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Scalable Block Preconditioners for the Parabolic-Elliptic
Bidomain coupling

S. SCACCHI

Abstract. — We review some results on parallel multilevel block preconditioners for the
Bidomain model of electrocardiology. This model describes the bioelectric activity of
the cardiac tissue in terms of the transmembrane electric potential v and the extra-
cellular electric potential u, and it consists of a system of a parabolic non-linear
partial differential equation (PDE) for v and an elliptic linear PDE for u,. The two
PDEs are coupled with a system of ordinary differential equations, modeling the
cellular membrane tonic currents. The space and time discretization of the Bidomain
system yields at each time step the solution of large and ill-conditioned linear sys-
tems. We analyze herve the scalability of Multilevel Schwarz Block-Diagonal and
Block-Factorized preconditioners for the discrete Bidomain system. New three-di-
mensional parallel numerical tests on a Linux cluster are performed to compare the
Multilevel Schwarz block preconditioners with Block Jacobi (BJ) and Algebraic
Multigrid (AMG) preconditioners. The results show that the preconditioners devel-
oped are scalable and more efficient than both BJ and AMG preconditioners.

1. — Introduction

We construct and analyze multilevel block preconditioners for implicit-ex-
plicit IMEX) time discretizations of the Bidomain model of electrocardiology.
The Bidomain model describes the cardiac bioelectric activity and consists of a
parabolic non-linear reaction-diffusion PDE, coupled with an elliptic linear PDE.
The unknowns are the transmembrane electric potential v and the extracellular
potential u,. The two PDEs are coupled through the non-linear reaction term
with a stiff system of ordinary differential equations (ODEs), the so-called
membrane model, describing the ionic currents through the cellular membrane.

The different space and time scales involved make the solution of this
problem very challenging. Several approaches have been developed in order
to reduce the high computational costs required by the Bidomain model.
Fully implicit methods in time have been considered in a few studies, see e.g.
[19, 17, 18, 28] and require the solution of nonlinear systems at each time
step. Most previous works have considered IMEX time discretizations and/or
operator splitting schemes, where the reaction and diffusion terms are
treated separately, see e.g. [5, 6, 9, 15, 25, 32, 37, 38]. The advantage of IMEX
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and operator splitting schemes is that they only require the solution of linear
systems at each time step. Many different preconditioners have been proposed in
order to obtain efficient iterative solvers for such linear systems: block diagonal
or triangular [23, 24, 5, 36, 10], optimized Schwarz [11], multigrid [31, 25, 23, 24],
multilevel Schwarz [20, 27], Balancing Neumann-Neumann [39] and BDDC [40]
preconditioners.

In this work, we review the results obtained in [21] on the scalability of
Multilevel Schwarz Block-Diagonal and Block-Factorized preconditioners for
the discrete Bidomain system. New three-dimensional parallel numerical tests
on a Linux cluster are performed to compare the Multilevel Schwarz block
preconditioners with Block Jacobi (BJ) and Algebraic Multigrid (AMG) block
preconditioners. The results show that our multilevel preconditioners are scal-
able and more efficient than both BJ and AMG preconditioners on a whole heart
beat simulation.

The rest of the paper is organized as follows: we present the Bidomain model
in Section 2 and its time and space discretization in Section 3; in Section 4 and 5,
we introduce the Multilevel Schwarz Block-Diagonal and Block-Factorized
preconditioners; finally, we report in Section 6 the results of three-dimensional
parallel simulations.

2. — The anisotropic Bidomain model

The macroscopic Bidomain representation of the cardiac tissue volume Q is
obtained by considering the superposition of two anisotropic continuous media, the
intra- (i) and extra- (e) cellular media, coexisting at every point of the tissue and
separated by a distributed continuous cellular membrane; see e.g. [22] for a de-
rivation of the Bidomain model from homogenization of cellular models. We recall
that the cardiac tissue consists of an arrangement of fibers that rotate counter-
clockwise from epi- to endocardium, and that have a laminar organization modeled
as a set of muscle sheets running radially from epi- to endocardium. The aniso-
tropy of the intra- and extracellular media, related to the macroscopic arrange-
ment of the cardiac myocytes in the fiber structure, is described by the anisotropic
conductivity tensors D;(x) and D,(x), respectively, defined in (2) below.

2.1 — Continuous model

We denote by @ ¢ R? the bounded physical region occupied by the cardiac
tissue and we introduce the parabolic-elliptic formulation of the Bidomain sys-
tem. Given an applied extracellular current per unit volume 77, : 2 x (0,7) —
and initial conditions vy : Q2 — R, wy : 2 — RY, find the the transmembrane
potential v: Q x (0,7) — R, extracellular potentials u,: Q x (0,7) — R, the
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gating variables w:Q x(0,7) — RM  and the ionic concentrations
c:2x0,T)— R™ such that

cm% — div(D; Vv) — div(D; V) + Lipy(v,w,c) =0 in Q x (0,T)
—div(D;Vv) — div(D; + D,)Vu,) =1 gpp in 2 x(0,7T)
%—@Z—R(v,w):o, in 2 x (0,7

() % — S, w,c) =0, in Q2 x(0,7T)
n"D;V(+u,) =0 in 0Q x (0,7)
n"(D; + D,)Vu, +n"D;Vv = 0, in 0Q x (0,T)
v(x,0) = vp(x), wx,0) =wplx), c@x,0)=colx) inQ,

where c,, is the membrane capacitance per unit volume. The applied extra-

cellular current 7§, must satisfy the compatibility condition [ If,,, dx = 0, and we

impose the reference potential [ u, dx = 0. The non-linear reaction term [;,, and

the ODE system for the gatingg variables w and the ionic concentrations c are
given by the ionic membrane model. Here we will consider the Luo-Rudy I (LR1)
membrane model [16]. For the well-posedness analysys of the Bidomain model
(1) coupled with complex membrane models as the LR1 model and its recent
updates, we refer to [34, 35].

The conductivity tensors D;(x) and D,(x) at any point x € Q are assumed
orthotropic, thus defined as

2) D; (x) = ol aj@)al ) + ot a;0)al (%) + o'¢ a,(x)al (x).

Here a;(x), a;(x), a,(x), is a triplet of orthonormal principal axes with a;(x)
parallel to the local fiber direction, a;(x) and a,(x) tangent and orthogonal to the
radial laminae, respectively, and both being transversal to the fiber axis (see e.g.
LeGrice et al. [14]). Moreover, ,°, 6,°, o’;¢ are the conductivity coefficients in the
intra- and extracellular media measured along the corresponding directions a;,

a;, ay.

2.2 — Variational formulation

Let V be the Sobolev space H'(Q), define the spaces

V—{z//eV:fy/—O} and U=VxV={u=(pw):pecV,yecVl}
Q
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define the usual L*-inner product (p,y) = [ pydx Yo,y € L*(Q2), and the elliptic
bilinear forms @

aiolp.v) = [ (V)" D (@) Vyde,
Q
alp.) = [ (Vo) D@ Vyde Yo,y € HIO),
Q

where D = D; + D, is the bulk conductivity tensor.
The variational formulation of the Bidomain model reads as follows.
Given vy, wy, ¢y € L2(Q), I¢ oo € L2(Qx(0,T)), find v € L?(0, T: V), u, € L*0, T V)

we L20,T; LZ(Q) u) and ¢ € L20, T; L2(Q)™°) such that ‘3 e L*0, T, V)
L20, T; LA(Q)N u) e L20, T; L2(Q)N<) and Vt € (0, T)

Cm Q(v’ /Z)) + a/i(’U, ’I/)) + ai(uea /IA)) + (Ii()n(v? w7 C)a /IA)) = 0 V,D c V

@i, 4p) + aluy, ip) = (I¢, @,) Vi, €V

app?

%(w, ) — Rw,w), @) =0, ViveV,

%(c, &) — (S,w,0,8) =0, VeeV,

with the appropriate initial conditions in (1).

3. — Discretization and numerical methods

3.1 — Space discretization

System (3) is first discretized in space by the finite element method. Let 7, be a
quasi-uniform triangulation of Q having maximal diameter % and V), be an asso-
ciated conforming finite element space. In this work, we will consider isopara-
metric trilinear finite elements on hexahedral meshes. Once a finite element basis
{(pl}fi 1 of V}, is chosen, we denote by 4;, = {a}f} the symmetric intra- and ex-
tracellular stiffness matrices, and by M = {m;} the mass matrix, with elements

a;]’.e :fDleV(ﬂ] . v(ﬂ[ dX7 my :f(ﬂ] # dx.
0 Q

Applying a standard Galerkin procedure to (3) and using the finite element in-
terpolants of Iapp,lm associated to the vectors of nodal values I apprn, we
obtain the following semi-discrete Bidomain problem, written in compact matrix
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form as
drlv v MI;,,(v,w,c) 0
sz\»ldt|: :|+Z\“&|: :|+ = ” )
u, u, 0 M,

(4) dw _

7 Rv,w),

de

% - S(U, w,C),

with block mass and stiffness matrices

M 0
M = ,
0 0

Herev,u,,w=(w,... 7wNw)T, c=(cy,... ,ch)T, Rw,w)={FR1v,w),...,Ry,(, w))’,
S(v,w,c):(Sl(v7w,c),...,SNc(v,w,c))T, are the coefficient vectors of the
finite element approximations of wu;, U, v, w,, ¢, R,@,wi,...,wy,),
Sy, w1, ..., WN,,C1,-..,CN,), respectively. In our case of isoparametric tri-
linear finite elements, these are the vectors of nodal values of these functions.

A; A;
A A+ A,

3.2 — Time discretization

The time discretization of the Bidomain equations can be performed using either
implicit, semi-implicit or explicit schemes, requiring accordingly vector updates or
the solution of a non-linear or linear system. Fully implicit methods in time have been
considered e.g.in[19, 17,18, 28]. The advantage of implicit methods is that they donot
require stability constraints on the choice of the time step, but they are very ex-
pensive, because at each time step one has to solve a non-linear system. A good
compromise between stability and efficiency is obtained using linear implicit meth-
ods, studied e. g.in [7, 8, 17], which require at each time step the solution of 2-4 linear
systems, or semi-implicit methods, studied e.g. in [5, 9, 29, 38]. For a detailed com-
parative study on the stability and accuracy of several Bidomain time discretizations
(implicit, semi-implicit, explicit), we refer to the recent work [9]. However, the most
popular technique is based on operator splitting, i.e. on separating the diffusion op-
erator, associated with conduction in the media, from the reaction operator, asso-
ciated with the ionic current, gating and ionic concentrations dynamics. The ad-
vantage of splitting methods is to allow different numerical schemes for the diffusion
and the reaction terms in order to maximize computational efficiency and eliminate
complex dependency between variables. The disadvantage is a loss of accuracy, be-
cause the simultaneous dependency between variables is neglected.

In this work, we consider an implicit-explicit (IMEX) strategy, based on
decoupling the ODEs from the PDEs and on treating the linear diffusion terms
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implicitly and the non-linear reaction terms explicitly. The implicit treatment of
the diffusion term is needed in order to avoid a stability constraint on the time
step 4t induced by the fine mesh size k. Nevertheless, due to the explicit
treatment of the reaction terms, stability could be preserved for a time step 4t
satisfying a condition of CFL type. To our knowledge, a theoretical and nu-
merical investigation of stability properties of IMEX methods for the Bidomain
model coupled to the LR1 membrane model is still lacking in literature. Some
rigorous results on stability of IMEX methods for the Bidomain system coupled
to the Fitzhugh-Nagumo membrane model are presented in [9].

The equations in (4) arising from the discretization of the PDEs are solved as
a coupled system. Given w”, ¢", v", u! at the generic time step n:

— we first solve the ODEs system by computing by Implicit Euler the new
gating variables w"*! and by Explicit Euler the new ionic concentrations ¢"*1,

— then we solve the PDEs system computing v and u*1.

Summarizing in formulae, given w", ¢", v",u}, the scheme is

wtt — At R(v"’ wn+1) -

C”/Hrl = "+ A S(Un,wwrl,c")

(et M+ A) " ] = oM v + ~MIip, ", w1 e
ug+1 uz, MIZZLJI )

c . .
where ¢; = AL;L As a consequence, at each time step, we solve one linear system

with unknowns ("1, u”*1). Because the iteration matrix is symmetric positive
semi-definite, the iterative method employed is the preconditioned conjugate
gradient (PCG) method. Due to the ill-conditioning of the iteration matrix and
the large number of unknowns required by realistic simulations of cardiac ex-
citation in three-dimensional domains, a scalable and efficient preconditioner is
required. We will compare two Block Preconditioners, both based on approx-
imating the diagonal blocks of the linear system matrix

Apia =M+ A =

M+ A, A
A; A

with Block Jacobi or Algebraic Multigrid or Multilevel Hybrid Schwarz pre-
conditioners.
4. — The Multilevel Hybrid Schwarz preconditioner

Let 7;,1=0,...,¢ — 1 be afamily of ¢ nested triangulations of Q, coarsening
from ¢ — 1 to 0, hence 7y represents the coarsest level of discretization and 7, 4
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the finest one. Let us define the matrix A = ¢,M + A; or A = A; + A, and the
restriction operators R from level 7 i+1 to level 7. With these definitions, set
the matrices

AY = R(i)AR(i)T,
thus A“"P = A. We then decompose Q into N overlapping subdomains, hence
each grid 7; is decomposed into N overlapping subgrids Q;? fork=1,...,N,
such that the overlap 6@ at level i = 1,...,¢ — 11is equal to the mesh size #? of
the grid 7;. Let R;f), for k =1,...,N, be the restriction operators from 7; to
QP that is R\ returns the vector of all the coefficients associated with domain
Q}? . Define the matrix

AP = ROAORD"
i.e. the subblock matrix of A? associated with domain ng). The action of the ¢-

level hybrid Schwarz preconditioner (MHS(¢)) on a given fine level residual -
of the PCG iteration is computed as:

N
(t-1) (=D" A -1 ' p(e-1),.0-1)
u — E Rk- Ak Rk r
k=1

r(€—2) — R((—Z)(r o A“’Du@’l))

N

(-2 (2" A -2 p(e-2) (-2)

u <—E R, A ™ R, “r
k=1

r(/{—S) - R(é‘—3)(r(/{—2) _ A((’,—Z)u(/—Z))

-1
1® A0,

T
u® 4 L RO,O

N
va -1
u® —u® £ 3 RYAD RO - ADL®D)
k=1

T
u(éfl) - u(éfl) + R(K—Z) u(672)

) T -1
u(éfl) - u(éfl) + ZREf—D A](ffl) R;f—l)(r(lfl) _A(f—l)u(éfl))

N
k=1

(-1

u-—u

We remark that MHS(¢) is additive on each level among the subdomains and
multiplicative among the levels.
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5. — The Block-Diagonal and Block-Factorized preconditioners

Serial block preconditioners for the Bidomain system have been studied by
Pennacchio and Simoncini [23, 24]. Here we extend their study to the parallel
context and additionally we combine block preconditioners with multilevel do-
main decomposition techniques on each block, obtaining convergence rate esti-
mates that depend on both the block parameter y defined in (7) below and domain
decomposition parameters. Denoting by

An A
A =
{Am A ]

the Bidomain matrix Ay, we will consider the following classical block pre-
conditioners for A (see Axelsson [1]):

— the Block-Diagonal preconditioner

B, 0

5 B:
6 v=1o B,

)

— the Block-Factorized preconditioner

. . I 0
© "7 | ApBt 1

The main abstract results for these preconditioners are given in the fol-
lowing two propositions, see Axelsson [1] for a proof. For both propositions, we
define the constant

T -1

U A12A A120

() F= sy TEBUARC
veR™\ Ker(Ag) U” Al

1 1
and the function ¢(x) = Q(l +x) + \/Z(l — 2) + ;)2.

ProposITION 5.1 (Axelsson [1, Th. 9.3]). — If uA;n < By < oAy, f1An <
BQ < ﬂZAQQ, with oy > ﬂz, then

—1 ) o1 ﬂ?
Ko(Bpy A) < PR y2)¢(/?_1>¢<<%_2)'

PROPOSITION 5.2 (Axelsson [1, Th. 9.5]). - If A < By < oAy, d1An <
SQ < 62A22, where S = B2 + A12B1_1A12, with oy > 1> 0q > y2, 62 >1> 61 > ))2,
then

B: Ap
0 By

maX{Otz, 52} -1

-1
/lmin(B[;lA) > (1 + 1_})2¢(’V2)) s
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-1 6—1
where 19 = min %2 , 2 , and ag > 1 and/or o2 > 1,
52 -1 o — 1
1 — min{oy, o !
By A) < (1 —%aﬁ(m)) 7
1- o 1- 51

where r{ = min { }, and oy <1 and/or 61 <1.

1—5171—061

We now define the diagonal blocks By, Bz of our block preconditioners (5), (6)
as Multilevel Hybrid Schwarz (MHS) preconditioners for each scalar component.
Therefore we define

By! = scalar MHS preconditioner for ¢; M + A;,
®)
By! = scalar MHS preconditioner for A; + A,.

In the numerical section, we will compare these MHS block preconditioners with
the analogous Block Jacobi (BJ) block preconditioners, where

(©) By 1 — scalar BJ preconditioner for ¢;M + A;,

B, 1 — gealar BJ preconditioner for A; + A,,
and with the Algebraic Multigrid (AMG) block preconditioners where

(10) By 1 = scalar AMG preconditioner for ¢; M + A;,
B;! = scalar AMG preconditioner for A; + A,.

LeEmMA 5.1. — The condition number of the block - diagonal preconditioned
operator with MHS scalar blocks (8) is bounded by
REDN 14y
-1 v -7
K2(Bp'A) < Clgr/?§£(1<1 + 50 ) e
where h%V is the mesh size of the (k — 1)-level grid and 6® is the overlap size
of the k-level grid.

Lemma 5.1 shows that, in addition to the standard domain decomposition
parameters 1%~V and 0¥, the convergence of the Block-Diagonal preconditioner
Bp depends on the parameter y, which in turn depends only on the original
Bidomain blocks. Pennacchio and Simoncini [23] have shown that

V2 < (1 + )anin(AeyAi))_la

where Ay, (Ag, A;) is the minimum eigenvalue of A A, ! (see [23, Lemma 4.1])
and numerical experiments seem to indicate that y is close to 1/2, so the bound of
Lemma 5.1 is satisfactory.
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LeEMMA 5.2. — The extreme eigenvalues of the Block-Factorized precondi-
tioned operator with MHS scalar blocks (8) are bounded by

-1

hE=D
¢ max (1 + CN ) + N

1—92 ’

;“nzin(BEIA) > 1+2

e
1-(N.+1)
1—y ’

Jmar(Bp'A) < <1 -

where N, is the number of colors of the subdomains partition.

These bounds are pessimistic because, due to Prop. 5.2, they require that
7?<d; and predict a large condition number when ? approaches J;, while our
numerical results seem to indicate that the same considerations on y for the
Block-Diagonal case also hold for the Block-Factorized case.

6. — Numerical results

In this section, we present the results of parallel numerical experiments
performed on the Linux Cluster HP of the Department of Mathematics of the
University of Milan. Our FORTRAN code is based on the parallel library
PETSec [2], from the Argonne National Laboratory.

The Bidomain system coupled to the LR1 model is integrated by the coupled
and uncoupled Implicit-Explicit methods described in the previous sections.
The values of the coefficients and parameters in the LR1 model are given in the
original paper [16]. The linear systems at each time step are solved by the
preconditioned conjugate gradient (PCG) method, using as stopping criterion a
107 reduction of the relative residual />-norm. The preconditioners used are
the Block-Diagonal and Block-Factorized preconditioners with Block Jacobi
(BJ), Algebraic Multigrid (AMG) and 4-level Hybrid Schwarz (MHS(4)) ap-
proximations of the diagonal blocks of the original Bidomain system matrix.
The AMG solver is based on the BoomerAMG algorithm [12], provided in the
Hypre library [13].

Domain geometry and fiber structure.

The domain € is the image of a cartesian slab using ellipsoidal coordinates,
yielding a portion of truncated ellipsoid. The family of truncated ellipsoids is
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described by the parametric equations

xr = CL(?") cos 0 cos ¢ ¢min < ¢ < ¢m(m7
Y = b(r) cos 93in¢ Omin < 0 < Hmaxy
2z =c(r)sinf 0<r<1,

where a(r) = a; +r(ag — a1), b(r) = by +r(bs — b1), c(*) = ¢1 +r(cz —¢1), and
a; =15, ap =27, by =15, by = 2.7, c; = 4.4, ca =5 are given coefficients (all
in cm) determining the main axes of the ellipsoid. The fibers rotate in-
tramurally linearly with the depth for a total amount of 90° proceeding coun-
terclockwise from epicardium to endocardium. More precisely, in a local el-
lipsoidal reference system (e, ey, e;), the fiber direction a;(x) at a point x is
given by

2
a;(x) = egcos a(r) + egsina(r), with a(r) = gn(l —7r) — g, 0<r<il1.

Conductivity coefficients.

The values of the conductivity coefficients in (2) used in all the numerical tests
are the following:

g} =3-107°Q \em™! of =2-1073Q "'em ™!
o} =3.1525-10*Q 'em™ ¢ =1.3514-107°Q 'em
ol =8.1525-10°Q 'em™  ¢¢ =6.757-104Q 'em L.

Mesh hierarchy.

In the case of the MHS preconditioner, the coarse meshes are con-
structed by progressively halving the number of elements in each coordinate
direction.

Stimulation site, initial and boundary conditions.

The depolarization process is started by applying a stimulus of
Iy, = — 200 mA/em? lasting 1 ms on the face of the domain modeling the
endocardial surface. The initial conditions are at resting values for all the
potentials and LR1 gating variables, while the boundary conditions are for
insulated tissue. In all simulations, the fine mesh size is & = 0.01 ¢cm. The

time step size is 4t = 0.05 ms.
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6.1 — Test 1: weak scaling on ellipsoidal subdomains

We compare the performance of MHS(4), BJ and AMG Block-Diagonal
and Block-Factorized preconditioners on a weak scaling test with increasing
ellipsoidal domains. The local size of each subdomain on the finest mesh is
kept fixed at the value 48> and each subdomain is assigned to one processor.
The number of subdomains (hence number of processors) is increased from 2
to 32 forming increasing domains that are portions of a truncated ellipsoidal
domain. With these data, the global size of the discrete Bidomain system
increases from 465794 dof with 8 processors to 7226306 dof with 32 pro-
Cessors.

The results reported in Table 1 show that both the AMG and MHS block
preconditioners are scalable, with the condition number and PCG iterations
which remain bounded when increasing the number of processors. Instead, the
BJ block preconditioners are not scalable, because the condition number and
iteration counts grow with the number of subdomains. In terms of computational
performance, the MHS block preconditioners are clearly the most efficient, with
CPU time reductions of about 30% and 50% with respect to the BJ and AMG
solvers, respectively.

TABLE 1. — Test 1, weak scaling on ellipsoidal domains for Block-Diagonal and Block-
Factorized preconditioners with Block Jacobi (BJ), Algebraic Multigrid (AMG) and 4-level
Hybrid Schwarz (MHS(4)) approximations of the diagonal blocks of the original Bidomain
system matrix. Average condition numbers (i3), PCG iteration counts (it.) and CPU times
in seconds per time step for each preconditioner as a function of the number of processors/
subdomains (procs).

Weak scaling test, Block-Diagonal

BJ AMG MHS4)
procs dof ) it time K9 it  time Ko it  time

2 465794 | 4.05e+3 132 1241 6.76 13 813 2.21 7 3.69
4 922082 | 5.99e+3 165 33.54 | 1539 20 2276 | 2414 26 22.74
8 1825346 | 5.58e+3 211 175.63 | 13.92 21 51.09 | 20.73 25 3825
16 | 3631874 | 5.66e+3 205 7415 | 13.89 21 5428 | 2021 23 35.15
32 | 7226306 | 1.04e+4 268 9752 | 1222 21 5858 | 1717 22 34.82

Weak scaling test, Block-Factorized

BJ AMG MHS4)
procs dof ) it time Ko it  time Ko it  time

2 465794 | 3.91e+3 127 1881 | 413 9 6.46 1.83 5 283
4 922082 | 5.16e+3 152 39.44 | 13.83 18 21.75 | 24.01 23 19.51
8 1825346 | 4.79e+3 193 10142 | 11.21 19 4862 | 19.07 23 3942
16 | 3631874 | 4.81e+3 185 98.08 | 11.23 19 51.83 | 16.02 20 35.04
32 | 7226306 | 8.79e+3 244 12941 | 990 18 5473 | 1364 19 33.92
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6.2 — Test 2: comparison of the BJ, AMG and MHS(}) block preconditioners on a
complete cardiac cycle stmulation

We now compare the block preconditioners on a complete heartbeat (400 m2s)
in a portion of ellipsoid, modeling half of the left ventricle, discretized by a @1
structured finite element grid of 128 x 64 x 64 elements (1090050 dof). The si-
mulations are run on 16 processors. The time step size is changed according to
the adaptive strategy described in [5].

TABLE 2. — Test 2, comparison on a whole heart beat simulation of Block-Diagonal
and Block-Factorized preconditioners with Block Jacobi (BJ), Algebraic Multigrid (AMG)
and 4-level Hybrid Schwarz (MHS(4)) approximations of the diagonal blocks of the
original Bidomain system matrix. Average condition numbers (x), PCG iteration counts
(it.) and CPU times in seconds per time step and total CPU times in hours and minutes.

Whole heart beat test
Block-Diagonal Block-Factorized
Ko it time Ttime Ko it time Ttime

BJ 2.6le+3 161 1651s 5h36m| 1.99e+3 138 2091s Th6m
AMG 38.08 26 1694s 5h4bm| 26.59 22 1564s H5h18m
MHS@4) | 50.43 31 13.00s 4h19m| 42.68 27 1325s 4h25m
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Fig. 1 — Test 2, time (ms) evolutions of the extracellular potential v, (mV) in 16
epicardial sites.
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The results in Table 2 confirm that the MHS block preconditioners are the
most efficient, with CPU time reductions of about 20% with respect to the BJ
and AMG solvers. Moreover, the BJ and AMG Block-Diagonal precondi-
tioners are comparable, while the BJ Block-Factorized preconditioner is
clearly slower than the AMG Block-Factorized preconditioner. Fig. 1 reports
the time evolution of the extracellular potential u, (the electrocardiograms) in
16 epicardial sites.

7. — Conclusion

We have studied the scalability and efficiency of Multilevel Hybrid
Schwarz (MHS) Block-Diagonal and Block-Factorized preconditioners for the
Bidomain model of the cardiac bioelectric activity. The three-dimensional
parallel numerical tests performed on a Linux cluster have shown that the
MHS block preconditioners are scalable and about 20-50% (depending on the
simulation) more efficient than Block Jacobi and Algebraic Multigrid block
preconditioners.
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Pavarino for introducing him to the field of Mathematical Cardiac
Electrophysiology and for many helpful discussions and suggestions.
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