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On Nonlinear Systems of BYPs with Positive Green’s Functions

GIOVANNI VIDOSSICH

Abstract. — This paper provides some existence and uniqueness theorems for nonlinear
systems of BVPs where the Green’s functions for the linearization have constant sign
(hence these results apply, e.g., to Dirichlet problems for elliptic PDEs as well as to
various multipoint BVPs for higher order ODEs). Proofs are based on an original
way of using the Linear Functional Analysis of ordered Banach spaces in connection
with the traditional topological methods of Nonlinear Functional Analysis.

1. — Introduction

The aim of this paper is to prove some general existence and uniqueness
theorems for systems of BVPs

Liu; = fi(e,u)

t=1,...,m),
Bu; =0
such that, for each 7, the Green function associated to the scalar BVP
Ly = h(x)
{Biv =0

is non-negative.

The starting point of this research was our desire to extend to elliptic systems
some results on BVPs for ODEs obtained in the sixties by A. Lasota and colla-
borators. It appeared that our methods apply to all BVPs whose Green function is
non-negative, independently of the type of equation as well as of the order of the
differential operator L;. In fact, we introduce an abstract framework made of
several small items which clarifies what is behind some popular ideas and unifies
some results related to different types of BVPs. Roughly speaking, it is based on a
nonlinear map that plays in function spaces the role of the absolute value in the real
line, leading to a strong interaction between the Linear Functional Analysis of
ordered Banach spaces and the traditional topological methods of Nonlinear
Functional Analysis. To limit the size of this paper, we shall apply it only to sys-
tems of second order elliptic equations subjected to Dirichlet boundary conditions,
as well as to a broad class of conjugate multipoint BVPs for higher order ODEs.

The positivity of the Green’s function allows us to employ the techniques of
ordered Banach spaces in two ways: either by applying the Ahmad-Lazer con-
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sequences of the Krasnosel’skii version of the Krein-Rutman Theorem in connec-
tion with the Leray-Schauder topological degree, or by re-norming the function
space in order to apply the Banach-Caccioppoli Contraction Fixed Point Theorem.

These methods lead us to prove the existence or uniqueness of solutions to the
mentioned systems of BVPs when, e.g., the Jacobian matrix of f := (f1,..., f,,)is
“pbounded above” by a matrix enjoying suitable properties (such as that its
spectral radius is sufficiently small). Our results may be viewed as the coun-
terpart of those in AMANN[3] for systems “below the first eigenvalue” with the
key feature of avoiding any assumption of symmetry on the involved matrices
(e.g., no Jacobian matrix is requested to be symmetric). A remarkable point: the
constant u appearing in the last theorems of §§ 3 and 4 is independent of all
norms on R™ which are monotone with respect to the standard (coordinatewise)
order on R™.

Note: To avoid tedious repetitions and to focus on the key points of the
statements, standing notations and assumptions are collected at the beginning of
each section (and maintained thereafter).

2. — The abstract frame

In this section we prove some existence and uniqueness theorems in the
context of Hammerstein type operator systems in ordered Banach spaces. In the
next two sections we shall apply them to elliptic and to conjugate BVPs
respectively. Their “abstract generality” is motivated by the desire to avoid
repetitions of similar proofs in different contexts.

Perhaps the best way to explain the role of the abstract scheme below is to
notice that in the applications to Dirichlet problems, we shall choose X; = C},
Y; = C%*, Z; either L? or C° and T; will be the solution operator generated by the
Green’s function, while | - |i the map that to each real-valued function u as-
sociates the function | |, defined by  ~» |u(x)|. Thus |« |, is not a scalar but a
member of a Banach space, so that operators may act on it (and exactly this is the
key of our arguments).

Our terminology related to ordered Banach spaces is based on AMANN [4].

The following is our collection of notations and assumptions for the present
section (note that the order of the spaces X;, Y;, Z; is the same, hence there is no
need of distinctions):

e L(V,W) denotes the space of bounded linear operators V. — W, V and W
being Banach spaces;

o L(V):= LWV, V)

e m is a given positive integer;

e irangesin {1,...,m};
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X =X, || - ”Xi’Pi) is an ordered Banach space such that f’L £ @;

Yi:== ;| |y, Qi) is an ordered Banach space such that X; C Y; with
continuous immersion and P; C Q;;

Zi=(Zi |l |z, R:) is an ordered Banach space such that Y; C Z; with
continuous immersion and @; C R;;

T; € L(Z;)is positive, compact and has the following properties: T;(Y;) C X;
and T; v, Y; — X, is compact and strongly positive;

X2:X1 Xoee ><Xm;

I - llx is a norm on X whose topology is the product topology;

P:=P1 X --~><Pm;

Y =Y x---xY,;

I - Iy is a norm on Y whose topology is the product topology;

Q:=Q1 X X Qu;

L =0Z1 XX Ly

I - | is a norm on Z whose topology is the product topology;

R::R1 Xoee ><Rm;

T is the operator in £(Z) defined by

Tz .= (T121, ..., Tozm) (z € Z);

e [ is the identity map;
| - |, is amap Z; — R; with the following properties:

() 0 < |z|, whenever z #0,
@) | T, < 73] 2],
(iii) |z |, € Y; whenever z € Y;,
for all 7 and z € Z;;
e ST isthe set of all S € £(Y) such that

(Sx); € Q;\ {0}
reQ\{0} = t=1,...,m).
| @i, < (SClan |y-oo L2 ],),
(3
In this context, we prove three fixed point theorems, two by the help of the
topological degree and the other by the Banach-Caccioppoli theorem on con-
tractions. However, each of the three theorems has its proof founded on linear
techniques from ordered Banach spaces.
The following lemma is needed in the proof of Theorem 1 and provides a
concrete example for the hypothesis “4"(S) < 1” of Theorem 1 as explained below.

LEMMA 1. — For each S € S* there is a unique positive eigenvalue " (S) of
(ToS) o=

which has an eigenvector x € p. Also, this eigenvalue 2 (S) is larger than the
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absolute values of all eigenvalues of T o S| x When | . | ; satisfies
| 22|, =12]z],

for all 1 and z € Z;.
Morveover: if S1, Sz € ST satisfy the condition

x < P = S < Sex
for the order on Y induced by @, then 27 (S1) < A (Ss).

ProOF. — The proof is based on some results of AHMAD-LAZER [1] which are a
follow up of the Krasnosel’skii version of the Krein-Rutman Theorem.

Let < be the order on X := (X, || - || x, P). Clearly T{X : X — X is a positive
and compact linear operator.

Fix S € §". For every x € (Q N X) \ {0} we have (Sx); € Q; \ {0} by virtue of
the definition of S*. Consequently 7’ ((Sx);) € P for every 1, since by hypothesis
T; |Y Y, — X;is strongly positive. Then (T o S)x € Pwhenever x € @nXx)\ {0}
because P = P1 X oo X P . Since the immersions X; — Y; are positive, it follows
that T o S | x 8 strongly positive in X. Therefore Theorem 2 of AHMAD-LAZER[1]
implies that 7' o S | has a unique positive eigenvalue A*(S) with an eigenvector in
P while Theorem 3 and Corollary 3.1 of [1] imply respectively that

ANS)=max {y>0: yx<T(S)) for some x € P\ {0}}
and that A*(S) > y whenever yx < T'(S(x)) for some x € P\ {0}, in the order of X
generated by P. When Ax = T'(S), then
Al [ ]y = [ 2|, = | Ti(Sw); |
< T | (St); |z
[by property (i) of | - |,]
< TSl |y en [,));
[by the definition of S* and the positivity of 7;].

Therefore, setting
= (e, em],) €Y,

we have proved that
|| 2° < T (Sx?)

in the ordered Banach space (Y, | - ||y, Q). Since x # 0, there is 7 such that
acl # 0. Then | ) |, > 0inY; by virtue of property (i) of | - | . Consequently
2° > 0 and so x := T(Sx°) € P by the above reasons Applying the positive op-
erator T o S to both sides of the inequality || 2° < T(Sx°), we get |A| xo < T(Sx)
in the ordered Banach space (X, || - ||x, P), hence (again by the above) || <A*(S).
Thus the first statement of the lemma is proved.
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Toostate the second part, consider any Sy, S € ST satisfying S; | < Sy | B Let
xo € P be an eigenvector of 17(S;). As S1xy < Sax, there is at least one ¢ such
that (Syxo); < (Sexp);. Consequently T;(S1x0); < Ti(S2a0);, hence T(Sixg) <
T(Ssx0) in X. Then we have

(S g = T(S120) < T(Sao)

in X, so that the above remarks based on Corollary 3.1 of AHMAD-LAZER [1]imply
the desired conclusion, i.e. that 11(Ss) > A7(Sy). O

THEOREM 1. — Suppose that the linear operator Sy € ST and the subset
S C L(Z) both satisfy the following conditions:

A1(So) < 1, A1(Sy) being the largest eigenvalue of (T o So)| v
S is weakly sequentially compact in L(Z) and contains the weak limit of
every convergent sequence in it,

| Sw); |, < | Sox); |, forall Se S, xeY andie{l,...,m},

1

ife=TESx)withx e Zand S € S, then x €Y.

If{A): ©€Z} CSand G:Y — Y satisfy the following properties:

o {A(ac)|Y : x €Y} is a bounded subset of L(Y),
o A:x A(x)x is a continuous map ¥ — Y,

e (G s continuous, bounded on bounded sets and

1G@)ly _

- )

lely—oo  [|2[ly
then the fixed point equation
v =T(A®)x + G@))

has at least one solution in X.

Note that A7(Sy) < 1 whenever there is S; € ST such that
Sex < 27(S1)S; on P,

because obviously 4™ (27(S1)S1) =1, while 17(Sy) < 27 (A7(S1)S1) by virtue of
the second part of Lemma 1.

If we require only that {A(x) : |x||, = p} C S for a given p > 0, then we get
nothing other than a statement included in Theorem 1, as can be deduced from
the proof of Theorem 4 below.

ProoF. — The proof is divided into three steps:
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STEP 1. — The fixed point equation x = (T o S) x has only the trivial solution
m Z (ie, =1 1s not an eigenvalue of T o S) when S € S. For the sake of a
contradiction, assume that ¥ € Z'\ {0} satisfies

t=ToS)x

with S € S. Consequently for every ¢ we have x; € Y; by the properties of S,
hence also | «; |, € Y; by property (iii) of | - |,. Moreover, in Z; we have

| % |, =] T(S); |
< Ti | (Sw); |,
[by property (ii) of | - |,]
< Ti | Sow) |,
[as T} is positive]
<Ti(Sollar [y [@nl,));
[by the definition of S and the positivity of 7} ].

Therefore, setting

20 =Cle |- |2 ],) €Y,
we have proved that
ey < T(Soa)
in the ordered Banach space (Y, || - ||y, @) Since « # 0, there is at least one 7 such
that x; #0. Then |a?|,>0 in Y; by virtue of property () of |- |,.
Consequently 2° > 0 in the order of Y. As seen in the proof of Lemma 1o for the
composition of members of ST with T, ToSp sends Q\ {0} into P. Thus
xo := T(Spx) € P. Applying the positive operator T o Sy to both sides of (1) we
get w9 < T(Soxp) in the ordered Banach space (X,| -|y,P). Then from

Theorem 3 of AHMAD-LAZER[1] we deduce that A"(Sy) > 1, contradicting the
hypotheses. We conclude that the claimed uniqueness of fixed points holds.

STEP 2. — There is an a priori bound for the solutions of the family
©=T(AGLx)x) + 2T(G)) 0<i1<))

of fixed point equations in Y. To obtain a contradiction, assume the existence of
(Zn)y, and (), such that 1, — Ao, ||%x]|y — oo and

Ly = T(A(;m 9071/) xn) + /ln T(G(mn)) (n=1).
Dividing this identity by ||x,||y and setting z,, := x,/||xy ||y We get
G(wn) )

(n=1).
||y

Zn = T <A(/1n xn) 2y + j~n
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In view of the hypotheses of the theorem, the A(4, xn)|Y’s are uniformly bounded
in £(Y) and

@) tim 6@y _
v ey
Therefore the sequence
Al )2 + 2 G00) n>1)
[l lly

isboundedin Y. As T | y - Y — X is a compact operator by assumption, passing to
a subsequence if necessary we get z,, — 2., in X for a suitable z... In view of the
continuity of X — Y, we have z,, — 2z, alsoin Y, hence ||z« ||y = 1 and so 2., # 0.

Since S is weakly sequentially compact and contains its weak sequential limits
by hypotheses, there is A, € S such that (passing to a subsequence if necessary)
Ay 2y) — As in L(Z). As S ~» Sz, is a bounded linear map £(Z) — Z, it is also
weakly continuous. Moreover, S is bounded in £(7) (since, by Eberlein-Smulian’s
theorem, S is relatively weakly compact, hence every linear functional is boun-
ded on it and so Corollary I1.3 of BREZIS[5] applies). Then from

Ay 20) 20 — Ao 200 = Ay ) 20 — Ay T) Zoo + Al Xn) 200 — Ao Zoo

it follows that
A()m Xn) 2 — Aoo %o

in Z. Then the compactness of T and (2) together with the continuity of ¥ — Z
imply

T<A(j-n Xn) 2y + A Gla) ) - T(Aoc Zoo)
[0 |y
in Z, so that
oo = T(Ax 20).

Asz,, # 0, we have contradicted Step 1. Consequently the desired a priori bound
does exist.

StEP 8. — Conclusion. Since T|y, : Y — X, hence T, : Y — Y, is a compact
linear operator and A and G are continuous and bounded on bounded sets, the
map & ~» T(A(}, x)x+ A G(ac)) is completely continuous in Y. Then we apply the
Homotopy Invariance of the Leray-Schauder topological degree in Y and we get

deg(I — T o (A + G), B(0,¢),0) = deg(I — T o A(0), B(0, ), 0)

where B(0, ¢) is the ball in Y having center at the origin and radius ¢ and ¢ is
chosen larger than the a priori bound established by Step 2. As A(0) € S,

ker (I — T o A(0)) = {0}
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by Step 1 and so
deg(I — T o A(0),B(0,¢),0) # 0

by a theorem of Leray and Schauder. Then the Solution Property of the Leray-
Schauder topological degree implies the existence of an xy € Y such that
Xy = T(A(ﬁ(}o) Xo + G(Oﬁo)) As A(xg) 2o + G(xg) € Y and T(Y) C X by the standing
assumptions, ¥y € X and we are done. O

COROLLARY. — Let So, S and {A(x): x €Z} be as in the statement of
Theorem 1. If F : Y — Y admits the representation

Fx) =A@)x + F(0) (xeY)
and if to every pair x, y € Y there corresponds Sy, € S such that
Fx) = F(y) = Sy (x — y),
then the fixed point equation
x=TF(x)

has a unique solution in X.

PRrOOF. — An application of Theorem 1 with G = F(0) provides the existence.
If there exist two distinet solutions « and ¥, then

v—y=T(F@) —F@) =T(Swy @ —y)

contradicting Step 1 of the proof of the previous theorem. O

The next theorem is related to the repeated product of a single space Z;.
Equivalently, we suppose that the spaces Z; as well as the operators 7; are all

equal. We have selected Z; simply to fix notation.

Note that p(T1) = p(T ] Xl) > 0, the strict inequality being due to Lemma 1.

THEOREM 2. — Let Zan ::Z1 Xoeee XZl, R{n Z:Rl Xoeee XRl, To = (Tl, ey Tl)
andlet | - || zn be a monotone norm on Z7"* whose topology s the product topology.

Let p(T1) be the spectral radius of Ty € L(Z1) and let | - | : Z{* — RY" have the
following properties:
@ |Tox | <To|x],

aD | ix| =14 |« | whenever 1€ R,
am |e+y| < |z| + ||,
V) x| Iz = ol z
foralle, y e Z1" If F : Z' — Z7" satisfies
| F@) - F@) | <u|z—y]| (all x, )
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with 0 < u < 1/p(T1), then the fixed point equation
x =Ty (F(x))

has a unique solution and it is the limit in Z}* of the sequence of successive
approximations x,.1 = To(F(x,)) with x arbitrarily chosen.

ProOF. — To prove the theorem it suffices to show that T o F'is a contraction
in Z1". We shall do so by defining an equivalent norm on Z}*. To this aim we note
that p(T1) = p(Ty) because T1 and Ty have the same eigenvalues, so that p(T) > 0.
Fixv € Ju, 1/p(To)l. In view of the well-known formula p(Ty) = hm \Tq ||1/” there
is n, such that

‘ 1
1Ty < =
With this n, we define
Ny —
[ |wmm+§ijWﬂwlzm

n=1

and we verify that it is a norm on Z}". In view of (IV), ||z||, = 0 if and only if & = 0.
From (II) and the linearity of T7 it follows that ||ix||, = |4|||#||,. To get the
triangle inequality, we note that from (III) and the positivity and linearity of T}
we obtain

<Tylatyl <Tile| + 73 |y]

in Z{" and so, by the monotonicity of || - || 7, We deduce

175 @ +y zn <75 | = | +Tg|?/|lz;n<”Tg|x| Z;n+||T(7)ZI?/| zn
from which the triangle inequality follows. Conclusion: || - ||, is anorm on Z}". It is

equivalent to || - || zn because
Ny
el <zl < {1+§j’wrw}|mm

where the inequality at the right-hand side is a consequence of (IV).
Fix any x, y € Z]". We have

| To(F@)) = To(F) | = | To(Fx) - F(y) |
< Ty | F@@) - F@y) |
[by (D]
<uTo|x—y]

[in view of the hypotheses and the positivity of 7]
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and consequently

73 | To(F@) - To(F@) | <uT3™ |2y

by virtue of the positivity of T in Z}". Then the monotonicity of | - || zn implies

®) |

Ty | To(F@) — To(F() | HZ’I" S”‘ Tt e -yl Hz;n

From these preliminaries we deduce the following evaluation
170 (F@) = To(F@) ||, = |To(F@) = To(F@)

Z Ty | To(F@) —To(F@) | |

=1 1

= [ 1 7o(F@) = ToEw) | |,

+Z

[by (IV)]

T2 | To(F@)) — To(Fp)) |H

-1
<ulTolz-y| ||zm+Z v u|Tg

n=1

[by virtue of (3)]
uv
=~y 2y ]l

ny—1 n+1
D [ EXFA
n=1

u
i; [l — ?/||Z;ﬂ

gl v T
=5 =yl =5 175 o=y ] |4

u
- H9C*?/||Z;n
M "y, ‘ u
< - - - v Tm‘ - moT T - m
=yl +E v 1T e =yl =2 =yl
[by IV)]
U
< = _
g,
las v™ [Ty || < 11.

This shows that Ty o F' is a contraction in the Banach space (Z7', || - ||,), thus we
are done. O
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Although the next theorem has an involved proof, it is essentially a con-
sequence of the previous one.

THEOREM 3. — Assume that || - ||z, p(Tv), Z1', || - ||z RY', To, | - | and pare
all as in Theorem 2 and further assume that

e the Banach space Z s reflexive,
o | - | :Zy — Ry is continuous.

IfF, G:ZV" — Z7 have the following properties:

e F'is continuous and G s bounded on bounded sets;

o |F)| <u x| + |G| forall x

e to each & > 0 there corresponds J, > 0 such that | G(x) | <e|x| when-
ever ||x||Z;n > Oy,

then the fixed point equation
x = To(F(x))
has a solution.

To prove it we need the following lemma which is a more convenient version of
the main theorem in LASOTA[18].

LEMMA 2. — Let X be an arbitrary Banach space, F : X — X completely
continuous, and for each x € X, let H(x) be a bounded convex subset of X. If

e Hx)=—-H(—x) forall x € X,
o there exists y > 0 such that ||x|| <y ||y|| whenever x +y € H(x),

dist (F(x), H(x))

. -0
el —o0 [l ’

then F has a fixed point.
Note: the assumption on y implies that x = 0 whenever x € H(x).

Proor. — In view of the hypotheses, there is ¢ > 0 such that

dist (F(), H@w) _ 1 (2] = &)
e 2y

so that with ¢ := ¢/2y we have
) mm@mmHm»+5<§ (]| = ).
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To determine that F' has a fixed point on B(0, ), we plan to show that I — F has a
zero on B(0, &) by proving that I — F' fulfils the following condition

5) t—F@) # 4 (—x—F(—ux) (]| =¢ 0< A<

because, according to a result of KRASNOSELSKI[15] (Whose proof, based on the
Borsuk Antipodal Theorem, also appearsin § 5.2.1 of VIDOSSICH[23]), it follows that
deg(I — F,B(0,¢),0) is an odd number, so that the Solution Property of the Leray-
Schauder topological degree would guarantee the existence of the desired zero.

Assume that (5) fails. Then there exist ¢ and A such that ||xy|| = ¢, 4o € [0,1]
and

(6) o — Fao) = Ao - (— w0 — F(— ).
Choose vy € H(xp) and wy € H( — xo) such that
([ F (o) — vo|| < dist(F (o), H(xo)) + 0

and
| F(— 20) — wol| < dist(F( — wo), H( — o)) + 6.
We have
1 10 o 1 )\.()
(7 x0+m (vo — F (o)) — i/ (wo — F(—10)) = 1o 70 0 " T W0 € H(xo)

where the equality is due to (6), while the last relation is due to the convexity of
H(xp) and —wy € —H( — xy) = H(xp).
Consequently

1 Ao
llzoll < - Hm (vo — F(wo)) — Tt (wo — F(— xo))H
[by (7) and the definition of y]
4 . .
<t (dlst(F(xo),H(xo)) + 6+ do{dist(F( — x0), H(— ) + 5})
<

[by (4)]
Since this contradicts || || = &, we conclude that (5) holds and so we are done. [

Proor or THEOREM 3. — We plan to apply the previous lemma. To this aim fix
g0 > 0 such that jt := p+ ¢ < 1/p(T1) and define f(x) € Z]* and h(x) C Z}" by

f@) = To(F(x)),
W)= {y e Z]": y="Tyx, with x, € Z}" such that |, | < |x]|}.
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In order to verify the hypotheses of the previous lemma, we start by noting that
the monotonicity of || - || v guarantees that

| F@) | <plz] + |G| = |||F(x)|||z7ln<ﬂ“|'%'|||Z71n+H |G(x)|||zvln

as well as that

|G@) | <e| x| = |||G(x)|\|Z;n<s|||9c| HZ;,,.
Together with the hypotheses of the theorem and with property IV) of | - |, we
get
® IF@ g =1 1 F@ | llzp <l |2 | lp+11 | 6@ | Iz = llel g + 1G5
and
o 1G@lz

X|| zm —00 X m
I ”Z{ zr

These inequalities imply that F' is bounded on bounded sets, so that Ty o F' is
completely continuous. In view of properties (III) and (II) of | . | as well as of
the monotonicity of || - || zm»> €VETY h(x) is a bounded convex set. In the following
steps, we demonstrate the remaining hypotheses of the lemma.

STEP 1. — h(x) = —h( —x) for all x € Z7'. Choose y € h(x). We have y = Ty,
for some x, € Z}" satisfying |2, | <z | | .Then —y = To( — x,) in view of the
linearity of 7. It follows (from property (IT) of | - |) that —y € h( — ) and so
) € —h( — x). Exchanging the roles of x and —x we get —h( — x) C h(x) and we
are done.

STEP2. — There exists y>0 such that || zn SV Iyl z whenever
x4y € h(x). If the contrary holds, then to each n > 1 there corresponds x,
and y, such that

xn + ?/n E h(x’n) and HanZ{” > n ||yn||Z7ln

In view of the definition of Z(x,), for each n > 1 there is u,, € Z{" such that
|un| < |9cn| and L+ Yn = To Uy,

Dividing these relations by ||| zn and setting =z, := x,/||%,| zn and
Uy = u17//\|acn||z71n, we get

10) | va | < it |2
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from property (IT) of | - |, while from the linearity of Ty we get
1) 2+ = Ty .
HanZ;n
Applying property (IV) of | - | and the monotonicity of || - || zn 10 (10) we see

that the sequence (v,), is bounded. Therefore (v,), is vyeakly sequentially
compact by the reflexivity of Z}* and by the Eberlein-Smulian’s theorem.
Moreover, from ||x,|| zn > M 1y ] zn We see that

Yn
[l zn

These remarks and the compactness of Ty imply the existence of n; 1 oo such
that z,, — zo and v,, — v for suitable 2z and vy. Then, taking limits in (11) using
the compactness of T, we get 2o = T vo. We claim that

(12) loo | <7 2]

To state it, noticing that z | zo | = | itzo | by virtue of property (II) of | - |, it
suffices to show that every positive and continuous linear functional # on Z}
satisfies

(| vo |) < k(| izzo |),

as granted by Theorem 2.4 of KRASNOSELSKI-LIFSHITS-SOBOLEV[16]. Fix such an
h. We have

(13) h( | vu |) <h(| 220 |)

due to (10), to property (II) of | - | and to the positivity of z. Properties (IT) and
(ITI) of | . | imply that % o | . | is a convex function. As it is also continuous,
we take limits in (13) using Corollary II1.8 of BREZIS[5] on the function at the
left-hand side and the continuity on the function at the right-hand side, obtaining

(| o |) < limkinfh(|vnk|) <h(| zzo |)
which is what we required to conclude that (12) holds. Then from property (I) of
| - | and from (12) we get
(14) 20| = | Tovo | <Toit |20 ].

Applying Theorem 2 to the map z ~» iz in Z}", we see that the successive ap-
proximations

woi=lao| . W= Tofw, (1)
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converge to a point w,, satisfying w., = it Ty w... By (14) and the positivity of 7',
the sequence (wy), is increasing, hence w,, > |zo | But ||z o = =1, hence
| 20 | > 0 (by property (IV) of | - | ) and so w,, # 0. Then 1/7is an eigenvalue
of Ty, contradicting the hypothesis it < 1/p(T1) = 1/p(T)). Conclusion: y does
exist.

STEP3. — lim  dist(f(x), h(ac))/HxHZm = 0. Given x € Z7", define y, € Z}"

[lc]| gm —o00

by the formula

el F@)
Tt el + 1G@I

Yo =

When ||oc||Z7ln > d,,, we have

el zn
— F(x)
Ve | =l + e, 7@
[by property (II) of | - |]

< | F@) |
<ule| + |G| <i|«|

[by the definition of &],

hence T y., € i(x). For ||x|| zn > 0, We have

17— Towall e < IToll IFG) — gl

H ||90||Z;”

== T 1— F(x) m
ol Tl + 6@, | O
+ [|G@)]|
< 1 &l + |G@)]| 5
ol el + TGy Al + 16 @l )
[by (8)]

< IToll {1 + 1G@)llz }

which implies  lim  dist(f(x), (%)) /||| zv = 0 in view of (9).

llll 7 —o0

Thus all the hypotheses of the previous lemma are fulfilled, hence f has a
fixed point and we are done. O
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3. — Applications to systems of Dirichlet problems

In this section we apply the previous results to systems of Dirichlet problems
Lyu; = fi(x,u) in Q
G=1,...,m)
u; =0 on 0Q

where L; is a uniformly elliptic differential operator of second-order in diver-
gence form

N
=Y (@) g, )+ @)
hk=1

with a}, € C1*(Q), ¢; € C**(Q) and ¢; > 0 on Q.
The standing notations and assumptions of this section are the following:

o is a fixed member of 10, 1[;

Q C RY is a bounded domain of class C2%;

v(x) denotes the outer normal at x € 09Q;

R™™ is the set of m x m square matrices;

if the symbol 1 denotes a matrix or a matrix function, then

Mk

denotes the element of u with indices 4, k;
o R" is endowed with the standard order:

r<y & <y, @=1,...,m)
for x, y € R™.
The smoothness of 02 and of the coefficients of the L;’s guarantees the va-

lidity of the Schauder’s theorem as well as of the following

STRONG MAXIMUM PRINCIPLE. — For every non-constant u € C*(Q) N C°(Q))
we have

Lu>0 inQ u >0 m Q
- P . :
|,y =0 5, 4@ <0 in 0Q

which we need for the order structures involved with our arguments.

To implement the abstract scheme of the previous section, there is a flex-
ibility in the choice of the spaces X;, Y;, Z; (in connection with the smoothness
requested on the solutions, as well as with the use of Theorem 1 or 2), that we
shall use only to change Z; according to the needs. Moreover, two lemmas are



ON NONLINEAR SYSTEMS OF BVPs WITH POSITIVE GREEN’S FUNCTIONS 623

necessary; the first surely known to experts (but I do not know of any written
reference), while the other is suggested by the work of AHMAD-LAZER[1].

LEMMA 3. — For every xy € 082 there exist dy,, &, > 0 such that the set
Wey = {x+tv@): —0dy <t <0, 2 e By, e, N 02}

is a neighborhood of xy in Q.

Proor. — Fix xy € 0Q. According to one of the equivalent definitions of do-
main of class C?* explained in §§ 4.7 and 7.5 of DUISTERMAAT-KOLK[9], there exist
a neighborhood U of 2 and a function @ : U — R of class C>* such that:

e grad d(x) A0 for all x € U,

e UNQ={xecU: @) <0},

« UNdQ={xelU: &) =0},

e () := grad @(x)/||grad d(x)| for every x € U N 9Q.

Since @ is of class C?, v is continuously differentiable. Therefore the map ¢
defined by
B, 1) := (x +tv(w),t)

is a continuously differentiable map U x R — RY x RR. Its derivative at the point
(29, 0) has the form

d

Thus the sign of the determinant of the associated matrix is given by the sign of

the “minor” I~ + to(li_m v(xg). As
. d
11301 Tgw +1 @"(9”0) = Iy,

. . . d .
for small #’s the determinant of the matrix associated to I,y +¢ in V(o) will be

approximately equal to 1. Consequently ¢ fulfils the condition of the Local
Inversion Theorem in a neighborhood of (xy,0) and so the range of ¢ is a
neighborhood of (xy, 0). Its image by the canonical projection RM1 RV isa
neighborhood of x( in RY, whence we find the desired conelusion. O

LEMMA 4. — In the subspace
Cy == {ueC'@R": u|89 =0}
of CL(@Q, R") the set
P:={ueCy: u; >0 forall i}
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is a closed come. Its interior P in C} is non-empty and is characterized by

u; >0 on Q

web o (i=1,...,m)

gui <0 on o
v

PROOF. — Obviously P is a closed cone in C}. First suppose that u € P. Let
e1 be the normalized positive eigenfunction related to the first eigenvalue of —4
in Wé’z((O)). Set e:= (e1,...,e1) with e; repeated m times and set u,, :==u — e/n.
Asu € P, u, € P for n large, say for n > ny. For n > ny we have u; > e;/n >0

. . 0 0
on Q for every 1. It remains to show that 5@@- < 0 on 0. Assume Eui(%) =0

with xy € 02 and argue by contradiction. For n > ny we have

0 <2ui(9€0) — 261(900) = 4

v v n aum(%)
T (2o + t v(wo))
t—0 t

[in view of the definition of exterior derivative]

i (0 + t¥(x0)).

o
Then by continuity there is ¢ > 0 such that the derivative of
V(E) = Ui (o + £ (o))

is positive whenever |t| < &. Moreover, the definition of exterior normal guar-
antees that xy + £ v(xg) € Q2 for negative t’s sufficiently close to 0. So for £y, < 0
sufficiently small in absolute value, the derivative of v on [y, 0] will be positive
and xg + to v(xg) € Q. Now we apply the mean value theorem to v on [y, 0] and we
deduce that u,; (xo +t v(acg)) < 0 because v > 0 and v(0) = 0. This contradicts
Uy = 0 on 2, hence the implication “=-" holds.

To state the reverse implication, suppose that u € C} fulfils the following
conditions

’U/i>0 on Q2

gui <0 onoR
v

and let us show by contradiction that » € P.Tfu Z Ig, then there are u, € C}\ P
such that u,, — u in C'. Thus to every n there corresponds x, and i, satisfying
Xy € 2 and uy;, (x,) < 0. Passing to a subsequence if necessary, we assume that
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i, = const =: 4y for every n and that x, — xy. By Theorem 7.5 on p. 268 of
DUGUNDJI[8]

(15) Uy () — (o) and grad u,(x,) — grad u(xo).

Consequently w;,(xp) < 0, hence xy € 9Q. By virtue of Lemma 3, there exist
Oxy, €, > 0 such that the set

Wy o= {x+tv@): —dy <t <0, %€ B, &, NI}

is a neighborhood of xy in Q. After possibly shrinking 6,, and &,,, we may assume

that 2 u;, < 0 on W,,. In view of

% u;(x) = (grad u; (%) | V(m))

and of (15), there is n( such that

0
gy Y@ = (grad uy,;, (@) | v(@)) <0 (n = ng; © € Wy).

As W,, is a neighborhood of x in Q, by taking n, larger if necessary, we assume
that x, € W,, for n>=mny. Fix n>mng, so that wx, =y, +1t,v(y,) with
Yn € B(xo, &) N 0L and —6,, < t, < 0 [note that ¢, < 0 because x, ¢ 0€2 since
Uy (x,) # 0]. Applying the mean value theorem to the function

0(8) := Uiy (Y + 5 V(Yn))

on [t,, 0], we see that u,;,(x,) > 0 because v' < 0, v(0) = 0 and 2/(s) is the deri-
vative at s = 0 of wy;, (y +s v(yn)). This is a contradiction, hence we are done. O

Now we are ready to outline the abstract scheme for Dirichlet problems.
For every i € {1,...,m} we define:

Xi={uelCQ: =0} as a subspace of C'();

Y; .= C%*(Q);

Z; = L*(Q) or Z; := C°(Q), always specifying the choice;

P; CX;, Q; CY; and R; C Z; are the subsets of non-negative functions;
G; is the Green’s function of L; subjected to the Dirichlet boundary condition;
T is the solution operator defined by the Green function:

u‘m

(T u)(x) = f Gi(x, y) uy) dy;
Q

| - |, is the map Z; — R; which to every u € Z; associates the function
X~ |u(@)];
M is the set of all matrix functions in C%*(Q2, R™*™) whose entries are all
positive a.e.
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In view of our assumptions on L; and 0%, well-known results ensure that
G; = 0.

From a theorem of Schauder it follows that 7;(Y;) C C>*(Q), so that Ti|x- isa
compact operator Y; — X;. By the Strong Maximum Principle and Lemma 4,
Tifyi is strongly positive.

Let Z; be either L*(®2) or C°(Q). Obviously the map | - |, satisfies properties
(i) and (iii) in § 2, while (ii) is true because

| Tiv ], (@) =

| Gi(ac,y)v(y)dy‘ < [ G leldy = (17 | v];) @
Q Q

in view of the positivity of the Green function and the definition of | . |
The norms || - ||;2 and || - ||» are clearly monotone.
Thus we are perfectly poised to apply the general scheme of the previous
section.
To write systems in vector form, we introduce the notation

L :=diag(Ly, ..., Ly).

i

The following lemma is the counterpart of Lemma 1 for elliptic systems.

LEMMA 5. — For each u € M™ there is a unique positive eigenvalue (i) of
the Dirichlet problem

(16)

{Lu},,u(ac%u m Q
=0

“’09

which has an eigenvector with positive components in Q and turns out to be
smaller than the absolute values of the other eigenvalues of (16).
Moreover: if i, v € M™ satisfy the two conditions

o . < Vi for all b and k,
e for every h there exist kj, and x), € Q such that w,, (n) < Vi, (Th),

then /10(,u) > },o(v).

ProOF. — We use the above notations together with those introduced in the
previous section.
For each € M* we define an operator S, € £(Y) by the formula

(Spu)w) := (Z M) (), D ) uk(ac)> weY xeQ).
k k

Since y and u are C*, S, u € Y. Clearly the norm ||S,|| is bounded above by the



ON NONLINEAR SYSTEMS OF BVPs WITH POSITIVE GREEN’S FUNCTIONS 627

maximum of the sup norms of the entries of x, while

(S/t u)z S QZ\{O}
ueQ\{0} = i=1,...,m)
| Suwi ;< (SuClon |yseoos Twn [,));

the first relation on the right-hand side being due to the fact that w € @\ {0} has
all components non-negative and at least one which is positive on an open subset
(by continuity). Therefore S, € S*.

Now suppose that u, v € M™ satisfy the conditions of the second part of the
lemma, i.e. that g, < v, for all & and k, and that for every & there exist k), and
xy, € Q such that g, (x4) < v, (). By virtue of Lemma 4, u € Phas positive all
components in €, so that for every & we have

Z Mg () wge () < Z Vg () g (2c,)
T ke

which implies
ueP = Su < Syu

in the order of Y.

Thus we simply have to apply Lemma 1 to the operators T o S, taking into
account that their eigenvalues are the inverses of the eigenvalues of the corre-
sponding Dirichlet problems. O

In the remaining part of the section we shall freely use the notations in-
troduced above, including those of the statement of Lemma 5.

THEOREM 4. — Let A : Q x R™ — R"™"™ and g:Q x R™ — R™ be locally
Lipschitz. If there exits u € M™ and p > 0 such that

o Ao() > 1, Ao(w) being the first eigenvalue of the Dirichlet problem (16),
o |A(e,w)| < 1) for all x, b, k and all u with ||Ju| = p,

and if
m glae,u) 0
=00 [ot]

uniformly on x, then the Dirichlet problem

{Lu =A@, u)-u+g,u) in Q
u’f)[):o

has at least one classical solution.
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In view of the second part of Lemma 5, 19(x2) > 1 when both there is v € M*
such that u;,;, < 4o(v) v for all & and k and for every & there exist kj, and x;, € 2
such that s, (1) < Z0(v) ik, (x7,). Therefore in the scalar case, i.e. when m = 1,
the requirement “x is less than the first eigenvalue” implies Jo(«) > 1, hence a
famous Hammerstein theorem in [12] is included in Theorem 4.

PRrOOF. — We apply Theorem 1 choosing Z; = L*(®) for all ¢, so that we may
identitify Z with L?(Q, R™). Set

M = {V S llz(.(27 RWLXWL) : |y}‘lk| < ik a.e.}.

Being a bounded subset of L2(Q, R™*™), M is weakly compact, hence weakly
sequentially compact (by Eberlein-Smulian’s theorem) and contains the weak
limit of every convergent sequence in it. For each y € M let S, € £(Z) be defined
by the formula

(S, u)x) = (Z P16(@) ug (), . . ., Z Pk () uk(ac)> (weZ xeQ).
k k

Clearly y ~» S, is a continuous map L*(Q, R"*"™) — L(Z). Consequently
§:={S,: yeM}

is a weakly sequentially compact subset of £(Z) containing the weak limit of
every convergent sequence in it.

If u = (T o S,)u with u € Z, then for each 7 the component u; is a solution of
the scalar Dirichlet problem

Ly = Z Vir We(@) + y;;@) v in Q
A
V]po =0
whose right-hand is bounded in absolute value by a quantity & + const |v| with
h € L?, so an application of the bootstrap procedure ensures that u; € Y;.
Setting Sy := S|y, the hypotheses of Theorem 1 related to S are either just
verified or obvious.
Now we fix uy € R™ such that ||ug|| = p and set

[y

Ax,u) if Jul| =p
B(x,u) = A(ac,”zn u) it 0<ull <p,
A(x,up) if [|u] =0

Gx,u) = A@,u)-u — B(x,u) - u+ gle,u).



ON NONLINEAR SYSTEMS OF BVPs WITH POSITIVE GREEN’S FUNCTIONS 629

Clearly the given Dirichlet problem can be rewritten in the equivalent form

{Lu—B(ac,u)~u+G(9c,u) in

”‘09 =0

Consequently « is a solution if and only if
“= T<SB(<,u(-)) U+ G(vu( : ))) .

From the hypotheses of the theorem we have B (-,u( : )) € M for every
u € Z and

IG(uC))ly _ 0
| y—o0 ]y ’

while % ~» S 5 u is a continuous map Y — Y by virtue of the definition of B.

(-u0)
Then Theorem 1 provides the conclusion. d

Now we derive three corollaries, the first being a trivial consequence of
Thorem 4, while the other two have been inspired by LAS0OTA[18],[19].

COROLLARY 1. — Let f: Q x R™ — R™ be continuously differentiable with
df Jou locally Lipschitz. Let g: Q x R™ — R™ be locally Lipschitz. If there
exits u € M™ and p > 0 such that

o Ao() > 1, Ao(w) being the first eigenvalue of the Dirichlet problem (16),

o ‘W‘ < wp() for all , 1, k and all w with ||u| = p,
e

and if

tim I8
lull—oo o]

uniformly on x, then the Divichlet problem
{Lu = f(x,u) + gle,u) n Q
Ulyo =0

has at least one classical solution. The solution is unique when p = 0 and g = 0.

Proor. — The existence is a direct consequence of Theorem 4: by setting

1
A = [ a%f(x,éu)dcf
0
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we have the representation f(x, u) = f(x,0) + A(x, u) u.
To state the uniqueness when p = 0 and g = 0, we use the definitions as in the
proof of Theorem 4 for y € M and S, € L(Z). Setting

Faw) = f(u(-) (@eY)
1

An@) = [ 2 oot (e —0@))de @ veD)
0

we obtain the representation

Fu)—F@) =S4 (u—v).

Now we apply the corollary to Theorem 1 and get the desired conclusion about
uniqueness. U
COROLLARY 2. — Let f: Q x R™ — R™ be locally Lipschitz. If there exist
u e M and a locally Lipschitz function f: Q@ x R — R such that
o the only u € WH(Q,R™) such that
Liwi@)] < > @) @) in Q
=1
u=0 on 0Q
isu =0,
° liTm P, y)/y = 0 uniformly in x,
Yloo
m
o |fitw,w)| < X i) | + Blac, ||ul)) for all i, x, u,
j=1
then there exists a classical solution to
{Lu = fle,u) n Q
Ulyo =10 '

PRrOOF. — Setting
m
i) =Y @) | + B, ) + 1 (i=1,...,m)
j=1

and

)

o) {Sgn(r) if zeR\{0}
0 if t=0



ON NONLINEAR SYSTEMS OF BVPs WITH POSITIVE GREEN’S FUNCTIONS

we can write

ﬂ(x7 u) m
file,u) = 2 0) {; (@) aug) u; + B, [|ul)) + 1}

_ i filw, ) () o () " +fi(9c, w) {fla, [[ul) + 1}
J=1

yi (e, w) ! yi(ac, w)

to obtain the representation
flae,u) = A, w) - u+ g, )

where A(x, ) is the matrix functions with entries

Ajjlw,u) = fiC, w) (@) o (o)
| v; (@, )

and

giGar, ) i— L™ B, llul) +1}

v; (@, u)
Clearly A is locally Lipschitz and
| Ay, w)| < () @ll 7, 7,2, u)
as well as
lul =0 ||g(lazlu)|| =Y

631

uniformly in &. Thus to apply Theorem 4, we simply have to show that (1) > 1.
Proceeding by contradiction, if Zo(x) < 1 then (as u is C%%) there is a non-null

classical solution %° of

{Luo = Jo() u(x) - u®  in Q

U0 =0
Thus
m
Liud@)] < @) [ul@)| in Q
=
G=1,....m)"
w=0 on 6Q

which contradicts the hypotheses, hence we are done.
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Note that the spectral assumption of the next corollary involves only the ei-
genvalues of a real matrix, not the eigenvalues from a PDE.

COROLLARY 3. — Let f: Q x R™ — R™ be locally Lipschitz. If there exist
u € M and a locally Lipschitz function f: Q x R™ — R" such that
e the spectral radius of the matrix A with entries
A= ||IT3] ] 5] oo
is less than 1, ||T;|| being the norm of T; : L*(Q) — L(Q),
. liTm P, y)/y = 0 uniformly on x,
yloo m
o |fitw,w] < X py@) ] + B, |Jul) for all i, x, u,
j=1
then there exists a classical solution to
{Lu =flx,u) inQ
Uy =0
ProOOF. — In view of the previous corollary, it suffices to show that the u = 0 is
the only map in W#(Q, R™) satisfying
m .
\Liui(@)] < 3 (@) Juj(w)|  in Q
j=1
(i=1,...,m)"

u=>0 on 0Q

By contradiction, suppose that % is a non-trivial solution of this inequality.
Setting
vi o= ||z t=1,...,m),

and substituting u; = T;(L;u;) we have

Vi < T3] (| L] 2

m

> 1@ @] ,

m
<|Till >
=1
m

<ITill D Myl Dol

Jj=1

m
= E Aijvj~
=1

< |7l

1) [ @) HLz
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Consequently, for each ¢ there exists 0; € [0,1] such that
m
V; = Z giAij Vj.
j=1

Moreover, v; # 0 for at least one 7 because u is non-trivial. Thus the above
identity means that 1 is an eigenvalue of the matrix B := (0; A;;);; with eigen-
vector (v, ..., vy,). Now we apply a theorem of Frobenius saying that when two
non-negative matrices satisfy the inequalities §;; < y;; among their entries, then
the same inequality holds among their spectral radius (this is corollary 8.1.19 on
p. 491 of HORN-JOHNSON [13]). Therefore

0;A; <Ay forall i,j =  1<pB)<pA)

contradicting the assumption p(4) < 1, p( - ) denoting the spectral radius. O

The following result shows “non-resonance below the first eigenvalue” for
non-symmetric elliptic systems. For the scalar Dirichlet problem, the same
conclusion has been obtained by a different method (based on the traditional
elliptic estimates) in § 2 of HAI-SCHMITT[11] and earlier for two-point BVPs by
ALBRECHT[2], TiPPETT[21] and MAWHIN[20]. The existence result for elliptic
systems goes back to Theorem 5.5 of KAZDAN-WARNER[14]. Our theorem im-
proves that of Hai-Schmitt also because it shows convergence of the successive
approximations in C° rather than in L2

Since the proof of the next theorem is based on Theorem 2, it is related to an
elliptic system where all the differential operators are equal. We have selected
Ly for this role simply to fix our notation. Thus L := diag(L;, ..., L1).

The following norms on R™ fulfil the assumptions required of || - || z» in the
next theorems:

el o= @ o2l ) el = max ],y = ] o .

THEOREM 5. — Let || - ||z be a norm on R™ with the following properties:

o | - ||gn is monotone with respect to the standard order of R™,
[ ] ||(17 0, ey 0)||]Rm = 1.

Letf : Q x R™ — R"™ be locally Lipschitz and let )y be the first eigenvalue of the
scalar Dirichlet problem

{le =Alv i Q
V]po =0
If there exists a positive constant < Ay such that

1f G, ) = fla, Wl < pefloe = v g (all @,u,v),
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then the Dirichlet problem
{Llui = filx,u) mn Q

t=1,...,m)
u; =0 on 0Q2

has a unique classical solution and it is the uniform limit of the following
sequence of successive approximations:

{L1(un+1)i =file,uy)  In Q
(un+l)i =0 on 09
starting with any ug € C°(Q, R™).

PRrROOF. — We apply Theorem 2 with the choice Z; := C%(Q), where the sym-
bols Ry, Ty and | - |, are defined above. We identify Z}* with C°(Q, R™), so that

-l zn is the sup norm. The norm || - || z is monotone in Z7* because || - ||z~ is
monotone in R™. We set Ty := (T4,...,Ty) and define | - | : Z}* — R} by
| ] @ = (JJu@)]zn,0,...,0) (€ € Q).

Using the notations of Theorem 2, we note that properties (IT) and (I11) of | : |
are clear. Property (IV) holds because

R™

o]z =sup || ] @)

=sup (@) g [1(L,0,...,00)]gn)

R™ — Sl;p || (”u(x)”JR'”vOa LR 0)

=sup [Ju(@)|| g
&€
[by the hypotheses about || - ||zm]
.

To state (I), we observe that for every x € Q and u € Z7" we have in the standard
order of R™:

| Tow | @) =(||(Tow) @), 0,....,0)

~ 0.000.0)
R™

< < f Gl(ﬁ(}, y) ||?/L(y)||Rm dya 0, cee a0>
Q

J Grepuedy
Q

[by properties of integrals and the definition of the standard order of R™]
=(To [u]) @

which means that | Tou | < To |« |, ie. (D).
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Setting F(u) := f (-, u(-)), from the hypotheses we have
| Fiw) = F) | < pu|u—| (u, v € Z7).
Moreover, 1y = 1/p(T1). Thus the conclusion follows from Theorem 2. O

In view of the following statements, recall that f : @ x R™ — R" satisfies

e the Carathéodory conditions when f(-,u) is measurable for every « and
f(a, ) is continuous for a.e. x;

e the generalized Carathéodory conditions when f satisfies the Carathéodory
conditions and moreover to every bounded subset B C R™ there corre-
sponds hp € L'(Q) such that

£ e, w)]| < hp() (a.e. x € Q, u € B).

THEOREM 6. — Let | -|gn and Ay be as in the previous theorem. Let
f:QxR"™ — R™ satisfy the Carathéodory conditions. If there exist both a po-
sitive constant 1 < Ay and a function f:Q x RY — R™ with the following
properties:

e 5 satisfies the generalized Carathéodory conditions and there exist
h € L2(Q) and y > 0 such that f(x,y) < h(x) +y - |y| for all x and y;

A+ P, |[ul|gm) for all x and w;

o dim el g = O wniformly on

l[al] g —00

then the Dirichlet problem

Liu; = fi(x, u) m Q
t=1,...,m)
u; =0 on 0Q
has a weak solution.

PROOF. — Now we set Z; := LA(Q) and we identify Z}* with L2(Q, R™). The

norm || - || zm is monotone because || - ||z is so. Followmg the patterns of the
proof of the previous theorem, it is easily seen that the map | - | : Z}" — R}’
defined by

| | @) := (Jlu@)]|zn,0,...,0) (reQ

satisfies properties (I)-(IV) mentioned in the statetment of Theorem 2. It
is a continuous map L*(Q,R™) — L*Q,R™) by virtue of the following
inequalities:
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H [0 | = ol Hiz :f H(||u77/(-75)‘|][§’”'707 -, 0) = ([luo@)[[ g, 0, .. 70)’ Tgm du
2
= [ 1|l @ll i = 2t0(@ 5,0, ., 0) [
2
= [ [la@ll i = lto@ e [ [[1,0, ..., O[3
2
< f | o () — uo(oc)Him da
2
s — .
Setting
Fu):=f(-,u(-)) and G):= (B, ||u(-)|/gn),0,...,0) (w € Z1"),
in the standard order of R™ we have
| Fa) | < |u| + | Gw) | (for all )

and to each ¢ > 0 there corresponds J, > 0 such that
|G | <e|u] (ol zn > 02).

In view of a well-known theorem of Krasnoselski (cf. § 1.2 of KRASNOSELSKI[17]),
F and G are continuous and bounded on bounded sets.
Thus the conclusion follows from Theorem 3. O

4. — Applications to systems of conjugate BYPs

In this section we consider systems of conjugate BVPs of the type

Liw; = fi(t, )
amn , A<i<m; 1<h<k; 0<j<ny-—1)
u (ty) =0

where the order and the boundary conditions may change from equation to
equation:

ki > 2;

2< g+ g, =0

a=tz <--- <t7jk1. Zb;

L; is an ordinary differential operator acting on the members of C"([a, b])
which has the form

Liw; == u™ + ay®u" Y+ 4 ap,Ou
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and fulfils the following assumption: L; is disconjugate, its coefficients a;;
are continuous functions and the Green’s function corresponding to it and
the given boundary condition, is non-negative.

In addition to these, our standing notations and assumptions for the section

include:

e p; is the Levin polynomial corresponding to the BVP for the ith

pit) := (t — )" - (¢ — tg,)"™5;

e (; is the Green’s function corresponding to the BVP for the ith scalar
equation, i.e.

equation, i.e.

Liv = h(t) b
hj) e )= f Git, s) h(s) ds.
vP(t) =0 a

Our terminology is based on CoPPEL[6] and ELIAS[10].
According to what is proved on pp. 108-109 of CoPPEL[6], the sign of G; is
characterized by

Gi(t,s)
pi(®)

Consequently, conjugate multipoint BVPs have non-negative Green’s functions
when ny, is even for every h > 2, even if n;; is odd.

To fit problem (17) into the abstract scheme of § 2 under the above as-
sumptions, for each i we set

(18) 0<

< const =: y, (a<t<b a<s<b).

t
tftilv----,tiki EC?(t)

P; =Q; :={v e C(a,b]) : () =0 forall t}

ot0)
Vx. =Vlly, = ||v]l, + Sup
ol =l = loll + 800 5

Xi = Yi = {’U S C([CL, b]) :

(v € X;)

b
(T;0)(t) == f Git.s)vs)ds (e Zia<t<b)

Z; :==C%[a,b]) or Ll([a, b)) or L*(a, b)), depending on the context,
[v],®:=®] (@eZj;a<t<b)
[w]® :=([u®]gn,0,...,0)  (@eZi;a<t<b
M* = {u e Ca,b, R™™) : p; >0 ae.}
L :=diag(Ly, ..., Ly).
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As is proven in § 2 of DEGLA[7], (X;, || - ||x,, P?) is an ordered Banach space with
P £ @ and T; is a compact linear operator such that

veP\{0}) = Tweb

ie. T; \X is strongly positive in (X;, || - Ix,, P)-
When v € L'([a, b]), then T;v is continuous because G; is so. Moreover, from
(18) we deduce

(Tw)t)] =

b
af Gy(t, s(s) ds o

b
B ’f Gt pi®)v(s)ds| < y; vl pi®).

Therefore T;v € X; whenever v € Z;.

With this material in mind, the proofs of the following results are quite similar
(mutatis mutandi) to those of the similar results in the previous section. Thus
they are omitted.

LEMMA 6. — For each u € M™ there is a unique positive eigenvalue (1) of
the conjugate BVP

Lu=2u®) -u
19) :
u (tin) = 0 (all i, h, )
which has an eigenvector u satisfying

if Y ®)
tEbi - ik pi(t)

>0 t=1,...,m)

and happens to be smaller than the absolute value of any other eigenvalue of (19).
Moreover, if u, v e M™ fulfil the two conditions

o w; < v forall i and j,
e there are 1y, jo, to such that i ; (to) < viyj,(to),

then Zo(1) > Jo(v).

The next theorem generalizes Theorem 4 of VIDOSSICH [22]) and Theorem 5.2
of DEGLA[T].

THEOREM 7. — Let A : [a,b] x R™ — R"™"™ and g : [a,b] x R™ — R" satisfy
the generalized Carathéodory conditions. If there exist u € M™* and p > 0 such
that

o Ao() > 1, Ao(w) being the first eigenvalue of (19),
o At w)| < () for all t, by k and all w with ||u|| = p,
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and if

uniformly on t, then the conjugate BVP
Lu =A@, w) - u+ g(t,u)
uf () = 0 (all i, h, j)

has at least one solution.

COROLLARY 1. — Let f : [a,b] x R™ — R"™ be continuously differentiable and
let g:la,b] x R™ — R™ satisfy the generalized Carathéodory conditions. If
there exist p € M™* and p > 0 such that

o Ao() > 1, Ao(w) being the first eigenvalue of (19),

o ‘% < wy@) for all t, 2, k and all w with ||u|| = p,

and if
i IGW _
=00 || 2]

uniformly on t, then there is a solution to the conjugate BVP
Lu = ft,u)+ g, u)
{ u(ty) =0 @l i, h,j)
The solution is unique when p =0 and g = 0.
COROLLARY 2. — Let f : [a,b] x R™ — R"™ satisfy the Carathéodory condi-

tions. Suppose there exist u € M and a function § : [a,b] x R — R satisfy-
g the generalized Carathéodory conditions such that

o the only u € C°([a, b], R™) satisfying

L] < 3> 0 )
j=1

_ (all i, h, j)
u () =0

isu=0,
. liTm P, y)/y = 0 uniformly in t,
yloo

o |fit,w)| < X @) il + B, |Jul]) for all i, ¢, w.
st
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Then there exists a solution to the conjugate BVP
Lu = f(t,u)
u () =0 (@ll i, h, j)
COROLLARY 8. — Let f : [a,b] x R™ — R"™ satisfy the Carathéodory condi-

tions. If there exist u € M, a function B:[a,b] x R" — R" satisfying the
generalized Carathéodory conditions and

e the spectral radius of the matrix A with entries
Ay = ||IT3]] ] 5] oo
is less than 1, ||T;|| being the norm of T; : L*([a,b]) — L*([a, b)),
° liTm B, y)/y = 0 uniformly on t,
Yyloo
m
o [fitt,w)| < X uy® oyl + B, lul) for all i, t, u,
j=1
then there exists a solution to the conjugate BVP
Lu = f(t,u) + g(t,u)
u? (tin) = 0 (all i, h, )

THEOREM 8. — Let || -

g be a norm on R™ with the following properties:

o || - |lgn is monotone with respect to the standard order of R™,
e [I(1,0,...,0)||gn = L

Let f : [a,b] x R™ — R™ satisfy the generalized Carathéodory conditions and
let 2o be the first eigenvalue of the scalar conjugate BVP

Ll?)i = ;L/I)i
. (all 1, h,J).
v tu) =0

If there exists a positive constant p < Ay such that
||‘](‘(t7 /M/) —f(t’ /U)”JR‘)H < U ||u — /U”JRWL (CLll t, u, /U),
then the conjugate BVP

Liw; = fit,w)
| (all i, h, j)
u(ty) =0

has a unique solution and it is the uniform limit of the sequence of successive
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approximations
Ll(un+1)i :ﬁ(t,%n)
‘ (all i, h, j)
(1) Ein) = 0
with wy any continuous map.
THEOREM 9. — Let | -|gn and Ay be as in the previous theorem. Let

fla,b] x R™ — R"™ satisfy the Carathéodory conditions. If there exist both a
positive constant u < iy and a function f : [a,b] x RT — R with the following
properties:

e 5 satisfies the generalized Carathéodory conditions and there exist
h € L2([a,b]) and y > 0 such that pt,y) < h(t) +y - ly| for all t and y;

o [[fEwllgn < pllwllgn + B, l[ullgn) for all t and u;

o lim @, [lullgn)/[wllgn = O uniformly on t;

lleellgm —

then conjugate BVP

Lyw; = fi(t, )
_ (all i, h, j)
ugj)(tih) =0

has a solution.
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