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Molteplicity of Solutions for Sturm-Liouville Problems

GIUSEPPINA D’AGgUl

Abstract. — The existence of multiple solutions to a Sturm-Liouville boundary value
problem s presented. The approach adopted is based on multiple critical points
theorems.

1. — Introduction

In different fields of research, such as computer science, mechanical engi-
neering, control systems, artificial or biological neural networks, economics and
many others, the mathematical modeling of important questions leads naturally
to consider nonlinear differential boundary value problems. For instance, a
steady state temperature distribution in a rod (identified with a closed interval),
or a semi-infinity porous medium initially filled with gas at a uniform pressure,
are governed by nonlinear second order differential equations with suitable
boundary conditions, as in particular, Neumann boundary conditions.

In this paper, we study the following nonlinear problem:

) —@u') +7u + qu = Ag(x,u)
@ %' (0) =u'(1) =0,

where p € C1([0,1]), q,7 € C°([0,1]), with p and § positive functions, and / is a
positive real parameter.

The aim of this paper is to present some multiplicity results for the Neumann
boundary value problem (1), as obtained in [3].

There is a wide literature that deals with multiplicity results for such a
problem (see [6], [17], [18] and references therein) and, in the last few years, the
existence of infinitely many solutions to Neumann problems has been widely
investigated, for instance, in [7], [8], [9], [10], [11], [12], [13], [14], [16]. In [17] and
[18], for the case p = 1,q = 1,7 = 0 and A = 1, by using fixed point theorems, the
existence of three solutions is established under a suitable behaviour of nonlinear
term g which, in addition, must be sublinear at infinity. Our main tools to study
the multiplicity of solutions for Neumann problems are critical point theorems.

First we use an important result due to B. Ricceri ([15]), as given in [5].
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Other two results which insure three critical points will be used; in the first
one the coercivity of the functional @ — A¥ is required, in the second one a
suitable sign hypothesis is assumed. The first result has been obtained in [4], the
second one in [2].

2. — Main results

Consider the following problem

@ { —(pu) + qu = if (x,u)
wW0O0)=u'1)=0

where p € CY([0,1]), ¢ € C°(0,1]), f:[0,1] x R — R is a continuous function
and Z is a positive real parameter.

t
Put F(x,t) = [ f(x,&)dé  for all (x,t) €[0,1] x R,
0

Po = min px) >0, qo = min q(x) > 0,

1 1
frlﬂg.g(F(ac, tda [ F(x,&)d
A= liminf &= , B:=limsup >
¢—+o0 E—+o0 é
. m
3) m =min{po,q}, k=-—r
1 llglly
where, as usual, ||¢||; = [g(x)d,
0
o llally _m
(4) Al = 9B Ao TIA

We note that when p = ¢ =1then k =1.
Here, we give our first result on the existence of infinitely many solutions by
requiring an oscillating behavior of the nonlinearity. (See [3] [Theorem 3.1])

THEOREM 1. — Assume that

1 1
[ max F(x, t)dx [ F(x,&)da
.. 0 =g 1 . 0
(5) lim inf 5 < =klimsup

Etoo ¢ oo &
where k is given by (3).

Then for each A € (11, A2), where Ay, Ao are given in (4), the problem (2) pos-
sesses a sequence of pairwise distinct classical solutions.
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ProOF. — Our aim is to apply part (b) of [5] [Theorem 2.1]. Take as X the
Sobolev space W2([0, 1]) endowed with the norm

1 1

full = (/p(t)m/(t)'zd”/q(t)\u(t)l dt)%

0 0

For each u € X, put

D(u) ;:%||u||2, P(u) = / F (e, u(x))de.

It is well known that the critical points in X of the functional @ — ¥ are exactly
the classical solutions of the problem (2).
Pick 4 € JAy, Aol. Let {c,} be a real sequence such that lim ¢, = + co and
n—oo

f max F(x, t)dx
. [t]<cy

lim 2
Nn—00 C%

=A.

2
Put », :m<%> for all € N. Taking into account ||v||* < 2r, and |v| < \/ELHQ)H

for every t € [0,1], |v(#)| < ¢,. One has

1
sup f Fx,v(x)dx — f F(x, u(x))dx sup [ F(x,v(x))dx

or) = inf 1<’ _ lofP<an, 0
" R : ™
"2
Hence,
f max F(x, t)dw f max F(x, )da
ti<e, <e,
o(r) < = =40 = v eN.
Tn mcz
Then,

y:= lim mf(p(rn) < ﬁ < +00.

n—+

Now, we claim that the functional @ — A¥ is unbounded from below.
Let {d, }be a real sequence such that lim d,, = 4+ oo and

1
(6) lim / P dyde _

2
N—00 dn
0

For each n € N, we consider the functions w,(x) = d,, € W'2([0, 1]).
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Hence,
| = 2 lq]l
and
o Elall, [
D(wy,) — ¥ (wy,) = ; — /"L/F(x,wn(ac))dac = "Tl — )u/F(x, dy)dx.

0 0

Now, if B < +oo let ¢ € }O,B — % [ From (6) there exists v, such that

1
/ F(d,) > (B —od>  Yn>v,.
0
Therefore,

1
2 2
D(wy,) — A (wy,) = % - )./F(x, dy)dx < % — 2B —¢) =

From the choice of ¢, one has

VLEIIIOC [D(w,,) — AP (w,)] = — o0

If B=+o0owefix M > ”g,|1|1 From 6 there exists vy such that

1
/F(oc,dn)doc > Md?: Vi > vy.
0

Moreover

2
Da0,) — ) = 00 / Fle, dydz < ‘f'zq”l WM :dfl(@_w).

Taking into account the choice of M, also in this case, one has

"EI_POO [¢(w7z) - ”P(wn)] = — Q.

By applying [5] [Theorem 2.1, part (b)], the functional @ — 1¥ admits a se-
quence u,, of critical points, and the conclusion is proven. O
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Now, we point out our main results on the existence of three classical solu-
tions. For more details, see [3] [Theorem 3.3 and Theorem 3.4].

THEOREM 2. — Assume that:

(1) there exist two positive constants c,d, with ¢ < d, such that:

1 1
[ max F(x,t)dx [ F(x,d)dx
o tel—ccl k 0

c2 2 dz
when k is given by (4);
(#1) there exist two positive constants a, s, with s < 2, such that:

F(a,t) < a(l + [t[)

for all (x,t) € [0,1] x R.

d2||fIH1 mc?

1 I
2[F(x,d)dx 4] max F(r,t)dx
0 0 tel—ccl

three classical solutions.

Then, for each A€ , 2) admits at least

THEOREM 3. — Let f:[0,1] x R — R be a continuous function such that
f(x,t) > 0forallx € [0,1] and for allt > 0. Assume that there exist three positive

constants cy,ce,d, with ¢c; < d < Cz—zsuch that

0 It

1 1
[ max F(x, t)dx [ F(x,d)dx
m_ 0 .

D = <smqr &
1 1
[ max F(x, t)dx [ F(x,d)dx
() 0 ltI<ce m 0
= < B4, &
2 2 2
Then, for all i € §1d|¢,mm A e ,
[ F(x,d)dx 4 [ max F(x,t)dx 2 [ max F(x,t)dx
0 0 |t‘<01 0 ‘t|<02

the problem (2) admits three nonnegative classical solutions uy, ug, ug such that
lui(®)] < ca forallt €[0,1], . =1,2,3.
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3. — Multiple Solutions for the complete equation
Consider the problem

= () + 7+ qu = dg(w, w),
" P

w(0) = /(1) = 0.

Let ¢ :[0,1] x R — R be a continuous function, p € C'([0,1]), g,7 € C°([0, 1)),
and / is a positive parameter. Moreover p and q are positive functions.

t ’
Put Gx,0) = [ glw,&dé for all (x,t)e[0,1]xR ¥ :—He_”;q” om =
0 = 1
in { min e %, min e g} where R is a primitive of —
m {I[Iol,u P apw primitive of 3
_ -R5 _ /
;. le~*al 7o _m |
[e EG(x, &)da Il max e BG(x, t)dx
2 lim sup 0—2 4liminf ° = 5
o0 & ¢otoo &
COROLLARY 4. — Assume that
1 1
| r‘ﬂag( e BG(x, t)dx [e EG(x, &)dax
<¢
8 liminf &= < Zk'lim sup
® Etoo & 27 L +0Cp &

Then, for each A € (Iljz), the problem (7) possesses a sequence of pairwise
distinet classical solutions.

REMARK 5. — We observe that if g is autonomous the hypothesis (8) of
Corollary 4 becomes

max G(t
o It @ 1 G(©)
liminf ——— < S k'limsup —~
E—+o00 f 2 Etoo
and
~ Je*q - n
)»1 = /12 =
2||e~E|| lim sup i) r‘ﬁgx )
o . . S
ttoe & Afle~%]| 12111?5?

t
where G(t) = [g(&)dx forallt € R.
0

Moreover, we stress that p,q and 7 can depend on the variable x.

In the sequel, we deal with the autonomous case.
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COROLLARY 6. — Let g : R — R be a continuous function and put

t
Gt) = [ g(©de.
/

forallt e R
Assume that:

(@) there exist two positive constants ¢, d, with ¢ < d, such that:

A GO g Gay

c2 <§ dz’

(1) there exist two positive constants a,s, with s < 2, such that:

G@®) < a +[t])
forallt € R.
3 d?le*ql, '

4 G@]le "], dlle T, max Gt
admits three classical solutions. o

Then, for each A€ ( ), the problem (7)

COROLLARY 7. —Let g:R — R be a continuous function such that
g@) > 0 Va > 0. Assume that there exist three positive constants ci, cz,d, with

cp<d< %2 such that

max G(t)

W lt<a m'  Gd)
W s, @
gy PRS0 W e
c 6lle~"qll, d*
3 dZHQ—Rq” . m'CZ m/cz
Then, for all /. € | = ————>L min 1 , 2 ,
4 G(d)|e %, 4||e-R||1me(t) 2||e‘R||1Wf§<G(t)

the problem (7) admits three nonnegative classical solutions.

ExaMPLE 8. Put

. 2nl(n +2)! — 1 _ 2nl(n+2)+1
T 4+ T A+ 1)
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for every n € N and define the positive continuous function f : R — R

32(n + 1)?[(n + D1Z — nl?] 1 . nln+2) .
f = p \/16(% The - (C - 2 )2 +1 if &€ Upenlan, bul,
1 otherwise.
(n+1)! b,
One has [ f@dt= [ fO)dt = n+1)1? —n'% for every n € N. Then, one
n! Uy,
has lim P, _ 4 and lim Fa,) _ 0. Therefore, by a simple computation,
N——+00 b’)Z’L Nn——+00 CL%
we obtain liminf Fg =0 and limsup F@ =4. So,
Eotoo & Eostoo C
IR J(9) 2 1 . F©)
R TR R

Hence, from Corollary 4, for each 7. > é, the problem

" +u +u=f(u)
9) {

wW0O0)=u'1)=0

has a sequence of pairwise distinct positive classical solutions.

ExampLE 9. The problem

(10)

{ —(e"“fu’)/ + ey = 2 xut0(11 — u)
wW0)=u'1)=0

. ) — e
admits at least three solutions for each J. € (%T)e,g).

In fact, if we choose, for instance, ¢ = 1 and d = 2, hypotheses of Theorem 2
are satisfied.

ExampLE 10. Consider the following problem

a1 { —u" +u = Af (x,un)

w(0) = w'(1) = 0.

Let f(x,t) = g(@)h(t), where g(x) : [0,1] — R, g(x) = x, and
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1, if te(—oo,1];
o if te@,2];
210 if ¢ e (2,400];
R(t), if te€ (400, + oo,

h(t) =

where %(t) s an arbitrary function.
Choosing ¢1 =1, d = 2 and cz = 400, the function f(x,t) satisfies the hypo-

33 2753 .
ST 11 ol , the given
( 11

theses of Theorem 3, and, for each A € <

+ 213 5)
problem admits at least three positive classical solutions u; such that
lu;(@)| < 400 for all t €10,1], i =1,2,3.
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