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Low-Dimensional Pure Braid Group Representations
Via Nilpotent Flat Connections

ALBERTO BENVEGNU - MAURO SPERA

Abstract. — In this note we discuss low-dimensional matrix representations of pure braid
group (on three and four strands) obtained via holonomy of suitable nilpotent flat
connections. Flatness is dirvectly enforced by means of the Arnol’d relations. These
explicit representations are used to investigate Brunnian and “nested” Brunnian
phenomena.

1. — Introduction

In this note we discuss pure braid group low dimensional matrix re-
presentations — confining ourselves to the three and four strand cases — obtained
differential-geometrically via holonomy of suitable nilpotent flat connections.
Our contribution mainly consists in elaborating on quite concrete and special
instances of the abstract general framework developed in [20, 21, 22, 23] (see also
[2, 25, 24, 6, 28, 26]).

Our matrix representations also stem from ideas in [30] (and also [29]).

Indeed, one of our basic motivation is to give a concrete application of the
above general formalism, aimed at finding easy-to-compute topological in-
variants which can at least partially distinguish (pure) braids with three or four
strands, especially those exhibiting a Brunnian like character, namely, those
which become trivial after removing some strands therefrom in an arbitrary way
(see below for precise definitions). The study of such braids, interesting in itself;,
is also motivated by the general issue “quantum entanglement vs topological
entanglement”, aimed at relating knot theory with quantum mechanical states
and measurements thereon [3, 19, 7], though we shall not discuss this topic in the
present note. Moreover, nilpotent connections are noteworthy for their man-
ageability, at least in principle (the Chen series giving their parallel transport is
indeed a finite sum) and for their relationship with Vassiliev’s finite order in-
variants.

The general theory already tells us that the Kohno monodromy representa-
tions exhaust all unipotent representations on P,, ([22], Theorem 1.2.6, see also
[2], Théoreme 1); nevertheless, as far as we can see, explicit calculations are
unavoidable if one aims at getting more detailed information.
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The basic idea underlying the paper is extremely simple: since the n-strand
pure braid group P, is the fundamental group of the configuration space
Conf(n,C) of n distinet points on the (complex) plane, we try to manufacture a
flat nilpotent connection @ la Knizhnik-Zamolodchikov-Kohno (KZK) (see e.g.
[20, 21, 22, 23, 28]) by imposing that its curvature just involves the Arnol’d
relations (see below), so it vanishes; in this way the so-called “infinitesimal
braid relations” will be then automatically fulfilled. We find a many-parameter
solution, including Heisenberg group type representations, using a geome-
trically flavoured “linearization” method. Then the main job rests in computing
its parallel transport — yielding the sought for representation — and this in-
volves Chen’s iterated path integrals. It is then clearly enough to calculate the
latter around the (Artin) generators: this is already a non trivial task, which
can be achieved in principle by resorting to hyperlogarithms and their mono-
dromy [32]; in our setting, it will be enough to compute suitable double iterated
integrals.

Many authors (besides the previously cited) have tackled some of the pro-
blems discussed in the present paper, among others [8, 9, 10, 11, 16] have been
particularly inspiring for us. We eventually obtain fully explicit families of pure
braid invariants by a systematic approach resting on a vivid differential geo-
metric prineiple.

The paper is organized as follows. In the preliminary Section 2 we collect our
basic technical tools, and review Chen’s theory, pure braid groups and hy-
perlogarithms. In Section 3 we further elaborate on the basic ideas involved in
the paper. In Sections 4 and 5 we construct our connections and compute their
parallel transport (for n = 3,4 respectively). In Section 6 we investigate “nested”
Brunnian type phenomena via our representations. Subsequently (in Section 7),
we discuss the Heisenberg type representations hinted at above, providing an
alternative direct algebraic interpretation thereof and we construct further ex-
plicit representations of Ps, building again on the differential geometric tech-
niques employed throughout the paper. The final Section 8 is devoted to con-
cluding remarks and outlook. In particular, we show that the linearization
method previously devised does not lead directly to non trivial solutions for
n > 5, due to the excessive growth of constraints stemming from the Arnol’d
relations.

2. — Preliminaries
2.1 — Chen’s iterated path integrals and nilpotent connections

Chen’s iterated path integrals provide an extremely general and flexible
technical tool usefully employed throughout mathematics (see [14, 15] for a
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comprehensive account). Here we just recall some basic facts concerning the
simplest of them, mostly following [31, 29, 30].

Let M be a smooth manifold and y: [0,1] — M be a smooth path therein,
with velocity field j. Let v1,...,v, be (real or complex) 1-forms, with
vit;) = v; (@), ¥(&:)), i =1,...,m, and denote by A" the standard m-simplex
in R™:

A" = {(ty, .. tn) ERT0<t <t <...<ty <1}

Define the (Chen) iterated path integral
f’l)l o Um ::fvl(tl) .. .Um/(tm) dtl . .dtm
y A

Equivalently, setting ' : [0,1] 3 s — y(ts) € M, we may also write down, recur-

sively:
f?)l...’l)m = f(fvl...vml)vm

i i yt

In particular one has ([31])

fvl...vy.:(—l)rfw...vl (%)
)

1

The general formula ([31])

f1)17}2+fvz?)1=f1)1f1)2 (* %)
Y Y Y

7

will be used throughout the paper, together with the following one, valid if
fv1=0o0r [vs =0, coming directly from it and from ( * ), for » = 2:
Vi Y

f’l)ﬂ)z = *fﬂlvz

y y—l

Let us consider, on the trivial C"-bundle over M, a nilpotent connection 1-

form v given by

0 v vz - V2

0 0 V2 e V2.
vV = .

o o0 o --- Uy,

o0 o0 --- 0
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(Hain-Tavares connection [31, 17]) with corresponding curvature form

0 w wi - Wa.ax
0 0 We - W2 .n
Q=dv+VvAV= .
0 O 0o - Wy,
0 O 0o - 0
where
w1 = d’l)l
w2 = V1 Avs+dvie
Wizg.n = VIAVe u+V12AV3 5+ -+ dVi2 s

Then the holonomy (or parallel transport) of the connection along a path y is
given by

1 fu1 fum T fulz.“n
7 4 V
0 1 fu2 fu2n
p(y) _ b b
0 0 0 - Ju
y
0 0 o - 1

where

fu1 = yfih

y

f U2 = f V102 + V12
¥ ¥
f U123 = f V1V2V3 + V1203 + V1023 + V123
’}7 ’y
Sz = [ove.. v+ + 012,

I bi

It is a general fact that if a connection is flat, i.e. its curvature vanishes, then
homotopic paths between the same endpoints yield the same holonomy. In
particular, a flat connection induces a representation of the fundamental group of
the underlying manifold. This will be crucial for the sequel.

2.2 — Pure braid groups

This subsection is meant to provide a minimal background on pure braid
groups and to establish notation. For a full account see e.g. [5, 27, 13, 18, 23].
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The Artin braid group B, is the group generated by n — 1 generators
01,09, ...,0,—1 and the braxd relations

0i0j = 0j0;
foralli,j=1,2,...,n —1with |t —j| > 2, and
0i0i4+107 = 0i+10i0;41
fori=1,2,....n—2.

The pure (or coloured) braid group P, is the kernel of the natural projection
n: By, — S, where S, is the symmetric group:

P, =Ker(n: B, — S,)

The n-strand pure braid group on P, is the fundamental group of the config-
uration space Conf(n, C) of n distinct points on the (complex) plane. We take its
base point at (1,2,...,n) € Conf(n,C).

The pure braid group P, is generated by the n(n — 1)/2 elements {4}, ;_;-,,
subject to the so-called Artin relations, which will be written down explicitly for
n = 3,4 below. One sets, A;; = Aj;, for © #j. The generators A; can be re-
presented (up to isotopy) by downward directed geometric braids such that
strand 7 (starting from and ending at z = 7) winds clockwise around strand j or
conversely (this is consistent with the above convention). We do not need their
expression in terms of the ¢’s. In what follows we shall blur the distinction be-
tween a geometric braid and the element of the braid group it represents.
Concretely (and with an abuse of language) the product b; - be is given by jux-
taposition, drawing by below b;.

The Artin relations for Ps read

AGAnAp = ApAnAj
AGJAA;, = AsAsAsAlAL

whereas the centre of P3 is generated by A§ = A1pA13403.
The Artin relations for P, read, in turn

1) AGAsudn = Ay
2) AJAuAs = Au
3) AFAxnAn = AjgAxAjl

4) AFAxAr = AuAuAj}
5) AAsiAiz = AuAsApl
6) AylAsiAss = AuAzdyl
T AFAsAr = AgAsAiAlAT
8) AylAsAss = AuAsuAnAlAG]

9) ARAuAis = AudsAjlAG AAALAGLAT
The centre of P, is generated by AZ = A12A13414A93A94A34.
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The (co)homology ring of the coloured braid group (namely, that of
Conf(n, C)) is isomorphic to the exterior graded ring generated by one-dimen-
sional elements w;; = wj;; 1 < i # j < n satisfying the Arnol’d relations [4] (¢, j, k
distinet)

Iijk = Wi N\ Wj; + Wjk N\ Wi + Wi N\ @ = 0
Concretely, one takes the logarithmic 1-forms
. 1 d (21 — Zj)
2nv—1 2i—%

1
wjj = ﬁ d log (z; — zj)

(for z; # 2z, V—1 = +1). Thus there are (g) independent Arnol’d relations.

Specifically, the Arnol’d identity for P3 reads
[l1 := w12 A oz + wes Az + w1 Az =0

whereas the Arnol’d identities for P, read, in turn

i = weAws+twsAosi+wsn Ao = 0
o = 2 Awe+ w Aoy + g1 A w12 0
I3 = i3\ ws3g+ w34 N0y + 041 N g 0
ly = wpAwyg+oyyNog+opgAhaoag = 0

Let us also recall for completeness the definition of the holonomy algebra P,
(see e.g. [28]), generated (over C), by elements ¢, i,j =1,2,...,nm, @<}, ful-
filling the so-called infinitesimal pure braid relations :

tij = i
[ty b + ti] = [y, ti + ti] =0, 4,5,k alldistinet
(L, twe] = 0 if 4,7,k, h alldistinet

It is actually the universal enveloping algebra of the Lie algebra generated by
the ¢’s subject to the infinitesimal braid relations. It is well known that ¢;; can
be depicted as a set of n parallel vertical strings together with a horizontal
string connecting string ¢ with string j (with the product defined by juxta-
position).

2.3 — Hyperlogarithms

Hyperlogarithms are (“many-valued”) holomorphic functions on the complex
plane with # distinet points a;, 7 = 1,...,n removed, defined by
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2 t3 ta
)/ ( f ( f tld}m) tzd_tz@) e

ai,...,0y
bi,..., by
going around a; (and not around a;, k # j) counterclockwise, one reaches the new
value

a1,...,Q
Fn(bh 7bn
1y---5Up

Starting at a point z with the value F, (

z> on the main branch and

ay,...,Q
F’n bl) 7b7’b
1,---,Un

Z) -‘rAan
where for 1 <j <n

AF, =2nV—1F; (Zi . ,Zy;ll
N

Qa; RN ¢ 7
a; anj 41 Ol
Wjy oy

(monodromy). In the following we shall use the following special cases

AIFI = 27[ V —].
M4Fy; = 27v-1(log(z - az) — log (a1 — az))
MFy = 2nv/—1(log(az —ay) — log (by — ay))

(see [32] for details) to calculate suitable Chen iterated integrals. Arguments are

chosen in [0, 27)). For example, and in view of future use, let us evaluate [ w123,
Age
letting for instance “1” wind around “2” clockwise (see also Section 4). Consider

the hyperlogarithm
2 t2
2,3 1 dty dts
F ’ z = — - -
2( ) @17 ! (1 - 2) h-3

1,1

(slight abuse of notation) whose monodromy at z = 1 after completion of a circuit
winding clockwise around a; = 2, but not around ag = 3, equals

/I

-1
—MFy = — 27V —1[log(1 —3) — log(2—3)] = = log 2

1
@2rv/—1)

(using log(— ) =logx + v—1= for & > 0). But this is precisely the iterated
integral in question:

V=1
fa)lza)lg = 2—7[ 10g2
Az

with the above convention. The interpretation of iterated integrals in terms of
monodromies of hyperlogarithms will be crucial in the sequel. We notice that
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suitable polylogarithms play a crucial role in working out the Kontsevich in-
tegral for links, whereby one obtains most interesting identities between mul-
tiple zeta functions ([26]). However, we need the above different type of calcu-
lation.

3. — The basic idea

This section is devoted to elaboration of the main idea of the present work.
Recall, in general, the abstract Kniznik-Zamolodchikov-Kohno (KZK) connec-
tion ([20, 21, 22, 23]

V= Z tijwij

<j

defined on Conf(n, C), with the t’s fulfilling the infinitesimal braid relations and
the w’s fulfilling, in turn, Arnol’d’s relations. The KZK connection is flat, namely

AvV+VAV=VvAV=0

Then, its parallel transport, defined by a time-ordered exponential involving
Chen integrals

P =Texp [ v
’J/

(y being a path in Conf(n, C)), gives rise to a representation (call again it p) of P,,
via the holonomy algebra P, discussed above. This is the crucial ingredient in
Kontsevich’s universal knot invariant construction [24, 6, 28, 26]. In what follows
we aim at finding concrete nilpotent matrixc valued Hain-Tavares connections
[31], enforcing flatness via the Arnol’d relations (in this manner, the infinitesimal
braid relations for the ensuing #’s will then be automatically fulfilled). The Chen
series then becomes a finite sum. This idea stems from [30]. In the subsequent
sections we shall pursue such a programme for P3 and P4, also explaining why
the specific method we use does not produce non trivial representations for P,,
n > 4.

4. — Representations of P;

We are looking for 1—forms vy,
Vg =GR + Glong + o k=123 tl(=tHeC

such that v1 Ave = Awie A weg + weg A w31 + w31 A wi2) with 4 € C. We take the
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0 v1 V3
V= (0 0 1)2)
0 0 0

following connection 1-form

with curvature

0 0 viAve
Q=dv+vAv=1[0 0 0
0 0 0

to be set equal to zero, this leading to the conditions:
t%Zt%?) _ t%?t%3 — t?gtgl _ t%?)t?{l — t?{lt%Z _ tglt%z

Upon intepreting 1-forms as geometric vectors (so long as their coefficients are
real), together with their wedge products (which, in turn, become ordinary vector
products), the above condition tells us that the two vectors (t}2, 13, 12), k = 1,2 lie
on the plane x +y +2 =0:

BB+ =0 k=1,2

)

(slight abuses of language and obvious notation), so long as they are real. Hence
we may replace quadratic conditions by linear ones. The geometric picture
persists algebraically for complex t’s as well. So we get parametric solutions
(with o, 8,7, 9, %12, %23, %31 complex; we also set x;; = x;; throughout):

v = alwe — wig)+ o — ws)
v = y(wie —wi3) + (w2 — wo3)
V3 = ¥12 W12 1+ X23 Wo3 + 31 W31
or
v = (@+Pwie—awsz—Pwxs
v2 = (y+0)wiz —ywiz — dwas
V3 = ¥12 W12 + ¥e3 W23 + X31 W31

with the only condition «d # fy in order to avoid trivialities in
v Av2 = —(ad—fy)- Iy

In order to calculate the holonomy

1 f?)l f?}l?)z + V3
b b

pO)=10o 1 [vs
b

0 0 1
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for a generic pure braid b written as a word in the Artin generators, we must use
the following easily established results involving hyperlogarithms (cf (%) in
Subsection 2.1, together with Subsection 2.3).

f Ol = —0(ij),(eh)

Ay

[ =2

n!
Ay

Also, upon moving “1” around “2” clockwise:

fw12 =-1 fw12w12 = +%

Alg A12
v—1 v—1
f(,()lza)lg = -‘r? log 2 fa)lg(/)lz = o log 2
AIZ A12
Moving “1” around “3” clockwise:
1
fwlg =-1 fwlswlg =+3
Az A
I S P
12013 = +35 w012 =~
Al;g A13
Moving “2” around “3” clockwise:
1
fw23 = -1 w2323 = +5
Agg A23
V-1 V-1
fw126023 = +? log2 _[6023C012 =T o log2
Azg AZS

We sketch some details of the argument leading to them; a similar, more
involved computation will be needed in the sequel.
Let us consider for instance the iterated integral

Jviwe = ay[ A% + a8 [ AB + By [ BA + Bo [ B
b b b b b

:%ocy(bfA)z—k aabf AB + ﬁybf BA +%/35(be)2
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with A = w2 — w13, B = w12 — ey (closed 1-forms). It is globally a homotopy
invariant quantity. The first and fourth summands are homotopy invariant. In
view of the arbitrariness of the coefficients, the single iterated integrals [ AB

b
and [ BA are homotopy invariant as well. One of them, say [ AB, can be cal-

cula‘lc)ed directly, the other follows via ( x *). Specializing furthe?‘ b = Ajp, we have
to use a concrete path of integration, either moving “1” around “2” (clockwise) or
conversely. This choice has to be kept throughout the computation of the single
summands entering [ AB. The latter is possibly a bit tedious but straightfor-

A
ward (the iterated intlegrals not involving encireling of singularities vanish) and
yields the above results.
Thus we eventually find

1 —a—f L@+PG+0)+@d— %t log2+arp

v

psAr)= [0 1 )

0 0 1

1 +o lay+3d—py) +as
pA)=|0 1 +y

0 0 1

1 +f Lo+ (00 — ) =LL log2 + ws
psdzg) =10 1 +0

0 0 1
The central element reads,

1 0 @12+ %3+ a3
p(A)=10 1 0
0 0 1

But, since the x;;’s are arbitrary, one gets the following

THEOREM 1. — (i) There exists a 7-complex parameter family of 3 x 3
nilpotent representations ps of Ps reading, on Artin’s generators:

1 —o — ﬁ X12
p3sA) = | 0 1 —y—0
0 0 1
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1 +o X3
psAz) = |0 1 4y
0 0 1
1 +8 Xss
psA2s)=10 1 490
0 0 1

(ii) The central element reads, in turn, with respect to the new parameters:

1 0 —ad— 6 —ay+ X + Xz + Xog
p3(A§) =101 0
0 0 1

REMARKS — 1. It is important to notice that when computing the holonomy
of a generic braid b, the representation matrices for the generators entering
the word giving b must be written in the reverse order: in a product b; - bs, by
comes first, so p(b;) must accordingly act first. It is readily checked, retro-
spectively (by hand or by a computer algebra system, e.g. Mathematica®) that
the Artin relations are fulfilled with the above convention.

2. Strictly speaking, in view of the arbitrary character of x;;, the computation
of double iterated integrals turns out to be unnecessary in this case. However we
carried it out since it will be nevertheless needed below.

3. The above representaton is actually a Heisenberg group one (see also
Section 7).

We can also construct 4 x 4 nilpotent matrix representations of Ps in the
following manner. One starts from a nilpotent connection form

0 V1 V4 Vg

0 0 V2 Vs
V=

0 0 0 ws

0 0 0 O

with curvature form

0 0 v1AVy VI AVs+VsAV3
o— 0 0 0 V2 A\ V3

0 0 0 0

0 0 0 0
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and holonomy

L [or [oiwe+vy [010203 + 0105 + 0403 + V6
b b b

0 1 [ve [vavsg + v5
p4(b) = b b
0 0 1 [ s
b
0 0 0 1

Upon enforcing flatness via Arnol’d’s relations, one arrives at

v = (a+ o —owg— fox
v2 = (Y+o)wiz—ywz—Jdwns
v3 = (C+nwe— Loz —nos
vy = (+1)wre—0owg—Twy
v5 = ((+ADw—{wg—iog
V¢ = ¥12w12+ X13 013 + Tog W23

wherefrom one gets the following

THEOREM 2. — There exists a 13-complex parameter family of 4 x 4 nilpotent
representations p, of Ps reading, on Artin’s generators:

1 —o—f Le+po+o+ai—p¥aloge—o+n  Xiz

0 1 —7=9 LGHOH+O+Gn—0E% log 2—(L+4)
pyAr2) =

0 0 1 —E—y

0 0 0 1

1 +o Jay+300—py)+a X3

0 +y WE+Iom—06)+¢
py(A1z) = RN

0 0 1

1 +ﬂ %ﬁ‘5+<°‘5—/‘)}’)(—§10g2)+1 X23

0 +0 Lon+(n—05)(— YL log2)+1
py(Ags) = 2 2

0 o
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(ii) The central element reads, in turn

100U
, 100
PBI=10 6 1 o

000 1

where

U=—-n+(— %ﬁy-ﬂf)—Ofi—ﬁi—ac—ﬂf-i—%bgz - (alyn — 8E) + d(omg — PE) +
X2 + X3 + Xos

One gets more refined representations than the preceding ones, also upon
comparison with the Burau one (which is faithful for » = 3 and not faithful for
n > 5, [12]).

Important remark. The above 7-parameter and 13-parameter families of
representations exhaust the unipotent representations of P3 in view of Kohno’s
general theory [20, 21, 22] (see also [2]). The fundamental theorem of Kohno [22],
Theorem 1.2.6 — see also Aomoto’s Théoréme 1 in [2] — shows in particular that
every unipotent representation of the pure braid group can be realised as a
monodromy representation. A simple general argument for constructing uni-
potent representations of P3 can be outlined as follows. One looks for n x n-
nilpotent matrices t12, t13, to3 fulfilling the infinitesimal braid relations: therefore,
two of them can be chosen arbitrarily, the third one can be chosen to be central.
In total we have 2 x n(n —1)/2 + 1 = n(n — 1) 4+ 1 parameters, yielding 7 and 13
for n = 3,4, respectively. Of course one has to solve the iterated integrals in-
volving the Artin generators if one looks for concrete formulae. In this section we
have provided fully explicit instances of this construction. That this is possibly a
non trivial task is better shown in the following section.

5. — Representations of P,

In this section we extend the previous method and discuss 4 x 4-nilpotent
matrix representations of the 4-strand pure braid group P,. We start from a
nilpotent connection form:

0 V1 V4 Vg

0 V2 Vs
V=

0 0 V3

0 0 0



LOW-DIMENSIONAL PURE BRAID GROUP REPRESENTATIONS ETC.

with B
vk:tZwij k=1,...,6 1<
having curvature form:
0 0 v1AVe VI AVs+Vs AV
0_ 0 0 0 Vo N\ Vg
0 0 0 0
0 0 0 0

The zero curvature condition, together with the stronger requirement

v1 Avs =0,
yields
t}Zt%S _ t}1€2t]23
t}2t12c4 _ tllg;thZ4
t}St%l _ t}cgt]34

23424 23424

veANv3 =0

13423 13423
14434 14434
14424 14424

34 424 34 424
Bt — Y

for (j,k) € {(1,2),(2,3),(1,5),3,4)}, and

t}zt%l _ tll€2t]34
o] o g

23414 23414
b7 — 4

0
0

(k% %)

12413 12413
12414 12414
13414 13414

23434 23434
34 — 24

657

where (4, k) € {(1,2),(2,3),1,5),(3,4)}, whilst for k£ = 6 the coefficients are arbi-

trary.

Now, the main point is that independence of Arnol’d’s relations allows us to
resort to the above geometric interpretation “locally” (one has a sort of com-
plete “decoupling”), abutting in general at a homogeneous linear system of 20
equations in 30 unknowns (keeping all forms v;, ¢ =1,2,...,5 and discarding
Vg, which does not contribute to the zero curvature condition). Since its rank is
full, one finds a 10-parameter solution (two parameters for each form wv;,
1=1,2,...,5). Actually, it is readily verified that all solutions above fulfil the
remaining 12 quadratic equations automatically. Thus, in more detail, instead
of solving system 1) we solve the homogeneous linear system

R+ =

e+t =

e+ =
R+ =

0

0
0
0
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(k=1,...,5)whose solutions automatically fulfil system 2). Complex parametric

homogeneous solutions are
v = ol — w13 — wey + w34) + fwrz — w14 — wog + w34)
vg = p(m2 — w13 — waq + w34) + 0 (W12 — W14 — W23 + W34)
v3 = (w2 — w13 — Wy + w34) + 1 (w12 — W14 — We3 + W34)
vy = 0w — o3 — w2+ w34) + T (W12 — w14 — W23 + W34)
v5 = ((012 — w13 — w24 + w34) + Alwrz — w14 — Wo3 + 034)
Vg = X12 W12 1+ T13 W13 + L14 W14 + L3 W23 + L4 W4 + X34 W34

or
v = @+ pwi—oawz— fwu —Pos —awu + (0 + f)wss
v = (Y+0)mz—ywiz— 0wy —dwsy — ywey + (7 + ) wz4
v3 = (C+nor— Loy —nou —nog — o+ (E+ 1) ws
vg = (+Dw2—0wi3 —TW — TWg — 0wy + (0 +7) W34
v = ((+ Doz —{wg— Aoy —Awgg — (wg + ((+ 1) wsy
Vg = X12 W12 1 X138 W13 + L14 W14 + L3 W23 + L24 W24 + X34 W34

Thus we find, for the terms entering the curvature form

V1 A2 = (a0 — (=11 + 12 — I3 4 1y)
V2 A V3 = n—0(—11 + e — I3+ 1y
ViAVs+VAv3 = (A—pl+no—En(—11+ 1o -5+ 1y)

Therefore the latter is indeed zero by virtue of Arnol’d’s relations. In order to
avoid trivialities we require that at least one of the coefficients in the above
formula does not vanish.

The holonomy matrix reads:

1 Jor [owe+vs  [010903 + 0105 + V403 + V6
b b b

0 1 ) Vo3 + V)
01(b) = Jv Joos o
0 0 1 Jvs
b
0 0 0 1

for b € P4, depending on the sixteen complex parameters o, f, . . ., &34.

REMARK. — We observe that the double iterated integral [ v1v5 + v4v3 and the
triple iterated integral [wv;vev3 appear only in the entry (1,4) of the holonomy
matrix (as before, it will be enough to calculate it for the Artin generators);
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however, such an entry also depends on the arbitrary 1-form vg, thus it is un-
necessary to evaluate these integrals, since the term (1, 4) can accommodate any
complex value.

In order to compute holonomies around generators, we need further double
iterated integrals; the relevant formulae are given below.

Moving “1” around “2” clockwise:

3 v—1 3
f w1214 = 108‘ B f w1412 = T Ton log 2
Alg A12

Moving “1” around “3” clockwise:

Vas VI
fw13w14 = +W 10g3 fa)14w13 = _T 10g3
Ay Az

Moving “1” around “4” clockwise:

1
_[6014 =-1 VU = +5
A14 A14
1 v-1 1 v-1
fw14w12=—§—W10g2 fw14wlz=+§+710g2
A14 A14
1 v-1 1 v-1
fw146013=—§ ngz fw13w14:+§—710g2
A14 A14
Moving “2” around “4” clockwise:
1
fw24 =-1 Dot = +5
A24 A24
v—1 v-1
fw24w21 = —2— logS fw21c024 =4+ — 10g3
fis 2n
A24 A24
1 1
fa)24a)23 = 3 fw23w24 = +§
A24 A24
Moving “3” around “4” clockwise:
1
fw34 =-1 w3031 = +5

Az Az
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AV | 3 v-1 3
fw34a)31 =——— log fw31w34 =+—— log -
2n 2n

2 2
A34 A34
Vas| Nas|
fw32w34 =+5- log2 fw346032 =5 log 2
Az Az

Notice that, as in the previous cases, the single entries of the holonomy
matrix are homotopy invariant, but the explicit computation of the various
summands requires a consistent choice of the mutual winding of the strings.

Eventually, we have

THEOREM 3. — (i) There exists a 16-complex parameter family of 4 x 4 nil-
potent representations o4 of Py reading, on Artin’s generators:

1 —o— f Letpot+d+eo—pnegtlogh—-c+0  Xig
0 1 —y =96 LG+ H-O+m—02)L log H—((+)
04(A12) = ' " ’
0 0 1 -n—<
0 0 0 1
1 o 2eo-pp(+3+5 g3) 10 Xi3
0 1 Ly (m—0¢) Y1 1og3
04(A13) = ! o0 (b lows)
0 0 1 I
0 0 O 1
1 ﬁ /fo+( 0—fy )(7 ‘/—10g2) +1 X14
01 ¢ 4 (-6 (— L log2) +4
04A1) = #4009 (- og2) ¢
0 01 n
0 0 0 1
1 B Zreo—p)(-Fiog2)+r  Xog
01 ¢ Wy (m—0¢) (- L log2) +4
04(As3) = #46-09 o8?)
0 01 n
0 0 0 1
1 o %+(o«5—/3})(—%+glog3)+a Xoy
1 y 14110
0u(Ayy) = 0 y E4m-00) (~1+5 log3) +¢
0 0 1 ¢
0 0 0 1
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1 —a—f 3etpo+o+ao—p (L logi) ~(o+0) Xaa

01 —y-6 L0400+ +(n—02) (Y2 log ) —((+4)
04(Asy) = : (S oet) -

0 0 1 -n—<

0 0 0 1

(ii) The central element reads, in turn

P4(A421) =

oS O O
S O = O
(= = =)
P—*OO%

where

W = —(ah + B + Et + o) —2(ocC+/)’/1+éa+m)+%yi7(oc+,b’)+%ﬂy(n+§)—

v-=1 9 16
. (o — BS) (V log 1 o log §> + Xio + Xi3 + X1y + Xog + Xoy + X3y

REMARKS — 1. Matrices are again written in the reverse order; fulfilment of
the Artin relations can be again readily checked.
2. Notice that, upon restriction to P3 < P4 (obvious inclusion) one has

Q4\P3 # 3

6. — Brunnian type braids

In this section we wish to compute our representations on Brunnian type pure
braids, showing that they are indeed able to detect this kind of phenomenon, in
the sense that, in general, evaluating the monodromy matrix on such braids
yields a non trivial result and these kinds of braids can be (partially) dis-
tinguished among them via our invariants. We do not attempt to give a sys-
tematic classification but provide specific significant examples.

In analogy to the link case, a pure braid is called Brunnian if upon removing
any strand therefrom, it becomes trivial. One may also think of stratified
Brunnian braids B}, k = 0,1,...,n — 2, i.e. those n-strand braids which become
trivial after (and only after) arbitrarily removing k strands therefrom (so
Brunnian braids yield B}, and the trivial braid is the only element of By).
Removal of a strand, the j-th, say, of a braid b, is obtained by erasing the gen-
erators containing the index j in any word representing b (“forgetting homo-
morphism”).
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An immediate example of Brunnian braid is given below:
b =1[A2,[Ass,[...,[A10-1,An]... 1]

generalizing the pigtail braid b = [A12,A13] = A12A13A5 AT which, upon clo-
sure, provides a realization of the Borromean rings. More generally, the
Brunnian braid [A},, A1, n,m € Z can be represented, via ps, as follows:
1 0 mn(d—py)
Py (A%, Afgl) = | 0 1 0
0 01

Other Brunnian type words can be given as abca 1b~'c~! with a,b,c distinct
generators; consider, for example

V = ApAi3AnAy A Ayl
Its 3 x 3 representation is

1 0 py—oo
ps®)=10 1 0
0 01

whereas its 4 x 4 representation p, reads, in turn,

1 0 fy—ad X
0 10 o —m
b) =
P4(0) 0 0 1 0
0 0 0 1

with
& o
X=—(a5—/>’y)(§+n> +(V'7—éf)<§+ﬁ) —(ad = pl+no — &)+

4 % [— (@0 — ) log2 + (y — 08 log 2]

This is to be compared with the g,-representation

1 0 py—a0 Y

010 o0& —
o) = E—m

0 0 1 0

0 0 O 1
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where

Y=o~ (5 0) + On =005 + ) ~ i = Bt o - €+

+ % [ — (@0 — By)(& log 4 + 1 log 3) + (yn — 6E)(a log 4 + 5 log 3)]

We record the g -representation of the Brunnian braid b = [A;2, [A13,A14]]:

1 0 0 Z
01 00
04(b) = 0010
0 0 01

with
Z = (00 — )+ &) — (yp — 0E)(a + f)

The same “mirror-inverse” abed...(...dcba) ™ words, using the six gen-
erators of P, (and any permutation thereof) give rise to braids of type Bj: indeed,
upon deleting a strand, we easily see that the remaining braid is of type B3. For
instance, take

b’ = A12A13A14A23Az4z434AfglAfglAf41A§31A§41A§41
with g4-representation
0 —@o-pEn+O++2)(m—00)
00
10
1

Q4(b”) —_

o O o -
S = O

0

=)

This does not exhaust all possibilities since, for instance, the “shorter” braid
V" = A1pAanAi3Asi A A LA AL is also of type Bj, and differs from b":

10 0 o ppraciom
0" = o

0010

000 1

Notice that, in dealing with Brunnian phenomena, the parameters o,7,{,4 and
X;; play no role. An inductive argument for P, gives that symmetric type
words containing all generators of P, give B} , Brunnian braids (and the
argument can be generalized by using higher order powers of the generators
throughout).
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Examination of multiple (or nested) commutators such as [A;,A] or
[Aij, [ATS,Akhﬂ yields interesting topological consequences: for example by the
3 x 3 representation of P3 we detect only two types of Brunnian braids of the
kind [a, b] where a and b represent some generator or its inverse, but we dis-
tinguish 12 braid types in the same set using the 4 x 4 representation (the Burau
representation yields, in turn, 13 different braid types).

For type [a, [b, c]] braids we always get 3 x 3 trivial representations, but 6 dis-
tinct braid types via the 4 x 4 representation (Burau distinguishes 60 braid types).

7. — Heisenberg group representations

Recall that the Heisenberg group H,,(C) is the (multiplicative) group of n x n
upper triangular (complex) matrices of the form

1 af ¢
0 1,2 b
0 0 1

for a, b € C"2 (column vectors) and ¢ € C.

We show below how to construct various kinds of Heisenberg group re-
presentations for P,, n = 3, 4. The role of the Heisenberg group in braid theory
has also been stressed by Adem et al. ([1]).

7.1 — 4 x 4 Heisenberg representations of Py

They can be obtained simply by setting 6 =y =0 in the previously con-
structed family. The above construction matches with the following purely al-
gebraic procedure: one tries to build up 4 x 4 nilpotent matrix representations of
P, by setting, formally

Ay = exptly

(i.e. t; € Nily) and by attempting at enforcing Artin’s relations by making use of
the Baker-Campbell-Hausdorff series (which is truncated by nilpotency). One
finds, successively,

XV XY HIXYHAXIXYIHAY Y X

ee =

= ¢
and setting .= - X
eXe¥e X = el

eE L A& LE 5 [, E11 ..
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Now, in a fourth order nilpotent algebra [, [,[ , ]l] = 0, thus a short computation
yields

1 1 1
D <+ o= Y+§[X,1Y]+E[X,[X,Y]]+E[Y7[Y,X]]
2 en = X Y1+ X Y]

3) KIEnl = XX, Y]]-[Y,[Y,X]]
4) [nncl = [X,[X Y]]

and, finally, collecting the above results, the following

ProPOSITION 4. — For any X, Y € Nily one has

XV e X — QY HXYIHIX XY

Now consider, in particular, the braid relation
AGAnAls = AsAAL
We find

e tizgtnghs  — gttt tos ][ —tia [—tiz,tas]]

elztts o]+t [t tes]]

and

elsgtne—ts  — plestlii tos ]+t [t tas]]

and this first of all requires [ts3,t12] = —[t23,%13] i.e. the infinitesimal braid re-
lations. But, from

[t13, [t13, tes]]l = —[t13, [T12, tas]l = [t12, [fes, t1s]] + [te3, [t13, ti2]]

and
[t12, [t12, t2s]] = —[t12, [t13, tos]] = [t12, [f23, t1s]]

we see that in general the Artin relation above is not fulfilled, the discrepancy
being given by a central element in Nily. However, if we stick to the Heisenberg
group H4(C), then all double commutators vanish and the identity is fulfilled.
This persists for the other identities, giving no obstruction to the existence of
Heisenberg group representations, provided the infinitesimal braid relations are
fulfilled, and one abuts at the ones already found for 6 = y = 0. Such Heisenberg
group representations are nevertheless unable to detect Brunnian phenomena
(see the preceding sections).

In the sequel we construct some additional representations P3 — H,,(C) for
n = 4,5, which can be manufactured via elementary geometric reasoning. They
do not refine the basic 3 x 3 ones.
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7.2 — 4 x 4 Heisenberg representations of Ps

Start from the connection matrix

0 V1 V4 0
00 0 v
V=
00 0 v
00 0 O
with curvature form
0 0 0 viAvs+vsAvs
0 0 0 O
Q =
0 0 0 O
0 0 0O

Its holonomy is

p(b) = b

We look for solutions such that v; Avs+vsAv3=0 but v; Avs 20 and
v4 A v3 # 0. Setting

v = tPop+ o + BPoy
vy = tRPop+tPwg + tBwy
v = tPop +tPos + P
v; = tRop+ tBog + B
we have
2,113, 83) = (cos(x),sin (2),0)
2, t3,62) = (sin(B+e), —sin(B+ &), cos (B +¢))

(2, 123,62%) = (sin(p), —sin(p), cos (B))
2 113.48) = (cos(a + ¢),sin (o + ¢),0)
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and the representations (p/, say) read, on Artin’s generators

1 cos() sin(f) ios(@eos (a+e)+sin(Hsin(f+8)
. 01 0 cos (o + &)
py(Ar) = .
00 1 sin(f +¢)
0 0 0 1
1 sin(x) —sin (ﬂ) 1 (sin (@)sin (o+&)+sin (B)sin (f+¢))
01 0 sin (o0 + ¢)
Pu(Ars) = .
00 1 —sin(f 4 ¢)
0 0 0 1
1 0 cos (ﬂ) Lcos (B)cos (f+2)
Ay — 010 0
PREBI= 10 0 1 cos(f+¢)
00 0 1

valid for generic angles.
We could get representations with more parameters upon application of
successive rotations in the triples of ¢;; coefficients such as

2,113, 833) = R, (OR,() (cos (), sin (x),0)

A2 63,653) = R,(OR.() sin(f+¢), —sin (B + &), cos (S + &)
22,7 = Ry (OR,() (sin(p), —sin (), cos (B))

2 t8.42) = R, (DR, (cos (« + &), sin (« + &), 0)

where R,({) is the counterclockwise rotation matrix around the direction
u = (1,-1,0) given by

5 ¢ sin {
cos?5  —sin®§ - N
— ) ¢ sin {
Ry (O = | —sin®5 cos?; Y
sin( sin( cos
V2 V2

where the “angles” y and { are related by

. 1 .
cos 4+ V2siny = cosy — — sin¢

V2
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and the rotation R,(0) around the vector v = (1,1, 1) given by
é(2 cos () +1) —gcos (g 6) sin <0) gcos (g - g) sin (g)
R,(0)= gcos (g — g) sin (g) %(2 cos(@)+1) — gcos (g + g) sin <g>
- %cos (g 6) sin (0) gcos <g - g) sin (g) %(2 cos(0) +1)

This relation easily stems again from the three-space geometric interpreta-
tion of 1-forms and their wedge products and comes from applying R,.
Geometrically, it forces the sum of two parametric vectors of fixed (but different)
lengths, spanning the same plane, to be proportional to the Arnol’d form vector
Iy, namely

VI AVs+ V4 AV3 = sing(cos§+ \/ﬁsiny) ;=0
i.e. the connection is indeed flat. The above construction can be also easily carried
out via ruler and compass.
The expression for the Artin generators becomes however too complicated in
general to be effectively displayed here.

7.3 — 5 x 5 Heisenberg representations of P

Consider the following connection matrix:

0 »1 v v3 0
00 0 0 o
v=1]0 0 0 0 s
00 0 0 w
00 0 0 O
with curvature form
0 0 0 0 viAvL+v2AV5+V3AVg
00 0 00O
Q=100 0 0 0
00 0 00
00 0 00
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and holonomy

—_

f?h fvz f?)3 fvlw + V25 + V3V
b b b b
01 0 0 fv4

p)={0 0 1 0 [us

One finds, again via the same kind of geometric reasoning, the solutions

#2626 = (0, cos (), sin ()
68,62 = (0, cos (x + &), sin (x + &)
28,18 = (sin(B),0,cos(B)
t2,¢13,18) = (sin(B+2),0,co8 (B +¢)
2, 88,18) = (cos(y),sin(y),0)
t2,t83,18) = (cos(y+e),sin(y +¢),0)
Indeed
V1AV = —sin(e)wig A wes
V2 AVs = +sin(e) wz A wes
v3 Avg = —sin(e) wie A wig
therefore

VIAVL+ Ve AV +v3 AV = +sin(e) - I; = 0

and one has the following expressions for the generators:

1 0 sin(f) cos(y) % (cos (p)cos (y + &) + sin (B)sin (f + ¢))
010 0 0
psAz)=10 0 1 0 sin (f + ¢)
000 1 cos(y+¢)
0 00 0 1
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1 cos(@) 0 sin(y) 1(cos(x)cos (o + &)+ sin(y)sin (y + &)
0 1 0 0 cos (o + ¢)
psAz) =10 0 1 0 0
0 0 01 sin (y + ¢)
0 0 0 0 1

1 sin(x) cos(f) 0 % (cos (B)eos (B + &) + sin (w)sin (« + &)
0 1 0 0 sin(x+e)
psA2s)=10 0 1 0 cos(fi+e
00 0 1 0
0 0 0 0 1

also valid for generic angles.

8. — Conclusions and outlook

In this paper we have tackled the problem of constructing concrete re-
presentations of the pure braid group via parallel transport of nilpotent flat
connections (nilpotency is required in order to have a terminating Chen series).
This led to the discovery — via a simple linearization method — of possibly in-
teresting families of connections, yielding representations which are able to
distinguish, in particular, several classes of Brunnian type braids. However, the
proliferation of constraints dictated by the Arnol’d relations makes the linear-
zation approach, as it stands, unavailable for n > 4. Specifically, the argument

n n
goes as follows: in the general case one has 9 basis forms, and (3)

Arnol’d’s relations. The above linearization method (depending on the appro-
priate generalization of the crucial assumption (*x*x) in Section 4) would give
rise to a homogeneous system of nullity given by

(0-(h )

(the second factor being the number of forms v; entering the zero curvature
condition), which is non positive for n > 4, so, a fortiori, one cannot fulfil the
remaining quadratic conditions non trivially. Obviously, for #» = 3,4 we recover
the preceding results.

We finally notice that, even if one finds a way out of the above impasse, one is
still left with the computation of higher order hyperlogarithms, and this appears
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to be quite difficult at a first glance, in view of the intricate monodromy problems
arising therein. The same problem crops up if one tried to build up higher di-
mensional representations of P3 and P4 via the methods of this note, in view of
improving their efficacy in distinguishing braid types. Nevertheless this could in
principle lead to possibly interesting new hyperlogarithmic identities.
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