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The Groups of Isometries of the Homogeneous
Tree and Non-Unimodularity

CLAUDIO NEBBIA

Abstract. — In this paper we describe the groups of isometries acting transitively on the
homogeneous tree of degree three. This description implies that the following three
properties are equivalent: amenability, non-unimodularity and action without in-
versions. Moreover, we exhibit examples of non-unimodular transitive groups of
1sometries of a homogeneous tree of degree q + 1 > 3 which do not fix any point of the
boundary of the tree.

1. — Introduction

The purpose of this paper is to describe the closed groups of isometries of
the homogeneous tree of degree three acting transitively on the vertices of the
tree. The group of isometries of this particular tree is so small that it only has
a few types of transitive subgroups. For example, in Lemma 3.3 below, we
prove that a closed subgroup acting transitively on the set of oriented edges
either is discrete or it acts transitively on the tree boundary. In this paper we
prove that a closed non-discrete group of isometries acting transitively on the
vertices of the homogeneous tree of degree three either acts transitively on
the boundary of the tree, or fixes a point of the boundary and it acts transi-
tively on the complementary of that point, or else it stabilizes a suitable set of
non-oriented edges E (the set E is required to satisfy only the following
condition: for every vertex v there exists one and only one edge of £ containing
v). Also the discrete transitive subgroups can be partitioned into three disjoint
classes: the discrete groups acting transitively on the set of oriented edges (i.e.
the transitive and locally transitive subgroups), the simply transitive sub-
groups (i.e. the transitive subgroup acting faithfully on X) and the discrete
groups which stabilizes a set £ of non-oriented edges as above. This de-
scription implies that the following three properties are equivalent for
q + 1 = 3: amenability, non-unimodularity and action without inversions. In
particular, every transitive non-unimodular subgroup fixes an end of the
boundary. For a general homogeneous tree of degree q + 1 > 3, the prototype
(and the most cited example) of a transitive non-unimodular group of iso-
metries is just the stabilizer of an end of the boundary. For this reason, when
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g+ 1 >3, a question that arises is if there are other examples of transitive
non-unimodular groups. In this paper we exhibit for every g + 1 > 3, examples
of closed transitive non-unimodular subgroups which are non-amenable (and
so which do not fix any end of the tree). More precisely, we give examples of
such a groups containing inversions (for every g + 1 > 4) and without inver-
sions (for every q + 1 > 5; in fact in the special case g + 1 = 4 every transitive
non-unimodular non-amenable group contains inversions). Such groups, which
we will denote by Aut(Xy), are associated with a function f defined on the
vertices of X. The definition of the groups Aut(Xy) is suggested to us by the
groups introduced by J. Tits in [4, p. 200].

2. — Preliminaries

Let X be a homogeneous tree of finite degree ¢ +1 > 3 and let Q be the
boundary of the tree X. We denote by Aut(X) the locally compact group of all
isometries of X with respect to the natural distance d(x,y) of X, where d(x,y) is
the length of the unique geodesic connecting x to y. The group Aut(X) is a se-
parable totally disconnected locally compact group and the subgroups Aut(X),
and Aut(X)y, ), respectively, the stabilizer of a vertex O and the stabilizer of an
edge [a, b], are compact open subgroups of Aut(X). For undefined notions and
terminology, we refer the reader to [1]; we recall only that an isometry of the tree
is called a rotation if it fixes a vertex of X, an inversion if it interchanges the two
adjacent vertices of an edge, and g is called a translation along a doubly infinite
geodesicy ={...%_y,...,%_1,20,%1,%2,..., %y, ...} if there exist an integer k # 0
such that g(x,) = x,. for every n (the positive integer |k| is called the step of the
translation g). A theorem of Tits [4] implies that any isometry belongs to one and
only one of the three classes above. In [3, Th. 1] we characterize the closed
amenable subgroups of Aut(X) for a locally finite tree X. In particular we prove
that a closed subgroup G acting transitively on the vertices of a homogeneous tree
X is amenable if and only if G fixes an end of the boundary 2 [3, Th. 2]. A
transitive amenable group G fixing o € Q is a semidirect product (ho)BY, where
hyg is a translation of step—1 along a doubly infinite geodesic directed towards w
and BY is the group of all rotations of G. B¢ acts transitively on each horocycle
associated to w (because G acts transitively on X) and so it acts transitively on
Q/{w} (for more details see [1, pp. 24-25]).

Recall that, for every locally compact group, the modular function of G, de-
noted by 4g, is the unique function such that the following equality holds for
every g € G and for every continuous function f with compact support:

[ragdz = 450) [ f@de
G G
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(here dx denotes a left-invariant Haar measure on ). The modular function 4 is
a continuous homomorphism of G into the multiplicative group of the positive
real numbers which is independent of the choice of left-invariant Haar measure
dx. If E C G is a measurable set then the measure of a right-translate of E is
m(Eg1) = Aq(gym(E). In particular, if C is a compact open subset or a compact
open subgroup of G then m(C) is finite and positive and m(gCg~1) = m(C) if and
only if 4q(g) = 1.

A locally compact group is called unimodular if A4; = 1 or, equivalently, if the
left-invariant Haar measure dx is also right-invariant. This means that every
left-invariant Haar measure is biinvariant. For more details, we refer the reader
to [2].

For a subgroup G of Aut(X), we denote by |G,(b)| the cardinality of the finite
orbit of the vertex b, where G, is the stabilizer subgroup of the vertex a.

LEMMA 2.1. — Assume that G is a closed subgroup of Aut(X), then G is
unimodular if and only if |Go(0)| = |Gp(a)| for every pair of vertices a and b
m the same orbit of G on X. If in addition G acts transitively on X, then G
1s unimodular if and only if |Ga(b)| = |Gp(a)| for every pair of adjacent
vertices a and b.

ProoOF. — Let @ be a vertex of X. If g € G, then g(G,)g™! = Gy, and
mM(Gy@) = 4g(g)m(G,). Hence 4g(g) =1 if and only if m(Gyq)) = m(G,). This
proves that G is unimodular if and only if the function ¢(x) = m(G,) is constant on
one (and hence on every) orbit of G on X. Since the intersection G, N G has
finite index in both subgroups G, and G, then m(Gyq)) = m(G,) if and only if
the index [G, : Go N Gyw] =[Gy : Ga N Gyyl- But [Gy : Go N Gyy] = |Ga(g())]
and [Gya) : Ga N Gyl = |Gy)(@) ] This proves that G is unimodular if and only if
|Go(b)| = |Gp(a)| for every pair of vertices @ and b in the same orbit on X. If in
addition G acts transitively on X then G is unimodular if and only if n(G,) is
constant on X and so G is unimodular if and only if m(G,) = m(Gy) (that is
|Go(b)| = |Gp(a)]) for every pair of adjacent vertices a and b. O

The following two definitions are taken from [3].

DEFINITION 2.1. — We say that a subgroup G of Aut(X) has property (x) if
for every vertex x there exists an adjacent vertex x~ such that:

D) Gu 5 Go-
(2) G, acts transitively on the set {y € X : d(x,y) =1} \ {«™}.

By Definition 2.1 we have that (x~)” # « for every « and that the vertex x~ is
unique. Hence, if a group G has property (x), then for every vertex x we can
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define an infinite geodesic y, starting at « as follows: y, = {y1,%2, ..., Yn,...}
with 1 = « and y,,+1 = y;, for every n. Let w, be the end of €2 identified by the
geodesic y,, that is y, =[x, w,). If g € G, then g fixes all vertices of y, and
9(w;) = w,. If G is a closed subgroup of Aut(X) acting transitively on X, then the
stabilizers G, for € X are conjugate to each other. Therefore, if the two con-
ditions of the property (x) are satisfied at a vertex « then every stabilizer satisfies
the conditions 1) and 2) and G has property (x). In Theorem 2 of [3], we prove also
that property (x) is equivalent to amenability for every transitive closed sub-
group of Aut(X) and for every ¢ +1 > 3.

A transitive group with property (x) is not unimodular; in fact G, (x~) = {«}
and so |G,(x™)| = 1 while |G,-(x)| = g > 1 because (x™)” # .

DEFINITION 2.2. — We say that a subgroup G of Aut(X) has property (xx) if for
every vertex x there exists an adjacent vertex x~ such that:

(1) Gx = Gar
(2) G, acts transitively on the set {y € X : d(x,y) =1} \ {«}.

By the definition of property («x), it follows that the vertex «~ associated to x
is unique and x = (#™)" for every x. The fact that « = (x™)” for every « is the only
difference between the two properties (x) and (xx). Even in this case, for a
transitive subgroup G, it is enough that the two conditions of property («x) are
satisfied in a vertex .

We give now examples of groups with property (xx). Let E be a set of (non-
oriented) edges such that for every vertex « there exists one and only one edge of
FE which contains the vertex x. Let Aut(Xg) be the subgroup of Aut(X) consisting
of all isometries stabilizing the set E, that is the group of all isometries g such
that for every edge [a, b] of E the edge g([a, b]) belongs to E (we recall that g is
bijective then if [a, b] ¢ E then also g([a, b]) ¢ E). An example of a set £ in a tree of
degree 4 is described by Fig. 1 where the set E is the set consisting of all marked
edges. It is easy to see that Aut(Xf) is a closed subgroup acting transitively on X.
Such a group has property (xx), indeed the vertex x~ is the other vertex different
from « which belongs to the unique edge of £ containing x. Conversely, if G is
transitive on X and it has property (xx), then we can define £ as the set of edges
[x, 2~] for every x; hence G C Aut(Xg). For every set K, the group Aut(Xg) is not
discrete because the stabilizer of a finite set of vertices in Aut(Xg) is not trivial.
Later (see the section below) we will provide examples of discrete transitive
subgroups with property (xx).

We observe that the closed transitive subgroups with property (xx) are all
unimodular. In fact it is enough to prove that |G4(b)| = |Gy(a)| for every pair of
adjacent vertices a and b. If @ and b is a pair of the type  and &~ we have that
Gy(x") = {x"} and G,-(x) = {x}, therefore |G.(x")|=|G.-(x)] =1; otherwise
1Ga®)] = |Gol(@)| = q.
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Fig. 1. — The edges of the set E have been marked with a double slash.

Finally, we observe that a transitive group with property (x) contains no in-
versions (because an inversion cannot fix any point of Q) while a transitive group
with property (xx) contains inversions (surely on the edges of £ because the
group acts transitively on X and, by definition, £ does not contain adjacent
edges).

DEFINITION 2.3. — We say that a subgroup G of Aut(X) acts locally transi-
tively on X 1if, for every vertex a, the stabilizer G, acts transitively on the set of
adjacent vertices of a.

The Definition 2.3 means that if a, b and ¢ are three distinct vertices such that
d(a,b) = d(a,c) =1 (and so d(b, ¢) = 2) then there exists a rotation ¢ fixing a and
such that g(b) = c. Because every geodesic of length 24 can be viewed as a union
of h geodesics of length 2, if x and y are two vertices such that d(x, %) is even, then
there exist g in G such that g(x) = y. This implies that, for every vertex «, the
orbit G(x) on X contains all the vertices v such that d(x, v) is even. Therefore if O
and O’ are two adjacent vertices, then G(O) U G(O’) = X and so either G(0O) =
G(0O') and G acts transitively on X or G(O) # G(O’) and G has two orbits. If G acts
transitively and locally transitively on X then G acts transitively on the set of
oriented edges. If G has two orbits, then G(O) and G(O’) are the two equivalence
classes (called X+ and X~ in [1, p. 27]) of the relation “d(x, %) is an even number”.
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3. — Groups acting transitively on the homogeneous tree of degree three

In this section we will give a description of closed transitive subgroups of
isometries of the homogeneous tree of degree three and we will discuss some
characterizations which hold only if ¢ + 1 = 3.

LEMMA 3.1. — Let X3 be an homogeneous tree of degree three, G a closed
transitive subgroup of Aut(X3) and Go the stabilizer of the vertex O in G. Then

1) If Gg 1is trivial then G is isomorphic either to Zg x 7o * 79 or to 7. x 7.
2) If Go is not trivial then G is either amenable or unimodular, depending
on whether G satisfies (x) or not.

ProoF. — Let X3 be the homogeneous tree of degree three; let G be a closed
subgroup of Aut(X3) acting transitively on Xs3. The stabilizer G of a vertex O
identifies a permutation group on the set of the three adjacent vertices of O. The
stabilizers G are conjugates of each other because G acts transitively on X3,
hence the groups of permutations induced by the stabilizers G are all isomorphic
to each other. Therefore, there are only three possibilities:

i) for every vertex O, the stabilizer G, fixes the three adjacent vertices of O.
ii) for every O, the stabilizer G fixes one adjacent vertex and it interchanges
the other two.
iii) for every O, the stabilizer Gy acts transitively on the set of adjacent
vertices of O.

If i) holds, then every rotation around the vertex O fixes all the adjacent
vertices of O and this is true for every vertex. In particular this is true for the
three adjacent vertices of O and so on. Hence Gy = {1} for every O (i.e. G acts
faithfully on X) and so G is a simply transitive subgroup. Moreover, G is discrete
and it is isomorphic either to 7y * Zg * Zg or to 7 x Zg (see [1, p. 15]).

If ii) holds, then the group G has either property (x) or property (xx). In
section 2 (Preliminaries), we have discussed the groups with these properties for
every q + 1 > 3. Therefore G is either amenable or unimodular and it is amen-
able if and only if G satisfies (x).

Finally, if iii) holds, then G is locally transitive and so it is unimodular
because |G4(b)| = |Gy(a)| = g+ 1 for every pair of vertices a and b such that
d(a,b) = 1. a

Observe that every simply transitive subgroup is unimodular, non-amenable
and it contains inversions (in fact the generator of 7 is an inversion).

If ¢ + 1 = 3 and G is a transitive subgroup with property («x) then G is non-
amenable, but it has infinitely many non-compact open amenable subgroups. In
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fact, for every vertex x, there exists one and only one doubly infinite geodesic y,
containing x and such that y, contains no edge of the set E. Because G acts
transitively on X3, by [3, Lemma 1 p. 378], G contains a step-1 translation along a
doubly infinite geodesic containing &, which is nothing but y, because the step-1
translation stabilizes E. The stabilizer Gj ={g € G:9(y,) =y,} of the geodesic
7, in G is an open amenable non-compact subgroup of G for every vertex « be-
cause G~ contains the compact open subgroup G, N G;, where [a, b] is an edge of

.- The groups G are conjugate to each other in G.

If G is locally trans,1t1ve then it is transitive on the set of oriented edges. In
particular G is non-amenable and it contains inversions. The transitive action on
the set of oriented edges implies that there are only two possibilities as illu-
strated by Lemma 3.3 below which is true only if ¢ + 1 = 3.

LEMMA 3.2. — Let G be a closed subgroup of Aut(X). We suppose that there
exists a positive integer ng such that, for every geodesic [a,b] of length ny, the
subgroup Giap of G fixing all vertices of [a, b] also fixes all the adjacent vertices
of a and all the adjacent vertices of b. Then G is discrete.

Proor. — Let 1(0,ny) = {v € X : d(O,v) < ng}, the ball of center O and radius
no. Let G, be the subgroup of G fixing all vertices of the ball (O, ny) and let
h € Gron,- For every vertex x at a distance ng + 1 from O, let [0, x] be the
geodesic of length 7 + 1 joining O to x and let y be the vertex in [0, x] at a dis-
tance 1 from x. Then the geodesic [0, y]is contained in (0, ny) and it is fixed by A.
Because [0, y] has length ng, then, by hypothesis, (x) = x. This is true for every x
at a distance ny 4 1 from O, and so & fixes every vertex of the ball (O, ny + 1). We
proceed in the same manner and we prove that & fixes every vertex of 1(0,n) for
every n and so i = 1. This means that Gy, = {1} and G is discrete because
1(0,ny) is finite and Gy »,) is a compact open subgroup of G. O

LEMMA 3.3. — Let G be a closed subgroup of Aut(X3), where X3 is the homo-
geneous tree of degree three. If G acts transitively and locally transitively on Xs,
then either G is discrete or G acts transitively on the tree boundary Q.

ProoF. — Suppose G is non-discrete. To prove Lemma 3.3, it is enough to show
that G acts transitively on the set of oriented geodesics of length n, for every n.
We prove this by induction on n. The case n = 1is true by hypothesis. We suppose
that G acts transitively on the set of oriented geodesics of length n. Let Gy, ;) be
the group fixing each vertex of a geodesic [a, b] of length 7. Then if the group Gy 4
also fixes the other two adjacent vertices of b not contained in [a, b], then this
would be true for every oriented geodesic of length % because the stabilizers of the
oriented geodesics of length » are conjugate to each other. Therefore, Lemma 3.2
with ny = n would imply the discreetness of G. Hence Gy, ;) interchanges the two
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adjacent vertices of b not contained in [a, b], for every oriented geodesic [a, b] of
length n. We prove now that G acts transitively on the set of oriented geodesics of
length » + 1. Let [a, b] and [/, '] be two geodesics of length n + 1; let x and &’ be
the vertices at a distance 1 from b and b’ in the geodesics [a, b] and [a/, b'], re-
spectively. Because the geodesics [a,x] and [o/,2'] have length n, then there
exists ¢ € G such that g maps [a, x] onto [a', 2] (with g(a) = @’ and g(x) = «'). The
vertex g(b) has a distance 1 from «’ and it is not in [@’, 2], therefore there exists &
in G fixing each vertex of [a’, '] and such that 2(g(b)) = b'. Hence, the isometry Ag
maps the geodesic [a, b] onto [a/, '] with hg(a) = o’ and hg(b) = b'. O

We can now summarize the results obtained.

PROPOSITION 3.1. — Let X3 be the homogeneous tree of degree three. Let G be a
closed non-discrete subgroup of Aut(X3) acting transitively on X3. Then one and
only one of the following occurs.

(1) G acts transitively on the tree boundary .

(2) G fixes one end w of 2 and it acts transitively on Q\ {w}.

B) G leaves invariant a set E of non-oriented edges of X3 such that for every
vertex x there exists one and only one edge in E' containing .

In both cases 1) and 3), G is non-amenable, unimodular and it contains in-
versions while, in the case 2), G is amenable, non-unimodular and it does not
contain inversions. The groups of the class 2) have the property () and the
groups of the class 3) have the property (xx).

The groups of both classes 1) and 2) are non-discrete because any discrete
subgroup of Au#(X) is countable while the boundary @ and Q\ {w} are con-
tinuous sets. Therefore, a discrete transitive subgroup of Aut(X) does not act
transitively neither on Q nor on 2\ {w} and it is non-amenable.

PROPOSITION 3.2. — Let X3 be the homogeneous tree of degree three. Let I” be a
discrete subgroup of Aut(X3) acting transitively on Xs. Then one and only one of
the following occurs.

) I acts locally transitively on X3 (i.e. I' acts transitively on the set of
oriented edges of X3).

@) I' acts simply transitively on X3 (and I’ is isomorphic either to
To * 7o * 7o or to 7. % 7s).

B) I leaves invariant a set E of non-oriented edges of X3 such that for every
vertex x there exists one and only one edge in E containing x.

Now we provide examples of discrete groups of the classes 1) and 3) of the
Proposition 3.2. We consider the general case ¢ + 1 > 3. The first example is a
discrete transitive group which acts locally transitively on X, in fact it acts locally
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as the full permutation groups S,11. Let I' = 7 x Za x ... x Z» be the free
product of ¢ + 1 copies of Zs. Let {ai,az,...,a4:1} be a set of generators of I’
consisting of the ¢ + 1 generators of order 2 of the ¢ + 1 copies of Zy. The Cayley
graph X associated to I” and {a1, az, ..., 41} is a homogeneous tree of degree
q + 1. Moreover, I" acts on X by isometries and, as subgroup of Aut(X), it is
simply transitive. Let O be the vertex of X which corresponds with the identity of
I'. Therefore, the set {a1,az,...,a4.1} is the set of ¢ + 1 adjacent vertices of O.
Let N(I') = {g € Aut(X) : gI' = I'g} be the normalizer of I in Aut(X). By
definition, I" is a normal subgroup of N(I") and so N(I") = I'Ny, where N is
the stabilizer of the vertex O in N(I'). It is easy to see that the rotations of
Ny are, exactly, the group-automorphisms of I" ~ X which stabilize the set
{a1,as,...,a41} of generators (recall that a group-automorphism of /" is a bi-
jective map 6 from I" onto I" such that 0(xy) = 0(x)0(y) for every x and y in I).

Vice versa, the group-automorphisms of I which stabilize the set of gen-
erators {ai,az, ..., a1} can be regarded as rotations of X ~ I" normalizing I".
Each permutation of the set of generators {ai,as,...,a4+1} can be uniquely
extended to an automorphism of the group I", hence the group N is finite and it
is isomorphic to the full permutation group on g + 1 objects Sy (if the simply
transitive group I" is not of the type Zg * Zg * ... * Zg then the situation is a
little different because I" contains generators of infinite order and No # Sy1).
Therefore, N(I') is discrete because Ny is finite and it is transitive and locally
transitive on X, in fact N(I") acts locally as the full group S,;1. In particular N(I")
is locally doubly transitive (i.e. for every vertex « the stabilizer of « in N(I") acts
doubly transitively on the set of ¢ + 1 adjacent vertices of x) and so it is transitive
on the set of oriented geodesics of length 2 (recall that a group G acts transitively
on the set of oriented geodesics of length 2 if and only if G is both transitive and
locally doubly transitive on X). We observe also that it is not transitive on the set
of oriented geodesics of length 3. In fact if a rotation 8 of N(I') fixes o, O and p,
where o and f are two generators of /" and, as said already, O is the identity of
I' =~ X, then 0 is an automorphism of the group /" and so 6 also fixes the words o,
afo, afof ... and the words f3, fo, faf, fafo. .. ete. This means that 0 fixes all
vertices of a doubly infinite geodesic containing O, o and f and the action of N(I")
on the set of oriented geodesics of length 3 is not transitive, otherwise there
would be a rotation 0 in N(I") fixing «, O and f such that 0(¢,f) = oy # off where y
is a generator of I" with « # y # . Finally we observe that, in the special case
q+1 =3, the group N(I') acts simply transitively on the set of oriented geo-
desics of length 2; in fact if, as above, 0 is a rotation in N(I") which fixes o, O and f§
then it also fixes the third generator of I" and so 6 is the identity because it is a
group-automorphism of I” fixing all generators of I" (if ¢ + 1 > 3, then the group-
automorphism 0 fixing «, O and f can be chosen different from the identity and so
N(I') is not simply transitive on the set of oriented geodesics of length 2 when
q+1>3).
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The subgroups of N(I") provide us with examples of discrete transitive groups
with property (xx). Let 0 be the automorphism of the group I" such that
() = a1, Oag) = ag, O(ag) = aq, ..., Oay) = ag1 and 0(ag1) = as. Because
O = I'0, then I = I'{0) (i.e. the product of I" and the subgroup generated by 6)
is a group, in fact a discrete transitive subgroup of N(I"). I"" has property (xx),
indeed for every vertex « there exists one and only one edge containing both
vertices x and xa;. The set of these edges is the I”-invariant set £ which appear
in the definition of property (++). Because I, = I';, then I" has property (xx).

As observed, all the groups belonging to the class 2) of Proposition 3.1 are
amenable, non-unimodular and they contain no inversions. On the contrary, all
other transitive subgroups are non-amenable, unimodular and they contain in-
versions. Therefore, Propositions 3.1 and 3.2 imply the following Corollary.

COROLLARY 3.1. — Let G be a closed transitive subgroup of Aut(X3). Then the
following are equivalent:

1) G is amenable.
2) G s not unimodular.
3) G acts without inversions.

These properties are equivalent only if ¢ + 1 = 3 (see the section below).

4. — Examples of transitive non-unimodular non-amenable groups

In this section we describe a class of groups denoted Au#(Xy) which contains
examples of non-unimodular non-amenable transitive subgroups for ¢ +1 > 3.
The definition of the groups Aut(Xy) is very close to that of the groups Aut;X
introduced by J. Tits in [4, p. 200].

Let f be a positive function on the vertices of X, so f: X — R™ (the condition
of positivity of f is not really necessary but in all examples considered in this
paper f is positive). We define Aut(X;) as the set of all isometries of X such that:

Aut(Xy) = {g € Aut(X) : 35(g) € R™ such that f(g(x)) = d(g)f (x) Vo € X}

The group Aut;X of Tits is the subgroup of Aut(Xy) consisting of all isometries g
such that d(g) = 1. The group AutyX acts transitively on X only if f is the con-
stant function but, in this case, Aut;X is the full group Au#(X).

For every f, it is easy to see that the set Aut(X;) is a closed subgroup of
Aut(X) and 6 is a continuous homomorphism of Aut(Xy) into the multiplicative
group of positive real numbers R whose kernel is the group Aut;X of Tits. We
observe that the kernel of J contains all rotations and all inversions of Aut(Xy)
(and so it contains also the subgroup generated by them). In fact if k is a rotation
of Aut(Xr) and O is a vertex such that k(0) = O then f(0) = f(k(0)) = d(k)f (O)
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and so d(k) =1. If » is an inversion of Aut(Xy) then u2 is a rotation and
(6w))? = d(u2) = 1, that is J(u) = 1. For particular functions f, the groups
Aut(Xy) are transitive, non-amenable and non-unimodular.

First we suppose ¢ + 1 > 5. We define a positive function f on the vertices of
X according to the following rule: for every vertex v, the function f has the value
of 2f(v) twice and the value of f(v)/2 (¢ — 1)-times on the set of ¢ + 1 adjacent
vertices of v. In fact, we can define f(O) =1 on a vertex O; thus we proceed
respecting this rule at each vertex. If f = 1 on a vertex, then f assumes only the
values 2" for every integer n. If @ and b are the two vertices of the edge [a, b],
then the value f(a) is two times f(b) or vice versa. Hence Aut(X;) acts without
inversions because d(u) = 1 for every inversion.

Moreover, if f(x) = 1 and f(y) = 2", then the tree whose vertices are labeled
with the values of the function f viewed from the vertex y is the same as the tree
whose vertices are labeled with the values of the function 2"f viewed from the
vertex . In other words, there exists an isometry g in Aut(Xy) with d(g) = 2" and
such that g(x) = . This means that Aut(Xy) is a closed transitive subgroup of
Aut(X) acting without inversions.

The fact that 6 = 1 on the set of rotations implies that the group Aut(Xy)o has
two orbits on the set of adjacent vertices of O, one orbit containing the two
vertices where f has the value of 2f(0) and the other containing the q — 1 ver-
tices on which f has the value of f(0)/2. This means that Au#(Xy) is non-
amenable because it does not fix any point of Q. Moreover, if d(a,b) =1 and

() =f(a)/2, then
|Aut(Xp)y(0)| = (¢ -1 >3 and |AutX)y(a)| =2

This proves that Aut(Xy) is not unimodular.
More precisely, the group Aut(Xr), N Aut(Xr), has index (g — 1) in Aut(Xy),
and it has index 2 in Au#(Xy),. Hence

-1
mAut(X;),) = L= mAut(X),)

Let t € Aut(Xy) be such that {(b) = a, then Aut(Xy), = t(Auiﬁ(Xf)b)t’1 and so
M(AuEXr) o) = Aaurxy) OmAut(Xy)p)

that is dauix,) (@) = (g + 1)/2 while 6(t) = 2; hence Aaux,) # .

On the other hand, if y is a doubly infinite geodesic on which f takes only two
values, say « and 2o, which repeat alternately, then there exists a step-2 trans-
lation v in Aut(Xy) along y and such that 6(v) = Apuyxy) (@) = 1.

If ¢+ 1 =4, then the same construction gives us a unimodular group. To
obtain a non-unimodular group when g + 1 = 4, it is enough to modify the defi-
nition of f as follows: for every vertex v, the function f has the value of f(v) once,
the value of 2f(v) once and the value of f(v)/2 twice on the four adjacent vertices
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of v. In this way, for ¢ + 1 = 4, we have a transitive non-amenable non-unim-
odular group which contains inversions, precisely, on those edges [a, b] such that
f(@) = f(b).

It cannot be otherwise: if ¢ + 1 =4, then every transitive non-unimodular
non-amenable group contains always inversions. In fact, as in the case of the tree
Xs, if G is a closed transitive subgroup of Aut(X,), then the stabilizer Gy of a
vertex O identifies a permutation group on the set of the four adjacent vertices of
O and the groups of permutations induced by the stabilizers Gy are all iso-
morphic to each other. It is easy to see that here there are five possibilities for
the action of the stabilizer G on the set of the adjacent vertices of O, all in-
dependent from O because G is transitive. We recall that the groups with
property () are amenable and the groups with property (++) are unimodular.
Also we recall that if the orbits of the action of G on the set of the adjacent
vertices have all the same number of vertices then G is unimodular because
|Go(D)| = |Gp(a)| for every pair of adjacent vertices a and b (Lemma 2.1).
Therefore every closed transitive non-unimodular non-amenable subgroup of
Aut(Xy) has the following local property (as the group Aut(Xy) just defined for
q+1=4):

The stabilizer of a vertex O fixes two adjacent vertices of O and it inter-
changes the other two.

This means that, for every vertex O there exist two distinct adjacent vertices,
say O and O~, such that:

Go C Gor NGo-

and there exists a rotation £ in G such that £(0O) = O, k(O™) = O, k(O~) = O0~,
k(a) = b and k(b) = a where a and b are the other two adjacent vertices of O. This
fact implies easily that the group G always contains inversions.

The construction for ¢ + 1 = 4 can be extended, mutatis mutandis, to every
q+1 >4 to obtain non-unimodular non-amenable transitive subgroups with
inversions.

Finally we observe that for every ¢ + 1 > 3, Aut(X),,, the stabilizer of an end
€ Q, can be regarded as a group Aut(Xy) for a suitable function f. In fact we
define f in the following way: for every vertex v, the function f has the value of
f()/2 on each adjacent vertex of v except the unique adjacent vertex in the
direction of w on which f has the value of 2f(v) (we recall that the vertex in the
direction of w is the unique adjacent vertex of v which belongs to the geodesic
[v, )). Therefore, for every vertex x, there is one and only one infinite geodesic
starting at x, say {x,ux1,%2,23, ...}, such that limf(x,) = 400 as » tends to in-
finity. The geodesic {wx,x1,x2,%3,...} is precisely the geodesic [x,w). If
g € Aut(Xy), then f(g(x,)) = 5(9)f (x,) for every n and so f(g(x,)) also tends to
infinity as » tends to infinity. This means that g = @ and Aut(Xy) C (Aut(X)),,.
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Moreover, the function f is constant on each horocycle associated to w and so
B, C Aut(Xy). It is easy to see that the group Au#(Xy) contains a step-1 trans-
lation ¢ with 6(f) = 2 along a doubly infinite geodesic containing {x, x1, 22, x3, . . .}.
Hence Aut(X;) = Aut(X),, because Aut(X),, = (t)B..
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