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Numerical Approximation of Matrix Functions for Fractional
Differential Equations

MARINA PoPOLIZIO

Sunto. — In questo lavoro st presentano delle connessioni rilevanti tra le funzioni di
matrice e la soluzione di equazioni differenziali di ordine frazionario. Questo
nesso ¢ stato notato solo recentemente ed ora riscuote notevole interesse. Si
presenta qui una rassegna dei fondamenti del calcolo frazionario e della teoria
dell’approssimazione di funzioni di matrice; si mostrano inoltre i contributi
che, insieme ad i miei coautori, abbiamo recentemente elaborato su questo ar-
gomento [13, 14, 15, 16, 32].

Abstract. — In this paper relevant insights are given on the connection between matrix
Sfunctions and the solution of differential equations of fractional order. This nexus
only recently has been disclosed and is gaining weight in the current research. We
present here a review on the basics of fractional calculus and matrix function
approximations, together with the main results my coauthors and me have given to
the subject in the recent works [13, 14, 15, 16, 32].

1. — Introduction

Functions of matrices deserve a fundamental role in several branches of
applied sciences as biology, physics, engineering and many others.

From a theoretical point of view, the first one to address the problem of
matrix functions was Cayley who, in his paper A Memoir on the Theory of
Matrices dated back to 1858, treated the square root of a matrix of dimension
2 x 2 and 3 x 3. The formal definition of matrix function dates back to 1883 and is
due to Sylvester. Matrix functions appear in several important applications and
this makes their numerical approximation a fundamental topic in the research
community; many different approaches have been proposed during the last
years; we cite, among the others, [27, 28, 39, 30, 24, 36, 5, 6, 37, 38, 29, 31, 32] and
the recent book by Higham [19] completely devoted to this subject.

The most common matrix function is certainly the exponential and it is also
the most studied one from the computational point of view. The applications
involving this matrix are several and very common: among the most important
we cite its role in the solution of systems of ordinary differential equations
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(ODES) of the form

1) WO _ 4y, 4O =

whose solution is
y(t) = exp (tA)yo.

It is thus clear that the matrix exponential has a key role in the numerical
solution of systems of differential equations; however, in this field other matrix
functions are very important, as we will discuss in Section 3 when introducing
methods for differential equations of fractional order.

Systems of ODEs like (1) derive from real life models or, more often, are the
result of the process of discretization of partial differential equations (PDEs) by
means of the method of lines, that consists in discretizing only the spatial deri-
vatives to reduce the problem to a system of differential equations just in the
time variable.

This is actually the source of some of the difficulties one faces in the numerical
approximation of matrix functions. Indeed, in this context the dimension of the
matrix argument A is usually large, while the classical numerical methods only
work for small dimension problems. To find effective numerical methods for
large dimension problems is thus compelling, with efficiency intended both for
the computational costs and for the memory requirements.

2. — Fractional calculus

The origin of fractional calculus is far and, probably, this history dates back to
1695, when Leibnitz and L’Hopital started to intellectualize about the meaning of
derivative of order 1/2. The theoretical analysis of this topic has received a great
attention and important results have been collected over the years; this devel-
opment is due also to the interest that the subject receives from many fields, such
as control theory, finance, physics and many others. A meaningful example of the
importance of fractional calculus is the class of non-newtonian fluids, as asphalt,
rubbers and polymers, whose dynamics are adequately described only through
models involving fractional derivatives.

For a deep analysis of the subject and for a wide list of references we refer
to the cornerstone books [34, 22] and, for the more recent developments, to
[8, 9, 10, 11, 15, 18].

A differential equation of fractional order (FDE) is of the form

2) Djy(t) = g(t, y(®)

where o« > 0 is the fractional order. Different definitions hold for the fractional
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derivative Djy(t); however, for the applications, usually the Caputo’s definition,
given in 1967, is preferred

t 'm

1 m—o— d
Doy(®) = ) f(t —1) l(drm y(r)) dz, m = [a].
0

Indeed, with this definition, (2) can be combined with initial conditions of the
form

?/<k)(0) =Yk, Kk=0,...,m—1

which, as in the case of ODEs, have a clear physical meaning.

Substantial differences with the ordinary derivatives arise from the defi-
nition of Dj: indeed, it involves an integral over the whole interval [0, T (for
this reason the origin is pointed out in the symbol of fractional derivative
operator). This is a very interesting feature of the fractional derivatives and a
strong point of it: indeed, this integral representation works well in de-
scribing all those phenomena “with memory”, for example in finance, psy-
chology, rheology and so on.

However the numerical computation of the fractional derivatives is clearly
more difficult for this feature; indeed there is no possibility to extend the clas-
sical methods for ODEs which substantially work in a step-by-step way.

For linear FDEs the solution can be easily recovered by means of the var-
1ation of constants formula. Let consider the solution of the following system of
linear FDEs

0<a<l.

Diyt) + Ay@) = g(t)
@) { By Yyt =g

y(0) = yo
The Laplace transform applied to every term gives
s*Y(s) — s* 1yo + AY (s) = G(s)
so, if I denotes the identity matrix of the same dimension of A,
Y(s) = " "]+ A) o + ("I + A Gs).

The exact solution in the temporal domain can then be written as

t
(4) Y = €1t Ao + [t — 5 A)g(s)ds
0

o—p
i for scalar 1’s.

with e, 4(t; /) denoting the inverse of the Laplace transform >

s
Throughout the paper the extension to the matrix case is intended to be well
defined, for the matrices and the functions we deal with.
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The variation of constants formula can be generalized to the case of semi-
linear FDEs of the form

Diy®) + Ay®) = g(y(®))
(5) O<a<l1
y(0) = yo
and its use allows us to express the solution as
t
(6) Y(t) = et Ao + [ el — 5 A9y 5)ds.
0

It is easy to verify that (5) is a generalization to FDEs of the variation of
constants formula for semilinear ODEs like

y' @) +Ay®) = gly®), y0) =

whose solution is

t
(7) y(t) = ey + f 5 DAg((s))ds.
0

The expressions for the solutions of these differential equations clearly show
that the key role of the exponential function in the ODESs’ solution is exactly the
same that the e, s functions have for FDEs.

In particular, the numerical approximation of these problems undiscovers a
more deep relationship between the ¢, s functions and the g-functions, derived
from the exponential, which are fundamental for some classes of numerical sol-
vers, we will discuss later on.

To get a simple numerical scheme for (7) we fix a discretization step & and we
interpolate the term g(y(¢)) in the known value g(y,), so that

¥4

et —1
Y1 = € "y + oy (— RAYG(Y,),  91(2) = —;

this method goes under the name explicit exponential Euler.
More accurate methods can be defined by expressing the solution as a linear
combination of terms like p;(A) with ¢; defined by the relation

1 (2) — 9,(0)
®) @) = ep@. 0 = 5, P = HEI
Methods of this form belong to the class of Exponential Integrators, and we
will discuss them in Section 3.
The functions e, 4 in (4) and (6) can also be defined by the classical Mittag-

Leffler (ML) functions

) B =3 Pk
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for z, 0, f € C with R(x), R(f) > 0 and I" denoting the Euler Gamma function. It
holds, indeed, that [34]

e p(t; 1) = tF 1B, p(—t*)).

The analogy between E, s and the exponential is evident; moreover, it is
immediate to verify that these functions coincide for o = ff = 1. In practice a
strict relationship binds the ML functions with the g-functions, as shown in the
following proposition:

ProposiTiON 2.1 ([14]). — Let k € N and z € C. Then E15411(2) = ¢,(2).

The ML functions thus represent an extension of g-functions to the non-
integer case; moreover they have similar properties for f > 1; indeed, [14]
ey, 5(t; A) — ey, 5(t; 0) th-1

) , eaﬁﬁ(uo):ﬁﬁy

eoc,oc+ﬁ(t§ A=

which generalize (8).
Moreover, as shown in [34], for any y € R

D(})’ea,ﬁ(t; /1) = 6a7/;_;,(t; ).)

3. — Generalized Exponential Integrators

The numerical solution of stiff differential equations is a tough problem to
treat. In particular, we consider systems of ODEs of the form

(10) %y(t) +Ay@) =g, y®), y0) =1y,

with ¢ and g vector valued functions and A a real matrix which represents the
stiff part of the problem.

The term Euxponential Integrators is commonly used to define a class of
numerical methods to solve problems of this kind, whose origin probably dates
back to the beginning of the 1960’s with Certain and Lawson; in the following we
will denote them with ETD, which is the acronym for “Exponential Time
Differencing” methods, which is another name to define them.

The recent paper by Hochbruck and Ostermann [21] is an excellent reference
for a deep analysis of the subject, with a rich description of the development these
methods have had in the past. It is important to stress that their development is
actually strictly connected with that of the numerical methods to approximate
matrix functions since, as their name suggests, these methods are based on the
exponential function and on the p-functions defined in (8), for matrix arguments
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which, in the applications, have very large dimensions. The lack of numerical
techniques for this aspect has, for long time, discouraged the use of these in-
tegrators. Recently, the important development of effective techniques for the
matrix functions approximation gave new light to these methods, which are now
very popular and commonly employed in the applications.

Explicit methods are not adequate to solve stiff problems for the severe re-
striction on the integration step that the problem nature imposes. On the other
hand, implicit methods are sometimes too tough to be applied since they entail the
solution of a non-linear system at each integration step. Exponential integrators,
instead, turn out to be very effective since they solve exactly the linear part in
(10), or at least with a very high accuracy, while explicit schemes are applied to
solve the non-linear term, without particular restriction on the integration step.

3.1 — Linear FDE's with constant source term

In [14] we addressed the numerical solution of linear systems of FDEs of the
form (3) with constant source term g(f) = b. It is known that the solution of this
problem can be found by means of (4) [34] and can be written as

(11) ?/(t) =% + tmEu,aJrl( - t%A)(_A?/O + b)

In [14] an experimental comparison has been proposed among different
techniques to approximate (11), the difference being in the numerical approach to
approximate the term K, ,.1( — t*A)(—Ayo + b), as we will describe in Section 4.

3.2 — Semailinear case

The exponential integrators for ODEs are essentially grounded on the
Variation of Constants formula (7).

To numerically evaluate it we fix a mesh-grid of equispaced points ¢, = nh on
the integration interval; thus (7) can be written as

tn+1

(12) Yltusn) = e Oy () [ e Mgy s)ds;
t]l,

the ETDs’ strategy lies on the polynomial approximation of the non-linear term
g; then the resulting integral is exactly solved. The simplest method in this class
is the explicit exponential Euler as described in Section 2.

The technique used to evaluate the integral in (12) distinguishes the methods
of the ETD family, as for example the exponential multistep methods, the ex-
ponential Runge-Kutta methods and so on.
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The introduction of the ¢-functions provides the opportunity to define
ETD methods which are more accurate; the solution to (10) can indeed be
expressed as

(13) Yltun) = e MAyt) + > W gy (—hA) g Py )
k=0

thus, for example, the exponential Adams-Bashforth and Adams-Moulton
methods derive when the series in (13) is truncated and the derivatives are
approximated by means of finite differences.

For the semilinear FDE (5) an analogous approach can be considered: so, (6)
can be written as

n—1 U

Yt = eati Dyo+ > [ esalty — 5 A)gy(s)ds.
=04

To get a naive version of the ETD methods one can use a polynomial inter-
polant for the term g(y(s)) in each subinterval [¢;,;.1], and then solve the re-
sulting integrals. The resultant methods were named Generalized Exponential
Time Differencing (GETD) in [14] for the plain analogy with the corresponding
exponential integrators for ODEs.

The simplest choice would be to approximate g(y(s)) in each subinterval
[t;,t;+1] by the constant value g(y;). To explicitely evaluate the coefficients of the
corresponding scheme we make use of the formula

e, pt; ) =h' e, 4 (%h/l) Vh >0

and of the following result:

THEOREM 3.1 [14]. — Let a < b <t, R(x) > 0, f > 0. Then

b
[eaptt = 54005 = € gt — 4:4) — € pirt — b A).

a

Then the resulting 1-step GETD method can be written as

n—1

(14) g = a1 Ao + 1Y (Crni1(n H°A) — €510t — 1; H7A)) .
=0

To get more accurate schemes we can simply interpolate g(y(s)) with higher
degree polynomials. For quadratic polynomials, for example, the explicit ex-
pression for the coefficients of the 2-step GETD method has been derived in [14],
together with an analysis of its main properties.
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The introduction of these GETD methods in [14] is grounded also on rig-
orous analysis on accuracy and stability properties. We just cite an important
result about the order of convergence of the two methods 1-step GETD and 2-
step GETD:

THEOREM 3.2 [14]. — If the source term g is smooth, then the 1-step GETD
method has order 1 and the 2-step GETD has order 1 + o.

4. — Approximation of f(A)

All the numerical methods of exponential type described so far for the solu-
tion of ODEs or FDEs are essentially based on matrix functions, whose nu-
merical approximation turns out to be crucial for the effectiveness of the method
itself. This aspect fully motivates the analysis we are going to present.

For small dimension problems, that is, when the matrix argument A has a
small dimension 7, more than one strategy is often at disposal; for the ex-
ponential, for example, about twenty approaches are described in [27, 28].

More complicate is the situation for medium » and far more for large n, which
is the most common case in the solvers described in Section 2. When speaking of
systems of differential equations, indeed, the matrix A usually comes from a
discretization process, thus to have so large dimensions to make impracticable
any strategy of decomposition or similar, since they require a computational cost
proportional to #®, which is prohibitive for large % [17]. Thus, in these situations,
it turns out to be more convenient to work with some approximation of the
function f.

4.1 — Rational Approximations

Among the possible approximations of a given function f the rational ones
show, under suitable hypotheses, interesting features which can be well exploi-
ted when the numerical approximation is in play.

A rational function is defined as the ratio of two polynomials, without common
factors, of degree i and v not necessarily coinciding. The set of rational functions
is thus defined as

o= (50 (509)

An usual problem in approximation theory is, given a continuous function f
and two values p and v, to find a rational function * € R, , which minimizes
the approximation error |f — 7*||,, with respect to all other functions in the
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set R, ,. This best approximation always exists and it is called the Chebyshev
approximation.

For the exponential function the Chebyshev rational approximation has been
largely studied [4, 40, 26]. Particularly useful is the expression of this approx-
imation in the case in which the numerator and the denominator have the same
degree, say v. Indeed, it can be written as

V

(15) Ry =3y T

= — <k

whose terms g; and &, are the poles and the residues, respectively, of R.

In [4], for the exponential function, the poles and the residues have been tabled
for several values of v; moreover, the error analysis for these approximations have
been largely studied [33, 4, 26], with very interesting results showing an exponential
decay for the error at the rate 9.28903 ", which thus ensures a good accuracy also for
moderate values of .

In [36, 37, 38] the numerical approximation of exp(4) has been addressed
with techniques based on the Chebyshev rational approximations.

4.2 — Carathéodory-Fejér approximation

To find the poles and the residues of the Chebyshev approximation of a
generic function, as for example the ML one (9), is a tough problem, also because
uniqueness is not guaranteed for the best approximation. This problem has been
a core issue in approximation theory and, in 1917, the Carathéodory-Fejér (CF)
theory was presented: this is an appealing approach since, other than theoretical
results, it offers a practical way to determine a rational approximation of fixed
degree for any given smooth function. The key idea of this approach is to look for
the rational approximation in a different set, namely

u v
R, = {7’ cr(z) = ( Z akzk)/(Zbkzk>},
— k=0

The goal is to determine the function ' ¢ R v Which minimizes the error
|f — 9|, with respect to all other functions in the set RW. Then the CF ap-
proximation is 7¢ without the terms of negative degree.

From a theoretical point of view the CF approximations are particularly in-
teresting for the good quality they guarantee. Moreover, for smooth functions,
Trefethen [40, 41] has justified their use by showing that the error is very similar
to the one of the Chebyshev approximation. For the exponential, for example, 7
and »*, both of degree v, differ for a factor O(56~") [26].

From a practical point of view the CF approximants are interesting since they
are easy to determine and they can be expressed in the form (15). Recently an
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elegant and effective strategy has been poposed to calculate the poles and the
residues for generic functions f [42], by means of the SVD decomposition of the
Hankel matrix defined by the coefficients of the Fourier series of f. In Section 6 we
will present the results of numerical techniques based on this strategy.

In [14] we followed the approach in [42] to find the CF approximation of the
ML function in order to approximate the terms E, g(A)v in (11).

The error analysis has highlighted the good accuracy these approximations
reach even for moderate degrees, with a behavior for the error similar to the
equioscillation, typical feature of the best approximations.

In Section 6 we will present some of the results in [14] on the accuracy of
these approximations.

5. — Problems for the computation of f(A)v

The examples described so far stress the importance to approximate vectors
of the form f(A)v, rather than to approximate just the matrix f(A). To take into
account this slight difference is fundamental from the computational point of
view. To give a flavor of the difference between the two problems, we cite the
trivial example of linear systems of the form Ax = b: in this case, even though the
solution is, theoretically, A~1b, no one can think to numerically compute it in this
way, for the inaccuracies the matrix inversion can generate.

We thus analyze in depth the approximation of vectors like f(A)v, taking into
account the approximation results described so far for f.

5.1 — f(Aw for f in partial fraction expansion

Assume we know a rational approximation for f of the form (15), then it is
possible to approximate f(A)v by solving v linear systems with coefficient ma-
trices of the form A — {I; indeed, if the argument is a matrix, (15) becomes
equivalent to

(16) R(AW=>"giA - & .
j=0

When the matrix A is not too large and/or ill-conditioned, then any numerical
method can solve the linear systemsin (16). A matrix A with large dimension leads to
a completely different scenario, since iterative methods are compelling. Moreover,
when the convergence of these methods is too slow a kind of preconditioning is
needed. In [13] we compared different strategies to compute (16), some of them
involving also the Krylov subspace methods, as we will define in Section 5.2. In [38],
instead, we found a strict relationship between the Shift-and-Invert technique, we
are going to describe, and the preconditioning of systems in (16).
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An additional difficulty is related to the nature of the poles ¢;: indeed, when
these poles are complex, complex linear systems need to be solved. In this case,
not only the execution time is far larger than that of real systems of the same
dimension, but even more complicate is the problem of their preconditioning: this
subject is not yet well understood and important contributes are on the way. For
shifted linear systems, as in (16), that is, with coefficient matrices of the form
A + €¢I, for a real A and a complex &, we cite, among the others [1, 2, 3].

5.2 — Shift-and-Invert method

The Krylov subspace methods are largely used for the computation of vectors
like f(A) for their efficiency and for their good accuracy and convergence
properties. Their use has been widely analyzed in the context of the exponential
function [20, 39, 24, 25].

They aim to approximate f(A)v in Krylov subspaces defined as

Kn(A,v) = span{v,Av, ... ,Amflv}.

To build an orthonormal basis for this space the starting vector is v; = v/||v|[;
then at each step 1 =2,..., a new vector v; is defined, by applying the ortho-
normalization Gram-Schmidt process to Av;_; with respect to the previously
computed vectors. This technique defines the matrices V,,, = [vy,...,v,]and H,,
of dimension m x m whose entries %; ; are the orthonormalization coefficients.
Through these matrices the following approximation holds

J@w ~ |[v||Viuf (Hyn)ex

where e; denotes the first column of the identity matrix of dimension m x m.

The potency of these techniques is that usually a small dimension m is suf-
ficient to get a sufficiently accurate approximation; thus some classical method
usually works to compute f(Hp,).

Anyway, as shown by Hochbruck and Lubich [20], the convergence of the
Krylov subspace methods is connected to the spectral properties of the matrix A.
This feature makes the approach particularly slow for matrices A with large
spectrum, as it often happens when the matrix derives from the discretization of
differential operators. The slow convergence motivated the investigation of ac-
celeration techniques. Among them we put our attention on the Shift-and-Invert
(SI) technique proposed by Moret and Novati [30] and afterwards by van den
Eshof e Hochbruck [43]. This technique is grounded on the Krylov subspaces
K + yA)*l,v) for a suitable shift parameter y. In this way, if V,, and H,,
denote the matrices for K, (I + y4) "1, v), the approximation becomes

JAW = [|v||Vi f(Bes,
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with B,, defined by the equation
(I + VBm)Hm =1I

Several applications show the superiority of this approach with respect to the
standard Krylov subspace methods. It is indeed evident that in lots of applica-
tions the SI method needs a space dimension 7 much smaller than the one re-
quired by the standard approach. However, for this approach the shift parameter
y plays a fundamental role. In the paper [38] we got the interesting result to fix
this parameter a priori, independently on the matrix A. To get this result a
different perspective was crucial: indeed, it was necessary to set the SI method
in the framework of rational approximations for the exponential function.
Indeed, if a rational approximation like (16) is used for exp (4)v, then in [38] we
demonstrated that the SI method corresponds to precondition all the systems in
(16) by means of the same preconditioner for all poles, which depends on 7.

The problem to approximate f(A4)v reduces then to approximate f(B,,), with
B,, in general much smaller than A. Various approaches can then be applied to
the last approximation: if, for example, / = exp, then the Matlab code expm can
be used: it is based on the classical scaling-and-squaring method combined with
a Padé rational approximation [33]. For the tests in [37, 38], for example, this
choice was used. In general, given a rational approximation to f with a partial
fraction expansion like (16), one can think to compute f(B,,)e; by solving the
linear systems in (16) by a direct solver, as the Matlab backs1ash, for example.
Or, in Matlab environment, also the command funm can be used when the first
derivative of f is at disposal; the code computes the Schur decomposition of the
matrix and then evaluates the function f for the triangular factor by means of the
Parlett algorithm (for details see [17] and references therein).

Podlubny and Kacenak [35] gave a Matlab code for the ML function with
scalar arguments; it allows one to approximate the ML function with any
desired accuracy and, for our numerical tests, we combined it with the funm
command.

Recently Moret and Novati [31] studied the convergence of the SI method
when applied to the computation of the ML for 0 < o < 1 and f = 1: an inter-
esting result is that the convergence accelerates when o decreases, exactly the
inverse of what happens for the standard Krylov subspace methods.

6. — Numerical tests
6.1 — Comparison of numerical methods for linear FDEs

In [13] we addressed the solution of systems of linear FDEs with constant
source terms (3). In practice systems like (3) often derive from PDEs with
fractional time derivatives and space derivatives of integer or fractional order. If
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only the space derivatives are discretized, then these PDEs reduce to systems of
FDEs in the time variable.
We report here these model problems:

FExample 1: the fractional Fokker-Planck equation

The Fokker-Planck equation is commonly used in the statistical physics to
describe the time evolution of a test particle subject to an external field; its so-
lution is the probability u(x, t) of the particle to be at the time ¢ in a given position
2. In presence of an highly non-homogeneous medium the anomalous diffusion is
adequately described only by FDEs. In particular, according to the formulation
given by [7], the Fokker-Planck equation in one dimension can be written as

" !
Diute, )= 2D,y + - f) Lt 0 vkute, ), we@b), t€0.T]
U7 e, 0) = 0.1, x € [a, b],
u(a,t) = 0.1,u(b,t) = 0.1, t>0,

with F'(x) = cosx — 6x, # =6 and k = 2.

Given an equispaced grid x; = a +jh on [a,b] with step-size h, the dis-
cretization of the first and second order spatial derivatives by means of central
differences leads to the system (3) with a tridiagonal matrix A. Thus, taking into
account the initial and boundary conditions, the solution of (17) is equivalent to
solve the systems of FDEs (3).

Example 2: A space-time fractional diffusion equation
We consider the generic space-time fractional diffusion equation

Fulx,t) 1902 Pule, t)
ot 2 oxlf 7’
subject to the initial conditions %(x,0) = 0.1 and u(x,0) = 0.1. When the frac-

tional space derivatives are suitably discretized one gets a system like (3) with
the matrix A in Hessenberg form.

0<a<l<fp<2xe[0,10],¢€[0,T1]

Numerical methods:

Once the equation tests have been reduced to systems of FDEs, we compute
their solution by different approaches to compare their accuracy and efficiency.
We describe the methods under investigation, taking into account that the en-
vironment used is Matlab, and thus, when necessary, we directly refer to the
specific command used,;

e CF + PFE: Carathéodory-Fejér (CF) approximation of degree v =6 for
E, .1 evaluated by means of its partial fraction expansion (PFE) as in (16);
the backslash is used for the linear systems.
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e SI+funm: Shift-and-Invert method combined with funm to evaluate
E, ,+1(By). The shift parameter is y = 0.05, as in [31]. Krylov spaces are
built by using a direct approach every time vectors of the form (4 + yI )’lvj
are required.

We stop the iteration for the smallest dimension m such that the distance
between 7,, and ¥,,_1 is smaller than 1077,

e SI+ CF + PFE: Shift-and-Invert method with CF approximation and
PFE to evaluate £, ,1(Bx)e;. We proceed as in SI + funm, the difference
being that at each step for £, ,.1(By)e; the expression (16) is used, as for
CF + PFE.

e PTR: product trapezoidal rule. It is an implicit product-integration rule
based on first degree polynomial interpolants; this formula combines a
good accuracy and a reasonable computational cost; it is among the most
used methods in the fractional calculus community [9, 23]. We use a time-
step h = 1073 since it requires an execution time comparable to that of the
other methods.

For the m1f code we use a tolerance 1079 since it offers a good compromise
between accuracy and speed. Moreover the Cuthill-McKee ordering (Matlab
symrcm) is used to improve the matrix approaches under investigation. The
reported elapsed time includes every part of the methods: the reordering, the
computation of the CF coefficients and so on.

The accuracy of the methods

We report the results in [13] on the accuracy of the methods described above.
Since the true solutions of our test equations are not explicitly known, we con-
sider as reference solution the one obtained by the PTR approach with & = 107>,
This is a very tiny value for the problems under investigation and it requires the
computation of 100.000 steps to get the solution at 7' = 1, and about 90 minutes of
CPU time (on the PC used for all other tests). It would be thus impracticable to
consider smaller steps.

In Tables 1 and 2 we report the errors with respect to the reference solution
of the methods under investigation.

The value n refers to the nodes number for the discretization of the space
derivatives (thus the matrix A has dimension n x n).

One of the most interesting aspects that Tables 1 and 2 put to light is that the
approaches based on matrix functions always reach a high accuracy, comparable
to the one of the classical PTR method. Moreover, this last approach is quite
always the most expensive and this gap enlarges, according to other numerical
tests in [13], when the dimension of the problem or the integration interval gets
larger.
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TABLE 1. — Comparison for accuracy and execution time (in parenthesis) to evaluate
the solution of Example 1 for 7 = 1.

SI SI PTR
n o CF+PFE + +
Schur CF+PFE h=1073
0.5 6.3e-11 (1.29) 1.9e-10 (1.03) 8.5e-09 (1.32) 6.7e-08 (1.16)
50 0.8 1.0e-09 (0.59) 8.0e-10 (0.48) 1.3e-09 (0.61) 9.9e-09 (1.10)
0.5 8.Te-11 (1.29) 1.1e-09 (1.01) 6.6e-09 (1.32) 9.5e-08 (2.35)
100 0.8 1.4e-09 (0.59) 4.4e-10 (0.50) 3.8e-09 (0.61) 1.4e-08 (2.35)

TABLE 2. — Comparison for accuracy and execution time (in parenthesis) to evaluate

the solution of Example 2 for 7' = 1.

SI SI PTR
n o p CF+PFE + +
Schur CF+PFE h =103
0.5 15 | 2.4e-10(1.28) | 2.4e-09 (1.60) | 1.1e-08 (1.33) | 1.3e-07 (1.12)
50 0.6 1.8 | 2.Te-11(1.13) | 1.6e-10 (0.98) | 8.5e-09 (1.16) | 2.7e-08 (1.23)
0.5 1.5 | 3.8e-10(1.29) | 7.8e-09 (2.34) | 9.3e-08 (1.35) | 1.9e-07 (2.66)
100 0.6 1.8 | 3.6e-11(1.13) | 2.1e-09 (1.09) | 2.8e-08 (1.17) | 3.8e-08 (2.70)

Efficiency of the methods

Another important factor to compare methods is the efficiency in terms of
execution time. To this purpose in [13] test problems of large dimensions have
been considered, without considering the PTR method which is not adequate to
treat similar situations that, in practice, are the most common in the applications.

Tables 3 and 4 report the execution time and, for methods based on Krylov
subspaces, we report in parenthesis the dimension of the space the solution
belongs to.

TABLE 3. — Comparison of execution time and iterates (in parenthesis) to evaluate the
solution of Example 1 for 7' = 1.

n ” CF+PFE SI+funm SI+CF+PFE
time time (iterations) time (iterations)
0.5 1.315 1.092 (20) 1.398 (19)
1000 0.8 0.603 0.543 (18) 0.660 (17)
0.5 1.305 1.092 (20) 1.455 (19)
2000 0.8 0.611 0.607 (18) 0.758 (17)
0.5 1.325 1.335 (20) 1.760 (19)
3000 0.8 0.635 0.822 (18) 0.949 (17)
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TABLE 4. — Comparison of execution time and iterates (in parenthesis) to evaluate the
solution of Example 1 for 7' = 1.

) CF+PFE SI+funm SI+CF+PFE
" * time (avg its.) time (iterations) time (iterations)
05 15 1.880 3.908 (31) 2.600 (29)
1000 06 1.8 1.728 2.194 (23) 2.115 (20)
05 15 3.721 7.449 (31) 6.105 (29)
2000 06 1.8 3.524 5.141 (23) 4.978 (21)
05 1.5 7.131 14.206 (31) 13.029 (30)
3000 06 1.8 6.757 10.594 (23) 10.189 (21)

The interesting result is that the execution time of these methods remains
quite small; they are indeed effective also for very large problems, whose re-
solution would be not affordable by the classical methods.

6.2 — Tests for semilinear FDE's

The introduction of GETD methods in [14] was supported by several nu-
merical tests aiming to validate the theoretical findings; we report here some of
them, and we refer to [14] for details and further examinations.

The test equation is

o o 0
(18) E ut,x) +a 2 u(t, x) = cult,x) xu(t, ) +f¢x), xe€[0,1], t>0

with u(t,0) = u(t,1) = 0, u(0,x) = x(1 — «) and
ft0) = — (20 + cex1 (&) @2a® — 32 + x) + ya(l — x))eq1 (6 ).

The exact solution is u(t, x) = e,1(; w)a(l — x).

Finite differences are used to discretize the spatial derivatives for a equis-
paced mesh-grid on [0,1] with mesh-size 4x = 1/(n + 1); thus the system of
semilinear FDEs to solve is

. a _c
DU + 5 AU®) = 5 - GU®) + F (),

with U(t) = (ult, x0), ult, x), ..., ult, @)’

-2 1 U.Uy
1 -2 1 UsUz — UxUy
A— 1 -2 1 . g = UsUs — UsUs

1 -2 _UnUnfl
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0.15 — Numerical 0.15 — Numerical
o True o True
0.1 T 0.1
% ‘ 3
El El
0.05 0.05
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Fig. 1. — Comparison between 1-step GETD (left) and 1-step fractional Adams-
Bashfort (right) for the fractional PDE (18).

and F(t) = (f(t,ocl),f(t,xg),...,f(t,ocn))T. For our numerical tests we used
=07 a=-1¢=1and y =1 with n = 20 grid points.

The first plot in Figure 1 represents the exact solution %(1,x) and the
numerical solution for ¢ = 1 evaluated by the 1-step GETD method (14) with
step & = 0.05. It is interesting to notice that this quite large step leads to a
numerical solution which is very similar to the exact one. The second plot
in Figure 1 refers to an explicit product-integration method of the first
order, commonly used for FDEs, with step-size & = 3.685 x 107°. Some
noticeable oscillations appear in this case, even though the remarkably
smaller step-size has been used, thus confirming the difficulties described
in Section 3 when explicit methods are used to solve stiff problems. The
value & has been deliberately chosen close to the border of the stability
region in order to highlight the difficulties of using explicit methods of
traditional type.

7. — The restarted shift-and-invert Krylov method

In some situations even the convergence rate of the SI method, introduced
in Section 4, can result slow. To overcome this difficulty, with related problems
of memory storage and high computational costs, in [32] we proposed a variant
of SI with restart. The basic idea is to fix a priori the largest dimension the
Krylov subspace can reach to define suitable approximations by working only
on spaces of the fixed dimension.

The theory developed in [32] applies to sectorial matrices, that is, for matrices
A € CM*N guch that for every vector u € CV

Re(u,Au) > 0.

Let p(4) and o(A) denote the resolvent and the spectrum of A, respectively. Let
apply the SI method defined in Section 4 to approximate f(A)v with f as in (16)
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and Z = (I 4+ pA)~. Then

f(A)?) X Ym = 9kWkmy, Wkm = V‘/mHm(ﬂka + 1)71617 M = ka -1

k=1

with the assumption that —u;! € p(H,,) for any k= 1,2,...,v.
The approximation error for m > 2, as shown in [29], can be expressed as

(19) Y=Y = Gl +7A)EL +A)  0pi1

M
k=1
with

Meom = hm+1,mequ,,(ﬂka + 1)7191~

It is thus possible to update y,, by approximating this error to get

U =Ym +7 > GV 1;
k=1

the error now is
(20) Y= == > Il Gl +A) 01,
k=1

The restart process is grounded on the fact that both the errors (19) and (20)
have partial fraction expansions like (16). In practice, the steps to follow in this
procedure are the following:

Find y,, € K,,(Z,v);

Update it 4 =y + 7 Y 9tk Vmr1
k=1

y
Approximate the error eV = — 3 g(& T + A) 41 10 Ko(Z, V1)
-1

k
Update the approximation to y

v
@ _— ,0 (6] 1),,2) ,,(2)
Y =Y ey - yzgk Mok Vi1
k=1

which gives an error
y
2 2 D, (@ -1,@
e® =y —y® => " g"nZ Gl + D,
=1

e Approximate

e? ~e? ¢ Ku(Z,0%, )

m m+1

and so on.
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For the approximation ¥, the useful a posteriori error estimate holds [32]
g = Gonll <D 1901 |10 E T+ A) 01|
k=1

which can work as a stopping criterion in the method’s implementation with

(21) (G d Jr14)711)m+1 > YVt — Vit (W H g1 + 1)716m+1)-

7.1 — Application to the Mittag-Leffler function

In [32] we applied this restart version of SI to the numerical approximation of
the ML function for 0 < o < 1 and f =1, A and v real and ¢(4) C [a, b].

To approximate the ML we make use of the quadrature formulas proposed by
Weideman e Trefethen [44]; in particular, we consider a parabolic contour

2u) = diu+ 17, d >0, —co <u < +00
which, according to the presentation in ([44], Sec. 3), leads to the approximation
o h L 2(ug )t/ o—1 o -1
(22) B (—t'w)~ 5 Y e e (2we) +w) ", fort>0,LeN
2m =

with w, = kh, for k = — L, ...., L. When working in an interval like [#y, 1] then

VB8R +1 nL
h=——— and d=—+—
L 44 vV8R +1
are optimal parameters chosen as to guarantee, for R = h and L fixed, an error
27 0
like Ef, = O exp | — ——— for any t € [to,t1]. The formula (22) can be
L ( P( 8R+1)> y t € [to, t1] (22)

extended also to matrix arguments with a spectrum close to the real axis [44].
Recently an extension of this approach to the more general case ff # 1 has
been carried over [16] and, by following a similar error analysis, the optimal
parameters for the parabolic contour and other coefficients have been detected
to reach any accuracy.
For E,(— t*A)v formula (22) becomes

L
(23) YLt = % S M ) ()T + A) .
k=-L

It is thus immediate to apply SI to approximate this sum. Moreover, since A and
v are real, for the properties of the parabola z and the chosen nodes, formula (23)
can be stated in such a way to reduce the addends from 2L + 1 to L + 1.
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A deep analysis has been carried out in [32] to fix the shift parameter y and
the conclusion was that it can be useful to use

(24) y=d~

which, although not optimal in general, gives good results in many applica-
tions and it is independent on the problem. The numerical results presented
in [32] show the similarity between the SI convergence with this y and the one
for the optimal y obtained by applying the a priori error estimates as deduced
in [32].

The strategy proposed by Weideman e Trefethen [44] applies to the com-
putation of vectors like f(A)v when f derives from the inversion of the Laplace
transform of suitable functions, while the matrix A is chosen such that the linear
systems in (23) can be easily solved by direct methods. For our tests the matrix A
has the features outlined in [44]: in particular, we consider A as the discretization
of the differential operator

on the square (0,1) x (0,1), with homogeneous Dirichlet conditions. We use fi-

nite differences with constant step 7 =

1 in both directions. The resulting

matrix A has dimension N = 7?2, is sparse and has real eigenvalues. The vector v
derives from the discretization of the function v(x, y) = (1 — x)y(1 — y).

Many applications require the evaluation of £,( — t*A)v for several values
of ¢; let assume for example we need this vector for 40 distinct values of t’s in
the interval [1073,1]. In practice, we partition this interval in 4 subintervals
of the same length. Indeed, by taking into account the error estimate cited
above, to reach an accuracy O(10~7), one would consider L = 230 terms in
(16) when working in [10~3, 1], while only L = 18 if the mentioned partition is
considered.

Motivated by the results of some numerical tests, we use the y in (24) for an
“intermediate” subinterval, that is, we use the y for the second subinterval since
it (experimentally) turns out to be effective also on the other subintervals [32].
Using just one y is useful when building the Krylov subspace with a direct
method; indeed, the factorization of A + yI can be done just once and reused any
time a vector of the form (A + yI )711)]- is needed. This is the strategy adopted for
our tests.

We compare the execution time to compute (23) for three different approaches:
when solving the linear systems with the Matlab backslash (“Direct”), for SI,
for ST with restart for a fixed dimension m (“SI(m)”). For o = 0.5 we fix m =5
while for o = 1 the fixed dimension is m = 10. We impose an accuracy 10~ on the
error estimate (21).
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TABLE 5. — Comparison of execution time, in seconds, to evaluate (23) in 40 points in
[1073,1] by solving the linear systems with a direct approach, for SI with restart length m
and for standard SI; the used values are m = 5 for « = 0.5 and m = 10 for o = 1.

o Direct SI(m) SI
0.5 250.939 0.268 0.322
1 285.699 0.269 2.433

Results in Table 5 highlight the sharp difference between the “Direct” ap-
proach and the other two; the “SI(m)” method is always the fastest one, with an
important difference with respect to “SI(m)” especially for o = 0.5.

In these numerical tests it was interesting to notice that, in the “Direct”
approach, the solution of the complex linear systems was actually the most ex-
pensive part, in practice the 99.7% of the total cost, thus confirming the diffi-
culties discussed in Section 4.
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