f (x,ξ ) depends on the x-variable
through a continuous function both in the superquadratic and in the subquadratic
growth case. In fact, it is well known that the partial continuity of the vectorial
minimizers can be obtained with a quantitative modulus of continuity that de-
pends on the modulus of continuity of the coefficients (see for example (Acerbi E.
and Fusco N., 1989), (Fusco N. and Hutchinson J. E., 1985), (Giaquinta M. and
Modica G., 1986)) and the monographs (Giaquinta M., 1983), (Giusti E., 2003)
for a more exhaustive treatment). For regularity results under general growth
conditions, that of course include the superquadratic and the subquadratic ones,
we refer to (Diening L. et al., 2009), and (Diening L. et al., 2011).

Recently, there has been an increasing interest in the study of the regularity
under different assumptions on the function that measures the oscillation of the
integrand f (x,ξ ) with respect to the x-variable.
This study has been successfully carried out when the oscillation of f (x,ξ ) with
respect to the x-variable is controlled through a coefficient that belongs to a suit-
able Sobolev class of integer or fractional order and the assumptions (1.2)–(1.4)
are satisfied with an exponent p ≥ 2.
Let us remark that the regularity of the coefficients depends on the summability
of their gradients and that also the case of possibly discontinous coefficients has
been treated.
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for every ξ ,η ∈ Rk.

The next lemma can be proved using an iteration technique, and will be
needed in the following, where we will refer to this as Iteration Lemma.

Lemma 2.4 (Iteration Lemma). Let h : [ρ,R] → R be a nonnegative bounded
function, 0 < θ < 1, A,B ≥ 0 and γ > 0. Assume that

h(r)≤ θh(d)+
A

(d − r)γ +B

for all ρ ≤ r < d ≤ R0 < R. Then

h(ρ)≤ cA
(R0 −ρ)γ + cB,

where c = c(θ ,γ)> 0.

For the proof we refer to (Giusti E., 2003), [Lemma 6.1].

2.3 - Finite difference and difference quotient

In what follows, we denote, for every function f , for h ∈ R, and being es the
unit vector in the xs direction, the finite difference

τs,h f (x) := f (x+hes)− f (x).

Here we recall some properties of the finite difference.

Proposition 2.5. Let f and g be two functions such that f ,g ∈W 1,p(Ω,RN) with
p ≥ 1, and let us consider the set

Ω|h| := {x ∈ Ω : dist(x,∂Ω)> |h|}.
Then the following properties hold:

1. τs,h f ∈W 1,p(Ω|h|,RN) and

Di(τs,h f ) = τs,h(Di f );

2. if at least one of the functions f or g has support contained in Ω|h|, then
ˆ

Ω
f τs,hgdx =

ˆ

Ω
gτs,−h f dx;

3. we have
τs,h( f g)(x) = f (x+hes)τs,hg(x)+g(x)τs,h f (x).

The following lemmas describe fundamental properties of finite differences
and difference quotients of Sobolev functions.

Rn×N for the tensor product defined as the matrix that has the element arbs in its
r-th row and s-th column.

For a C2 function f : Ω×Rn×N → R, we write

Dξ f (x,ξ )[η ] :=
d
dt

∣∣∣
t=0

f (x,ξ + tη)

and

Dξ ξ f (x,ξ )[η ,η ] :=
d2

dt2

∣∣∣
t=0

f (x,ξ + tη)

for ξ , η ∈ Rn×N and for almost every x ∈ Ω.
With the symbol B(x,r) = Br(x) = {y ∈Rn : |y−x|< r}, we will denote the ball
centered at x of radius r and

(u)x0,r =−
ˆ

Br(x0)
u(x)dx,

stands for the integral mean of u over the ball Br(x0). We shall omit the depen-
dence on the center when it is clear from the context.

2.1 - An auxiliary function

As usual, we shall use the following auxiliary function

Vp(ξ ) :=
(
μ2 + |ξ |2)

p−2
4 ξ , for all ξ ∈ RN×n. (2.6)

2.2 - Some useful lemmas

The following results are proved in (Acerbi E. and Fusco N., 1989), and will
be useful to estimate the Lp norm of D2u, using the L2 norm of the difference
quotient of Vp(Du).

Lemma 2.2. For every γ ∈ (−1
2 ,0

)
and μ ≥ 0 we have

c0(γ)
(
μ2 + |ξ |2 + |η |2)γ ≤

ˆ 1

0

(
μ2 + |tξ +(1− t)η |2)γ

dt

≤ c1(γ)
(
μ2 + |ξ |2 + |η |2)γ

, (2.7)

for every ξ ,η ∈ Rk.

Lemma 2.3. For every γ ∈ (−1
2 ,0

)
and μ ≥ 0 we have

(2γ +1)|ξ −η | ≤ |(μ2 + |ξ |2)γ ξ − (
μ2 + |η |2)γ η |

(μ2 + |ξ |2 + |η |2)γ ≤ c(k)
2γ +1

|ξ −η |, (2.8)
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Proof of Theorem 1.1. Let us fix a ball BR(x0)=BR of radius R∈ (0,dist(x0,∂Ω)),
and consider R

2 < r < s̃ < t < t̃ < λ r < R < 1, with 1 < λ < 2. Let’s test the
equation (3.9) with the function ϕ = τs,−h(η2τs,hu), where η ∈ C∞

0 (Bt) is a cut
off function such that η = 1 on Bs̃, |Dη | ≤ c

t−s̃ .
With this choice of ϕ , and by 2 of Proposition 2.5, we get

ˆ

BR

〈
τs,hA(x,Du(x)),D(η2(x)(τs,hu(x)))

〉
dx = 0.

After some manipulations, and dropping the vector es to simplify the nota-
tions, we can write the last equality as follows

I0 :=
ˆ

BR

〈
A(x+h,Du(x+h))−A(x+h,Du(x)),η2(x)D(τs,hu(x))

〉
dx

=−
ˆ

BR

〈
A(x+h,Du(x))−A(x,Du(x)),η2(x)D(τs,hu(x))

〉
dx

−
ˆ

BR

〈
τs,hA(x,Du(x)),2η(x)Dη(x)⊗ τs,hu(x)

〉
dx

=−
ˆ

BR

〈
A(x+h,Du(x))−A(x,Du(x)),η2(x)D(τs,hu(x))

〉
dx

−
ˆ

BR

〈
A(x,Du(x)),τs,−h

(
2η(x)Dη(x)⊗ τs,hu(x)

)〉
dx

=−
ˆ

BR

〈
A(x+h,Du(x))−A(x,Du(x)),η2(x)D(τs,hu(x))

〉
dx

−
ˆ

BR

〈
A(x,Du(x)),τs,−h

(
2η(x)Dη(x)

)
⊗ τs,hu(x)

〉
dx

−
ˆ

BR

〈
A(x,Du(x)),2η(x)Dη(x)⊗ τs,−h

(
τs,hu(x)

)〉
dx

=: I + II + III. (3.14)

Previous equality implies that

I0 ≤ |I|+ |II|+ |III|. (3.15)

In order to estimate the integral |I|, we use the hypothesis (3.13) and Young’s
inequality, as follows

|I| ≤ c|h|
ˆ

BR

η2(x)(g(x)+g(x+h))
(
μ2 + |Du(x)|2)

p−1
2 |Dτs,hu(x)|dx

≤ c|h|
ˆ

BR

η2(x)(g(x)+g(x+h))
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−1
2

Lemma 2.6. If 0 < ρ < R, |h| < R−ρ
2 , 1 < p < +∞, s ∈ {1, ...,n} and f ,Ds f ∈

Lp(BR,RN), then
ˆ

Bρ

|τs,h f (x)|pdx ≤ |h|p
ˆ

BR

|Ds f (x)|pdx.

Moreover, for ρ < R, |h|< R−ρ
2 ,

ˆ

Bρ

| f (x+hes)|pdx ≤ c(n, p)
ˆ

BR

| f (x)|pdx.

Lemma 2.7. Let f : Rn → RN, f ∈ Lp(BR,RN) with 1 < p <+∞. Suppose that
there exist ρ ∈ (0,R) and M > 0 such that

n

∑
s=1

ˆ

Bρ

|τs,h f (x)|pdx ≤ Mp|h|p

for every h < R−ρ
s . Then f ∈W 1,p(BR,RN). Moreover

�D f�Lp(Bρ ) ≤ M.

3 - PROOF OF THEOREM 1.1

It is well known that every local minimizer of the functional (1.1) is a weak
solution u ∈W 1,p(Ω,RN) of the corresponding Euler-Lagrange system, i.e.

divA(x,Du(x)) = 0, (3.9)

where we set

Aα
i (x,ξ ) := Dξ α

i
f (x,ξ ), for all α = 1, ...,N and i = 1, . . . ,n. (3.10)

Assumptions (1.2) and (1.3) can be written as

|A(x,ξ )| ≤ c(μ2 + |ξ |2) p−1
2 , for some constant c ≥ 0, (3.11)

�A(x,ξ )−A(x,η),ξ −η� ≥ α|ξ −η |2 (μ2 + |ξ |2 + |η |2)
p−2

2 , (3.12)

for every ξ , η ∈ Rn×N and for almost every x ∈ Ω.
Concerning the dependence on the x-variable, assumption (1.4) translates

into the following

|A(x,ξ )−A(y,ξ )| ≤ (g(x)+g(y)) |x− y|(μ2 + |ξ |2)
p−1

2 (3.13)

for every ξ ∈ RN×n and for almost every x,y ∈ Ω.
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ˆ

BR
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〉
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ˆ

BR
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〉
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=−
ˆ

BR
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〉
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−
ˆ

BR
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〉
dx

=−
ˆ

BR
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〉
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−
ˆ

BR
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)〉
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ˆ
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〉
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(
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〉
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−
ˆ
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ˆ

BR
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μ2 + |Du(x)|2)

p−1
2 |Dτs,hu(x)|dx

≤ c|h|
ˆ

BR

η2(x)(g(x)+g(x+h))
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−1
2

Lemma 2.6. If 0 < ρ < R, |h| < R−ρ
2 , 1 < p < +∞, s ∈ {1, ...,n} and f ,Ds f ∈

Lp(BR,RN), then
ˆ

Bρ
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ˆ

BR

|Ds f (x)|pdx.
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2 ,

ˆ

Bρ
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ˆ

BR

| f (x)|pdx.
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n

∑
s=1

ˆ

Bρ
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�D f�Lp(Bρ ) ≤ M.

3 - PROOF OF THEOREM 1.1
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f (x,ξ ), for all α = 1, ...,N and i = 1, . . . ,n. (3.10)

Assumptions (1.2) and (1.3) can be written as

|A(x,ξ )| ≤ c(μ2 + |ξ |2) p−1
2 , for some constant c ≥ 0, (3.11)

�A(x,ξ )−A(x,η),ξ −η� ≥ α|ξ −η |2 (μ2 + |ξ |2 + |η |2)
p−2

2 , (3.12)

for every ξ , η ∈ Rn×N and for almost every x ∈ Ω.
Concerning the dependence on the x-variable, assumption (1.4) translates

into the following

|A(x,ξ )−A(y,ξ )| ≤ (g(x)+g(y)) |x− y|(μ2 + |ξ |2)
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2 (3.13)

for every ξ ∈ RN×n and for almost every x,y ∈ Ω.
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α
ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2dx

≤ ε
ˆ

BR

η2(x)|D(τs,hu(x))|2 (μ2 + |Du(x)|2 + |Du(x+h)|2)
p−2

2 dx

+ cε |h|2
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx

+
c|h|2

(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx

+
c|h|
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|pdx

) 1
p

. (3.21)

Choosing ε = α
2 in the previous estimate, we can reabsorb the first integral

in the right hand side by the left hand side thus getting

ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2dx

≤ c|h|2
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx

+
c|h|2

(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx

+
c|h|
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|pdx

) 1
p

, (3.22)

with c = c(α, p,n,N).
Dividing previous estimate by |h|2 and using Lemma 2.3, we have

ˆ

BR

η2(x)
|τs,h(Vp(Du(x)))|2

|h|2 dx

≤ c
ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2

|h|2 dx

≤ c
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx

+
c

(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx

· |D(τs,hu(x))|dx

≤ ε
ˆ

BR

η2(x)|D(τs,hu(x))|2 (μ2 + |Du(x)|2 + |Du(x+h)|2)
p−2

2 dx

+ cε |h|2
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)

· (μ2 + |Du(x)|2 + |Du(x+h)|2)
p
2 dx. (3.16)

Now, we estimate |II| by (3.11) and the properties of η thus obtaining

|II| ≤ c|h|
(t − s̃)2

ˆ

Bt

(
μ2 + |Du(x)|2)

p−1
2 |τs,hu(x)|dx

≤ c|h|
(t − s̃)2

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt

|τs,hu(x)|pdx
) 1

p

, (3.17)

where, in the last inequality, we used Hölder’s inequality. By virtue of the first
inequality of Lemma 2.6, we obtain

|II| ≤ c|h|2
(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx. (3.18)

The term |III| is estimated using the hypothesis (3.11) again, the properties
of η , Hölder’s inequality and Lemma 2.6, as follows

|III| ≤ c
t − s̃

ˆ

Bt

(
μ2 + |Du(x)|2)

p−1
2 |τs,−h(τs,hu(x))|dx

≤ c
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt

|τs,−h(τs,hu(x))|pdx
) 1

p

≤ c|h|
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|pdx

) 1
p

, (3.19)

where in the last inequality we used Lemma 2.6 and (1) of Proposition 2.5.
By the assumption (3.12), we get

|I0| ≥ α
ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2dx. (3.20)

Inserting estimates (3.16), (3.18), (3.19) and (3.20) in (3.15), we obtain



192 193

α
ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2dx
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(ˆ

Bt

(
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p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|pdx

) 1
p

. (3.21)

Choosing ε = α
2 in the previous estimate, we can reabsorb the first integral

in the right hand side by the left hand side thus getting

ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2dx

≤ c|h|2
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx

+
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(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx

+
c|h|
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|pdx

) 1
p

, (3.22)

with c = c(α, p,n,N).
Dividing previous estimate by |h|2 and using Lemma 2.3, we have

ˆ

BR

η2(x)
|τs,h(Vp(Du(x)))|2

|h|2 dx

≤ c
ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2

|h|2 dx

≤ c
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx

+
c

(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx

· |D(τs,hu(x))|dx

≤ ε
ˆ

BR

η2(x)|D(τs,hu(x))|2 (μ2 + |Du(x)|2 + |Du(x+h)|2)
p−2

2 dx

+ cε |h|2
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)

· (μ2 + |Du(x)|2 + |Du(x+h)|2)
p
2 dx. (3.16)

Now, we estimate |II| by (3.11) and the properties of η thus obtaining

|II| ≤ c|h|
(t − s̃)2

ˆ

Bt

(
μ2 + |Du(x)|2)

p−1
2 |τs,hu(x)|dx

≤ c|h|
(t − s̃)2

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt

|τs,hu(x)|pdx
) 1

p

, (3.17)

where, in the last inequality, we used Hölder’s inequality. By virtue of the first
inequality of Lemma 2.6, we obtain

|II| ≤ c|h|2
(t − s̃)2

ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx. (3.18)

The term |III| is estimated using the hypothesis (3.11) again, the properties
of η , Hölder’s inequality and Lemma 2.6, as follows

|III| ≤ c
t − s̃

ˆ

Bt

(
μ2 + |Du(x)|2)

p−1
2 |τs,−h(τs,hu(x))|dx

≤ c
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt

|τs,−h(τs,hu(x))|pdx
) 1

p

≤ c|h|
t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|pdx

) 1
p

, (3.19)

where in the last inequality we used Lemma 2.6 and (1) of Proposition 2.5.
By the assumption (3.12), we get

|I0| ≥ α
ˆ

BR

η2(x)
(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p−2
2 |τs,hDu(x)|2dx. (3.20)

Inserting estimates (3.16), (3.18), (3.19) and (3.20) in (3.15), we obtain
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+ c
(

1+
1

(t − s̃)2

)ˆ

Bt̃

(
μ2 + |Du(x)|2)

p
2 dx

+
c

t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|p
|h|p dx

) 1
p

. (3.26)

Using Young’s inequality with exponents p and p
p−1 to estimate the last inte-

gral in the right hand side, we obtain

ˆ

BR

η2(x)

∣∣τs,hDu(x)
∣∣p

|h|p dx ≤ c
ˆ

Bt̃

g2(x)dx+ c
ˆ

Bt̃

g2(x) |Du(x)|p dx

+ c

(
1+

1
(t − s̃)2 +

1

(t − s̃)
p

p−1

)ˆ

BR

(
μ2 + |Du(x)|2

) p
2

dx

+
1
2

ˆ

Bλ r

∣∣τs,hDu(x)
∣∣p

|h|p dx. (3.27)

Recalling that η = 1 on Bs̃, we obtain

ˆ

Bs̃

∣∣τs,hDu(x)
∣∣p

|h|p dx ≤ 1
2

ˆ

Bt̃

∣∣τs,hDu(x)
∣∣p

|h|p dx

+ c
ˆ

Bt̃

g2(x)dx+ c
ˆ

Bt̃

g2(x) |Du(x)|p dx

+ c

(
1+

1
(t − s̃)2 +

1

(t − s̃)
p

p−1

)ˆ

BR

(
μ2 + |Du(x)|2

) p
2

dx. (3.28)

Since the previous estimate holds for every r < s̃ < t < t̃ < λ r, and the con-
stant appearing in (3.28) are indipendent of t, we can pass to the limit as t → t̃,
thus getting

ˆ

Bs̃

∣∣τs,hDu(x)
∣∣p

|h|p dx ≤ 1
2

ˆ

Bt̃

∣∣τs,hDu(x)
∣∣p

|h|p dx

+ c
ˆ

Bt̃

g2(x)dx+ c
ˆ

Bt̃

g2(x) |Du(x)|p dx

+ c

(
1+

1

(t̃ − s̃)2 +
1

(t̃ − s̃)
p

p−1

)ˆ

BR

(
μ2 + |Du(x)|2

) p
2

dx. (3.29)

By virtue of Lemma 2.4, we have

+
c

t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|p
|h|p dx

) 1
p

. (3.23)

Now, by Hölder’s inequality and Lemma 2.3, we get

ˆ

BR

η2(x)

∣∣τs,hDu(x)
∣∣p

|h|p dx

≤
ˆ

BR

η2(x)

∣∣τs,h (Vp (Du(x)))
∣∣p

|h|p
(

μ2 + |Du(x)|2 + |Du(x+h)|2
) p(2−p)

4
dx

≤
(ˆ

BR

η2(x)

∣∣τs,h (Vp (Du(x)))
∣∣2

|h|2 dx

) p
2

·
(ˆ

BR

η2(x)
(

μ2 + |Du(x)|2 + |Du(x+h)|2
) p

2
dx
) 2−p

2

, (3.24)

and therefore, combining (3.23) and (3.24), we have

ˆ

BR

η2(x)

∣∣τs,hDu(x)
∣∣p

|h|p dx

≤ c

{ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx

+
1

(t − s̃)2

ˆ

Bλ r

(
μ2 + |Du(x)|2)

p
2 dx

+
1

t − s̃

(ˆ

Bt

(
μ2 + |Du(x)|2)

p
2 dx

) p−1
p
(ˆ

Bt̃

|τs,hDu(x))|p
|h|p dx

) 1
p
} p

2

·
{ˆ

BR

η2(x)
(

μ2 + |Du(x)|2 + |Du(x+h)|2
) p

2
dx
} 2−p

2

. (3.25)

Using Young’s inequality with exponents 2
p and 2

2−p , which is legitimate
since 1 < p < 2, and the properties of η , we have

ˆ

BR

η2(x)

∣∣τs,hDu(x)
∣∣p

|h|p dx

≤ c
ˆ

BR

η2(x)
(
g2(x)+g2(x+h)

)(
μ2 + |Du(x)|2 + |Du(x+h)|2)

p
2 dx
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+ c
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For this choice of R, joining (3.31), (3.33), (3.35), (3.36), we get:
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Since (3.37) holds for all r and for all λ ∈ (1,2), setting ρ = r, R0 = λ r,
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A standard covering argument yields the conclusion.
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and we can use the interpolation inequality to estimate the last integral in (3.33)
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To go further in the estimate, we have to study the term
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and the second integral in the right hand side term of (3.33) converges for pq
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Now we distinguish between two cases.
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Now we observe that, if u ∈W 2,p
loc (Ω), then Du ∈W 1,p

loc (Ω) and, by Sobolev’s
embedding Theorem, W 1,p

loc (Ω) �→ Lp∗
loc(Ω), where p∗ = np

n−p .
So, for a positive constant c = c(n, p), we have
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suitable value of ε , which depends on the norm of g in Lq(BR), while the radius
of the ball on which the integral in the left hand side is taken does not depend
on the Lq-norm of g: here, differently from (3.36), we don’t use the absolute
continuity of the integral.
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and by (3.33), recalling the definition of θ , we get
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Then, by Sobolev’s embedding Theorem, we have
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Now, since q> 2n
p , we can use Young’s inequality with exponents
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thus getting, for every ε > 0,
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Now we choose ε such that

ε ·
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, (3.43)

so that we can obtain the estimate (3.37) again, and apply Lemma 2.4 in the same
way, thus getting (3.38) in this case too.

We remark that, differently from the previous case, when q > 2n
p , we don’t

need to use a covering argument to conclude. In fact, in (3.43), we just choose a
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suitable value of ε , which depends on the norm of g in Lq(BR), while the radius
of the ball on which the integral in the left hand side is taken does not depend
on the Lq-norm of g: here, differently from (3.36), we don’t use the absolute
continuity of the integral.
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so that we can obtain the estimate (3.37) again, and apply Lemma 2.4 in the same
way, thus getting (3.38) in this case too.
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