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Noether’s Theorem on Gonality of Plane Curves
for Hypersurfaces

FRANCESCO BASTIANELLI

Abstract. — A well-known theorem of Max Noether asserts that the gonality of a smooth
curve C C P? of degree d > 4 is d — 1, and any morphism C — P! of minimal degree
is obtained as the projection from one point of the curve. The most natural extension
of gonality to n-dimensional varieties X 1is the degree of irrationality, that is the
minimum degree of a dominant rational map X ———P". This paper reports on the
joint work [4] with Renza Cortini and Pietro De Poi, which aims at extending
Noether’s Theorem to smooth hypersurfaces X C P in terms of degree of irratio-
nality. We show that both generic swrfaces in P> and generic threefolds in P* of
sufficiently large degree d have degree of irrationality d — 1, and any dominant ra-
tional map of minimal degree is obtained as the projection from one point of the
variety. Furthermore, we classify the exceptions admitting maps of minimal degree
smaller than d — 1, and we show that their degree of irrationality is d — 2.

1. — Introduction

Let C be a complex projective non-singular curve. The gonality of C is the
minimum integer m such that the curve admits a non-constant morphism
f:C — P! of degree m.

The gonality of plane curves is governed by the following classical theorem,
whose assertion goes back to Max Noether (see [17]). It is actually included in a
wider statement describing the dimension and the geometry of linear systems of
arbitrary degree on plane curves. We note further that Noether’s original proof
is incomplete, and the general assertion has been differently proved in the
eighties by Ciliberto and Hartshorne (cf. [5, 11]).

NOETHER'S THEOREM Let C C P be a smooth curve of degree d > 4. Then the
gonality of C is gon(C) = d — 1.

Moreover, any morphism C — P! of degree d — 1 is obtained projecting C
from one of its points.

It is interesting to note that analogous results hold for certain classes of
non-singular space curves. The paradigmatic statement is that—under addi-
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tional hypothesis—the gonality of a smooth curve C c P? is gon(C) = d — h,
where d is the degree of the curve and & := max{deg(f NnO)e C 3 is a line} is
the maximal order of multisecant lines. For instance, this has been shown for
complete intersections ([2]), curves lying on smooth quadrie surfaces ([1, 15]),
and arithmetically Cohen-Macaulay curves either being general ([10]) or lying
on particular quartic surfaces ([7]). However, Noether’s Theorem can not be
extended in this terms to every space curve of large enough degree (cf. [9,
Example 2.9] and [10]).

On the other hand, it would be interesting to investigate when the gonality of
non-singular curves C C P” can be computed by projecting C from suitable
multisecant (n — 2)—planes.

Throughout we deal instead with extensions of Noether’s Theorem to non-
singular hypersurfaces of projective spaces. In particular, we report on the joint
work [4] with Renza Cortini and Pietro De Poi, where analogous statements have
been proved for surfaces and threefolds.

In this setting, the most suitable notion extending gonality to a %-dimensional
variety X is the degree of irrationality—usually denoted by d,.(X)—that is the
minimum integer m such that the variety admits a dominant rational map
f: X ———P" of degree m. In particular, the degree of irrationality of a curve C
coincides with its gonality as any dominant rational map C ——— P! can be re-
solved to a morphism. Furthermore, the projection of a smooth hypersurface
X c P"*1 of degree d from one of its points does provide a dominant rational map
X ———P" of degree d — 1.

Thus it is natural to wonder whether Noether’s theorem can be somehow
extended in terms of degree of irrationality to hypersurfaces of P"*1,

The first result we present in this direction is a bound on the degree
of irrationality of smooth hypersurfaces of arbitrary dimension (cf. [4,
Theorem 1.2]).

THEOREM 1.1. — Let X C P"! be a smooth hypersurface of degree d > n + 3.
Then

d—n<d.X) <d-1

We note that this theorem overlaps the first part of Noether’s one when
n = 1. Moreover, we shall see that surfaces in I® reach both the admissible
values, whereas the lower bound fails to be sharp for threefolds in P*.

By focusing on small dimensional hypersurfaces, we can indeed provide a
more detailed picture. Beside plane curves, the first case to describe is given by
non-singular surfaces in P3 (cf. [4, Theorem 1.3]).

THEOREM 1.2. — Let X C P® be a smooth surface of degree d >5. Then
d(X) = d — 1 unless one of the following occurs:
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(1) X contains a twisted cubic;
(2) X contains a line £ and a rational curve C of degree ¢ such that £ is a
(¢ — 1)-secant line of C;

in these cases d,.(X) =d — 2.

It is worth noticing that there exist surfaces as in (1) and (2) (see e.g. [8, p. 355]
and [4, Example 4.8]). Moreover, the dominant rational maps X ——— P? of degree
d — 2 can be constructed explicitly by means of either the family of bisecant lines of
the rational normal cubic, or the family of lines meeting both ¢ and C. Namely,

EXAMPLE 1.3. Let X c I?® be a smooth surface of degree d > 6 containing a
twisted cubic I". For any « € X — I, there exists a unique line ¢, through x
intersecting twice the cubic (cf. Theorem 2.3), and each ¢, meets X at d — 2
points outside I". We then consider the second symmetric product of the twisted
cubic I'® =~ P2, and we define a dominant rational map X —— I'® of degree
d — 2 by sending a general point 2 € X to the unordered pair x; 4+ 22 € I'"® such
that ¢, N I = {a;1,x2}.

On the other hand, provided that X c * is a smooth surface of degree d > 6
as in (2), we can construct analogously a dominant rational map of degree d — 2
on the rational surface ¢ x C.

In the case of non-singular threefolds in IP*, we prove a very similar result
(see [4, Theorem 1.4]). In particular, we still provide a characterization—in terms
of subvarieties—of those hypersurfaces having degree of irrationality d — 2, and
the dominant rational maps X -—— P? of minimal degree are obtained analo-
gously. However, we can not decide whether these exceptions really occur.

THEOREM 1.4. — Let X c P* be a smooth threefold of degree d >1T. Then
d,(X) = d — 1 unless one of the following occurs:

(1) X contains a non-degenerate rational scroll S of degree s and an (s — 1)-
secant line ¢ of S;

(2) X contains a non-degenerate rational surface S of degree s and a line
¢ C S such that the intersection of S outside ¢ with the geweral
hyperplane H containing ¢ is a rational curve C and £ is an (s — 2)-
secant line of t;

n these cases d,(X) =d — 2.

In the light of the previous results, both surfaces in P® and threefolds in P*
having d,(X) = d — 2 are characterized by the existence of some rational sub-
varieties. On the other hand, sufficiently general hypersurfaces X c P"*! of
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degree d > 2n + 1 do not contain rational curves (see [26, 6, 25]). Thus we deduce
that when n = 2 or n = 3, the degree of irrationality of a generic hypersurface
X c P! of degree d > 2n +11is d,(X) =d — 1.

Furthermore, we prove the following generalization of Noether’s Theorem.

THEOREM 1.5. — Let 1 <n < 3, and let X C P"*! be a generic hypersurface
of degree d > 2n + 2. Then the degree of irrationality of X is d.(X) =d — 1.

Moreover, any dominant rational map f:X -———P" of degree d—1 1is
obtained projecting X from one of its points.

In the next section we outline the proofs of the above results, whereas the last
section is devoted to some remarks and conjectures in view of further extensions
of Noether’s Theorem.

2. — Outline of the proofs

In this section we present the techniques our argument involves, and we
outline the proofs of the results stated in the Introduction.

In the spirit of [13] and [3], we use Mumford’s technique of induced diffe-
rentials (see [16]) to provide restrictions of Cayley-Bacharach type on dominant
rational maps X -—— " from non-singular hypersurfaces X c P"*! of degree
d >n + 3. On one hand, we estimate the degree of the maps, and we deduce
Theorem 1.1. On the other, we show that the general fiber of a map X ——— IP* of
low degree consists of collinear points, so that any such a map specifies a families
of lines in P"*1,

Then we turn to describing an important class of families known as first order
congruence of lines of P!, and we establish a certain one-to-one corre-
spondence connecting them with dominant rational maps X ———P" of low
degree.

In the light of this fact, we finally achieve our results by exploiting the
classification of first order congruence of lines in low dimensional projective
spaces, together with some classical results such as Lefschetz and Bertini’s
Theorems.

2.1 — Mumford’s trace map and Cayley-Bacharach condition

Let f: X ——— Y be a dominant rational map of degree m between non-singular
n-dimensional varieties. Let U := {y € Y|dimf(y) = 0} be the open set over
which f is finite, and let X" be the m-fold symmetric product of X. So we can
consider the morphism y: U — X, which sends the general y € U to the
unordered m-tuple x; + . ..+ x,, such that f~1(y) = {21, ..., %m}-
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By using Mumford’s induced differentials (cf. [16, Section 2]), it is then pos-
sible to define the trace map of y

Tr,, HYX) — H"Y()

w > (O

y

When the morphism 7y has null trace map, the general O-cycle
X1+ ...+ xy, € Imy satisfies the Cayley-Bacharach condition with respect to
the canonical linear series |wy]|, i.e. for any ¢ =1,...,m and for any effective
divisor Ky € |wx| passing through xy,...,%;,...,x,, we have that x; € Kx as
well (see e.g. [13, Section 2]).

Given a dominant rational map f: X ——— P" from a non-singular hypersurface
X c Pt of degree d, it is immediate to check that H**(U) = {0}, so that y has
null trace map. Thus the general point of Imy satisfies the Cayley-Bacharach
condition with respect to |wy| 2 Opuwa(d —n — 2), and we deduce the following
(cf. [4, Theorem 2.5 and Example 2.7]).

LEMMA 2.1. — Let X C P"*! be a smooth hypersurface of degree d > n + 3,
and let f: X ———P" be a dominant rational map of degree m. Then

1) the degree of the map is m > d — n;
1) if i addiction m <2d—2n—3 and y € P" is general, the points
X1, ..., %, €y are collinear.

We point out that the first assertion provides the lower bound on d,.(X) of
Theorem 1.1, whereas the upper bound is the obvious one obtained projecting
X c P! from one of its points.

On the other hand, any dominant rational map f: X ——— P"—as in the second
assertion—specifies a n-dimensional subvariety B’ € G(1,% + 1) which para-
meterizes the lines in P"*! containing the sets of collinear points f~(y).

2.2 — First order congruences of lines in P

Let G(1,% + 1) be the Grassmannian of lines in P"*!, and let us denote by

¢, C P"*1 the line parameterized by the point b € G(1,7 + 1). A congruence of
lines in P"*1 is a flat family of lines

A :={(b.P)eBxP"|Pecy}

|

B

obtained as the pullback of the universal family under a desingularization map
B — B’ of an irreducible n-dimensional subvariety B’ ¢ G(1,% + 1).
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The order of the congruence is defined as the degree of the projection
A— P"*1 that is the number of lines of the family passing through the general
point of P"*1, In particular, a first order congruence of lines in "1 is a n-di-
mensional family of lines such that the general point of P"*! lies on a unique line
of the family.

Moreover, a point P € P"*! is said to be a fundamental point of the con-
gruence if it lies on infinitely many lines of the family, and the set F' of funda-
mental points is called fundamental locus.

Congruences of lines are very classical geometric objects, which have been
studied long since (see e.g. [12, 24, 14]), aiming for a classification in dependence
on the number and the dimension of the components of their fundamental locus.

First order congruences of lines in P* have a very simple description.

EXAMPLE 2.2. A congruence of lines in P? is a family parameterized over a
curve B lying on the dual plane G(1,2) =~ P2 Moreover, the order of the
congruence equals the degree of such a curve. Thus 41— B is a first order
congruence of lines in P2 if and only if B ¢ G(1,2) parameterizes the star of
lines through a fixed point F € %, which is the fundamental locus.

On the other hand, the more the dimension grows, the more the combinatories
are involved. In particular, the following describes the case of P® (cf. e.g. [23, 19]).

THEOREM 2.3. — Let B C G(1,3) be a surface. Then A— B is a first order
congruence of lines in P if and only if the fundamental locus F is one of the
following:

(a) a point, where B is the star of lines through F;

(b) a twisted cubic, where B is the family of bisecant lines of F;

(¢) a non-degenerate reducible curve consisting of a rational curve C of
degree ¢ and a (c — 1)-secant line ¢, where B is the family of lines
meeting both C and ¢

(d) a non-reduced line ¢ and B is the family of lines |J By, where
HGB[
B, C G(2,3) is the pencil of planes containing ¢, p: By — £ is a non-

constant map, and for any plane n € By, B,y C G(1,3) is the star of
lines on © passing through the point p(r) € L.

Although the classification of first order congruences of lines in P? is not
complete, there are series of papers on this topic (see e.g. [18, 20, 21]) providing a
quite detailed picture (cf. [22, Table 1]), which have been crucial to prove
Theorem 1.4.

In order to relate congruences of lines and dominant rational maps from
hypersurfaces in "1, we introduce the following notation. Let X ¢ IP"*! be a
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non-singular hypersurface of degree d > 2n + 1, and let 4 — B be a first order
congruence of lines in P! having fundamental locus F. We denote by Fpx the
union of the irreducible components of F' entirely contained in X, and by dpx we
mean the number of intersection points—counted with multiplicity—of a general
line of the congruence with X at Fpx.

Since the n-dimensional variety B C (G(1,n + 1) is rational (cf. [18, Theorem
7]), the congruence 4 — B induces a dominant rational map fz: X ——— P" of
degree d — dp|x, which is obtained by sending the general x € X — Fipx to the
unique point b € B such that « € ¢;,. On the other hand, we already observed by
Lemma 2.1 that any dominant rational map f: X -—— P" of low degree specifies a
family A; — By of lines in "1 which turns out to be a first order congruence.

Indeed [4, Theorem 4.3] assures that the above constructions are somehow
each other’s inverses. Namely,

THEOREM 24. — Let X c P! be a smooth hypersurface of degree
d>2n+3 -k with 0 <k <2 Then

1) any dominant rational map f: X ———P" of degree m < d — k induces a
first order congruence Ay — By of lines in prtl,
it) any first order congruence A — B of lines in P induces a dominant
rational map fp: X —— P" of degree m = d — opx.

In particular, the congruence induced by the map fg coincides with B, and—up
to birational isomorphisms of P"—the dominant rational map induced by the
congruence Ar — By 1S f.

2.3 — Proofs

By virtue of the previous subsections, proving Theorems 1.2, 1.4 and 1.5 is
now almost straightforward.
Moreover, we can provide a different proof of Noether’s Theorem as follows.

ProOF OF NOETHER'S THEOREM. Let X C P be a smooth curve of degree
d > 4. Therefore gon(X) = d,(X) = d — 1 by Theorem 1.1.

On the other hand, setting ® =k =1 in Theorem 2.4, any morphism
f:X — P' of degree d — 1 induces a first order congruence A; — By of lines in
P2, Therefore By parameterizes a star of lines through a fixed point F' € P2,
which is the fundamental locus of the congruence (cf. Example 2.2). Since
degf =d—1=d— dpx, we conclude that F € X and f: X — P! is the pro-
jection from F. O

Then we turn to the degree of irrationality of non-singular surfaces in I’* and
we prove Theorem 1.2.
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PROOF OF THEOREM. 1.2. Let X C IP® be a smooth surface of degree d > 5.
Hence its degree of irrationality d,.(X) equals either d —2 or d—1 by
Theorem 1.1.

In order to characterize the former case, we suppose that X admits a domi-
nant rational map f: X -—— P? of degree d — 2. By Theorem 2.4, the map f is
induced by the associated first order congruence Ay — By of lines in 3,
Moreover, deg f = d —2 =d — dp,x and hence the general line ¢, C Ay inter-
sects twice X at F'p x. Clearly, the intersection multiplicity between ¢, and X at
any reduced component of Fp | is one. We refer throughout to the classification
of first order congruence of lines in P® provided by Theorem 2.3.

If the general line ¢, C Ay meets X at two distinet points of Fp |x, then the
fundamental locus F' is either a twisted cubic as in (b), or a non-degenerate re-
ducible curve as in (¢). In particular, the whole fundamental locus F' is contained in
the surface X, and we obtain conditions (1) and (2) in the statement of Theorem 1.2.

On the other hand, if the general line ¢, C Ay met X at a double point of the
fundamental locus, the surface X would be singular. This is obvious if ' € X were
a point as in (a), whereas [4, Lemma 4.6] uses Bertini’s Theorem recursively to
show that, if /' were a non-reduced line as in (d), any plane containing F’ would be
tangent to X at the same point. O

The proof of Theorem 1.4 is very similar to the previous one, and we refer the
reader to [4, Section 4] for details. Initially, we note that the degree of irrationality
of a smooth threefold X c P* of degree d > 7 satisfies d —3 < d,.(X) <d — 1.
Then we consider a dominant rational map f: X ——— P? of degree deg f < d — 2,
together with its associated congruence Ar — By. Finally, we analyze Fp |y in
the light of Lefschetz Theorem and the description of first order congruences
of lines in IP!. In particular, there are only two admissible configurations,
which lead to d,(X) =d —2 and are described by conditions (1) and (2) of
Theorem 1.4.

Then we conclude this section by proving Noether’s Theorem for generic
hypersurfaces X ¢ P"*!, having dimension 1 < n < 3 and degree d > 2n + 2.

ProOF OF THEOREM. 1.5. The case of plane curves is covered by Noether’s
result. Therefore we set n» = 2,3 and we consider a dominant rational map
f:X ———P" of minimal degree. Since deg f < d — 1 and d > 2n + 2, Theorem 2.4
guarantees that there exists a first order congruence A, — By of lines in "™
induced by f.

Let F' be the fundamental locus of the congruence, and let Fpx the union of
the irreducible components of F' contained in X. From the description of first
order congruences of lines in P? (cf. Theorem 2.3) and in P* (see [4, Table 1]),
we deduce that either F' is a point, or it consists of rational components.
Furthermore, Fp |x is non-empty as degf =d —dpx <d — 1.
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On the other hand, X does not contain rational subvarieties (cf. [26, 6]). Hence
F = Fpx is a point of X, and Ar — By is the family of lines of P passing
through F. Thus f:X--—P" is the dominant rational map of degree
d,(X) = d — 1 projecting X from the point F' € X.

3. — Final remarks

In this section we briefly deal with the degree of irrationality of non-singular
hypersurfaces of arbitrary dimension. In particular, we discuss whether the
techniques we used may lead to further extensions of Noether’s Theorem. On
one hand, we look for a characterization of hypersurfaces X ¢ P"*! of degree d
having d.(X) < d — 2, as in Theorems 1.2 and 1.4. On the other, we focus on
generic hypersurfaces along the lines of Theorem 1.5.

To this aim, we note that both Theorem 1.1—bounding d,(X)—and Theorem
2.4—connecting dominant rational maps of minimal degree with first order
congruences of lines in P""'—hold for any dimension 7.

In low dimensional cases, our argument uses the descriptions of first order
congruences of lines in P® and IP* to decide whenever the irreducible components
of the fundamental locus may lie on the hypersurface X. However, a detailed
picture of first order congruences in arbitrary dimension is still missing.
Moreover, it turns out that even to construct examples of hypersurfaces
X c P! having d,(X) < d — 2 is a difficult task. Indeed, we can not determine
whether these varieties really occur when 7 is odd, whereas something more is
known otherwise.

ExamMpPLE 3.1. When n = 2k is even, the family of lines in "™ meeting
two given k-planes is a first order congruence. Thus any hypersurface
X c Pt oof degree d > 3 containing both these linear spaces has d.(X) =
d—2. For example, the smooth hypersurface defined by the equation

d d-1 d -1 _ : _ _
ay — wox{ " + ...+ @G, — Loy, = 0 contains the k-planes xo = ... =y =0
and Xo— X1 = ... = X2k — L2h+1 =0.

If instead n = 2k — 1, analogous constructions fail as no smooth hypersurface
in P?* contains a linear space of dimension at least k.

Turning to generic hypersurfaces X ¢ P"*! of degree d > 2n + 1, we already
mentioned that they do not contain rational curves (cf. [6]).

On the other hand, rational curves cover the whole fundamental locus of every
known first order congruences of lines in P"*1 which has been classified and
differs from the star of lines through a fixed point. Furthermore, the same fact
holds for many other non-classified cases (see e.g. [19, Theorem 7]). Therefore it
seems natural to conjecture that for any first order congruence of lines in P"*!,



790 FRANCESCO BASTIANELLI

each positive dimensional irreducible component of the fundamental locus con-
tains rational curves.

If this is the case, then none of these component shall be contained on a ge-
neric hypersurface X ¢ P"*! of degree d > 2n + 1, and we shall achieve the
following.

CONJECTURE 3.2. Let X Cc P"™' be a generic hypersurface of degree
d > 2n+ 1. Then the degree of irrationality of X is d.(X) =d — 1.

If in addiction d > 2n + 2, any dominant rational map X —-—P" of degree
d — 1 is obtained projecting X from one of its points.
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