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Space-Time Resonances and the Null Condition
for Wave Equations

FABIO PUSATERI

Abstract. — In this note we describe a recent result obtained by the author and Shatah
[26], concerning global existence and scattering for small solutions of nonlinear wave
equations. Based on the analysis of space-time resonances, we formulate a very
natural non-resonance condition for quadratic nonlinearities that guarantees the
existence of global solutions with linear asymptotic behavior. This non-resonance
condition turns out to be a generalization of the null condition given by Klainerman
m his seminal work [21].

1. — Introduction

Global existence and asymptotic behavior of small solutions to nonlinear wave
equations has been a subject under active investigation for over fifty years. One
area of research, where much progress has been made, focuses on identifying
nonlinearities that lead to global solutions for small initial data. In this note we
consider first order systems on R x R? , of the form

O = iAu + Q1(u,v) + Ri(u,v)
(W) 0w = —14v + Q2(u, v) + Rao(u,v)
w1, ) = ul(x) , v(1,2) = ),

where 4 := |V|, Q;(u,v) are bilinear in (%, v) and their complex conjugates, and
R; are of degree 3 or higher.

In this paper we focus on determining some general conditions, naturally
arising from the space time resonance analysis, that guarantee global existence
and scattering. Our non-resonant condition imposed on the @;, roughly states
that time resonant wave interactions should be limited to waves with different
group velocities (spatially non-resonant waves).

Since cubic and higher order terms do not require any condition to ensure
global existence, we will drop the R;’s from any further consideration. Moreover
by introducing the notation for bilinear pseudo-product operator

Toien(f.9) = F 1 [ m&nfmge - man,
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where g = Fg is the Fourier transform of g, and without any loss of generality,
we reduce the system to a single scalar equation
@) { O —idw =Tq,  cpu,uw)+Tq  ep@,u)+Tq cp,w)

' w(l,x) = u(x).
with quadratic nonlinearities. Here and throughout the paper, the signs +, —
correspond to the presence of u and # respectively.

Our work is motivated by some recent applications of the space-time
resonance method to several problems in the field of nonlinear dispersive
PDEs. This method was introduced in [7, 9] where non resonant non-
linearites were treated for Schriodinger equations, which corresponds to
(W) with 4= |V|2 = —A. In these works, most of the existing results on
global existence and scattering of small solutions were reproduced and
explained by studying space time resonant frequencies. Subsequently the
method was applied to gravity water waves [8], which corresponds to
A= |V|1/2, and to capillary waves [10], which corresponds to 4= \V|3/2.
Thus it is natural to us to apply this method to system (W), where 4 = |V|,

which can be reduced to a system of nonlinear wave equations. Our main
result is:

THEOREM 1.1. — Assume that system (1.1) 1s non-resonant i the sense of
definition 4.3, and that the initial datum satisfies )

(1.2) w20 ]| g2 4 || AP0z + [|2to]| v < &0

for some large enough integer N. Then, if ¢ is small enough, there exists a
unique global solution to (1.1) with

&
[u@l s -
Moreover, u(t) scatters in H? to a linear solution as t — cc.

Our non resonant condition defined in 4.3 turns out to include the classical
null condition for wave equations [21], wave equations which are not invariant
under the full Lorentz group, as well as other systems where global existence
and asymptotic behavior of small solutions was not known.

() See the remark at the end of section 3 for some comments about these initial
conditions.
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2. — Background

Since our system can be reduced to nonlinear wave equations, we give a brief
review of some of the main results about the long time existence of solutions for
systems of quadratic nonlinear wave equations on R'*3:

(2.1) Cu; = Z a;ff;ﬁamjaﬁuk + cubic terms

where ¢ =1,...,N for some N € N, and the sum runs over j,k=1,...,N, and
all multi-indices o, # € N* with |o|, |f| < 2, |«| + || < 3, with the usual convention
that 9y = —3° = ;. Let us first recall that in 3 space dimensions general quad-

ratic nonlinearities have long range effects: the L? norm of the nonlinearity,
computed on a linear solution, decays at the borderline non-integrable rate of ¢ 1.
Thus, quadratic nonlinearties can contribute to the long time behavior of solu-
tions. It is in fact known since the pioneering works of John [11, 12] that finite
time blowup can occur even for solutions with small data. On the other hand, for
some very general classes of quadratic nonlinearities solutions were shown to
exist almost globally by John and Klainerman [13] and Klainerman [19].

The main breakthrough in identifying classes of nonlinear wave equations
where solutions with small data exist globally and scatter was in the works of
Klainerman [21], Choquet-Bruhat and Christodoulou [2], and Christodoulou [3].
The class of nonlinearities that satisfy the “null condition” was introduced by
Klainerman [21], and for semlinear systems

(2.2) Cu; = Z a{fgﬁa%aﬂuk + cubic terms
lol 1=1

is given by the condition
(2.3) Z a{fﬁﬁéaéﬁ =0 for any ¢ € R* such that — «fﬁ + é% + 53 + f§ =0.

For such systems it was shown by Klainerman [21] that in 3 + 1 dimension small
data solutions exists globally. This seminal work of Klainerman is based on the
invariance of Minkowski space under the Lorentz group and on energy estimates
using the vector fields that generate the Lorentz group [19].

Later on, building on Klainerman’s original ideas, the problem of bypassing
the use of the full invariance under the Lorentz group was dealt with by other
authors. In [22] Klainerman and Sideris proved almost global existence of so-
lutions for quadratic systems (2.1) in divergence form, under the sole assump-
tion of translation, rotation and scaling invariance. Further developments were
made by Sideris in [27, 28], where global existence of nonlinear elastic waves is
proven under the assumption of the null condition. Similar results include the
almost global existence of solutions contained in the works of Keel, Smith and
Sogge [17, 18]. It also worth mentioning that several works have dealt with
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the question of identifying other conditions (weaker than the null condition)
under which global existence of solutions of (2.1) can be proven; see for in-
stance Lindblad [23], Alinhac [1], Lindblad and Rodnianski [24, 25], and
Katayama [14].

Another approach that identifies the effects of nonlinearities on the long
time behavior of solutions is based on time resonant computations. For ODE’s
this is the Poincare-Dulac normal form. For PDE’s normal forms were in-
troduced by Shatah [30] and Simon [32] who treated, respectively, the Cauchy
problem and the final state problem for the Klein-Gordon equation in 3 +1
dimensions. Similar results were obtained by Klainerman using the vector fields
method [20].

In the past several years a new algorithmic method, called the “space-time
resonance method”, was developed by Germain, Masmoudi, and Shatah, to study
long time behavior of spatially localized small solutions to dispersive equations.
By bringing together ideas from both vector fields and normal forms, this new
method proved to be very effective in proving new results [8, 5, 6] as well as
simplifying already existing ones [7, 9, 16]. A description of this method can be
found in [7].

Notations

We use R to denote indistinctly any one of the components of the vector of

Riesz transforms R = %, where A := |V|. L” norms will be denoted either by

| - [lz» or [ - ||,,- For s > 0, p > 1, we define the usual Sobolev norms

ollyss == (VY 0l
Il == 1470l

where (x) = (1 + |¢[5)"/%. We let H* := W*2 and H* = W*2,
Finally we write A <B tomean A < CB for some positive absolute constant C.

3. — Resonance analysis and non-resonant bilinear forms

To compute resonances for an equation of the type
. 1
u; + P EV U = Ty p(u,u),

we write Duhamel’s formula in Fourier space for the “profile” of %, namely
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—_itP(L
f=e ”P(iv)u, as follows:

o~

i
B1) €O =@+ [ [ e rmE,nfs, i, - ndyds,
0

where ¢(¢,n) := — P(&) + P(n) + P(y — &) (and obvious signs modifications occur
if @ depends also on %). We then define the time resonant set

T ={E&n : & n =0} (no oscillations in s),
the space resonant set
S ={&n) Ve n =0} (no oscillations in #),
and the space-time resonant set
=T NS .

Since for system (1.1) both « and # are present in the bilinear terms, there are
three types of interactions that we need to analyze.

The —— case
The phase ¢__ := —|&| — |n| — |¢ — 5| clearly vanishes only at £ = = 0:
T __={n=£&E=0}.

Since the time resonant set is reduced to a point, we can perform a normal form
transformation. This allows us to obtain the L> decay in a more direct fashion
(without the need to resort to weighted estimates). For completeness we com-
pute

and
#__={¢=n=0}
The ++ case
The phase ¢, , := —|&| + || 4 |£ — 5| vanishes on

!)/~++:{77:)ué, OSASI}
A simple computation shows that
gyj++:{ﬂ:;\,é, 0§i§1}7

whence
,%++ - (y++ - !,7++ .
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The space time resonant set is very large, thus some additional structures are
needed to help controlling these resonances. The first structure will be imposed
on the interaction by requiring the symbol ¢, to vanish on .2, ;. The second
structure is present in the phase
|f|vé¢++ = %é(”-r-o- - |77|V,7(0++ s
n—¢|

and can be interpreted by saying that all resonant waves have the same group
velocity and thus are spatially localized in the same region. This fact together
with ., =.7,, allows to control these resonances by solely relying on
weighted energy estimates.

The —+ and +— cases

Up to the change of variables () # — & — 7, these two case are the same.
Therefore, we will just focus on the —+ case. Since the phase is
¢y = —I¢| = |nl + & — 7], then

"¢—+:{’7:;“57 ;{SO}U{fzo}a
S ={n= A, 2<0 or A>1}U{E=0},
To_ ={n =125 A<0buU{E=0}.
Again the set.72_ is very big and additional conditions are needed to ensure

global existence and linear asymptotic behavior of solutions. These conditions
are similar to the ++ interaction, i.e., ¢_, vanishes on.%_, and the fact that
n—¢
<IVep— =7 =g -+ Vo

However this interaction presents an additional difficulty over the + + case since
I _+ ¢ _., which requires both normal forms transformation and weighted
estimates. The fact that this is an added difficulty is explained below.

4. — Non-resonant bilinear forms

From Duhamel’s formula for equation (1.1) in Fourier space the quadratic
terms are expressed as

t
Boot,0) = [ [ e=0q,(& Fus,mfils,¢ — ) dnds
1

() notice that m2(&, & — n) = —m2(E, n).
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where f, =f and f- = f and
Doy (&) = —[E] + e1|E — n| +e2lnl,

for ¢; = +. The quadratic interaction is given in terms of its symbol q... To
define non-resonant bilinear forms we start by defining the class of symbols that
we will be dealing with:

DEFINITION 4.1. — A symbol m = m(&, ) belongs to the class Bs if

e [t is homogeneous of degree s;

e [t is smooth outside of {£ =0} U{n =0} U{&—n =0}

e For any labeling (&1, &, &) of the three Fourier variables (&, n,E —n) the
Sfollowing holds:

for & <&l &) ~1 m = A(Iéué—h,fz)

for some smooth function A.

Loosely speaking, symbols in By are Coifman-Meyer [4] except, possibly,
along the axes £ = 0,7 = 0 and ¢ — n = 0, where they can have singularities like
linear Mihlin-Hormander multipliers. Symbols in B are essentially of the form
|E[Pmy for some my € By. The boundedness of these bilinear operators on L? is
given by the following Theorem:

THEOREM 4.2 (Boundedness of bilinear multipliers [8],[26]). — Let p,q,r be

. 1 1 1 .
given such that = > + p and 1<p,q,r<oo. The following hold
(i) If m belongs to the class By

1T F Dl S NNl ll9l e -
(i) If m belongs to the class Bs for s > 0 and k is an integer, then
| AT D 1 S U Nwssiollg o + 1N 2o 9l ypssta -
(iii) If m belongs to the class Bs and M > 3, then

| AT f D o S 1 F s gl + 11l g

With the class B; defined above we can define a non-resonant system as
follows:

Hs+k -

DEFINITION 4.3 (Non-resonant bilinear forms). — System (1.1) is called non-
resonant if

(4.1) qe(&m) = al&, Mo (& n) +bEn - Ve, (),
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with a € B_1 and b € By. Additionally we require that

o) @ ®
(42) [VepaEn or |E—nViyaE =" |(§|’ Dy b |Ef|7 d M|0§ (_é ;7;|7)

for some ﬂg) € By, and

k k
(4.3) | Toen (> D o < U Fllze D NRGN e + D | RIF || gl e
=0 7=0

for some k € \.

Some comments about this definition. Equation (4.1) asserts that bilinear
interactions vanish on .72, , the space time resonant set. The presence of ¢, , in
equation (4.1) allows us to perform normal form transformation on one part of the
bilinear terms (integration by parts in s), while the presence of V,¢. . allows us
to treat the remaining part by weighted estimates (integration by parts in #). The
classical null condition is equivalent to @ = 0 (see below). Equation (4.2) es-
sentially avoids having a(¢,#) ~ || which would be too singular to handle.
Equation (4.3) is needed due to failure of the L? x L>* — L? estimate for symbols
in By. It would be possible to avoid this last technical restriction by resorting to
the use of Besov spaces, but for the sake of simplicity we do not pursue this
matter here (see also remark 5.1 for more comments about this aspect).

Examples of non-resonant systems

Now we give examples of non-resonant systems and explain how they relate
to existing definitions on “null systems”, and how our definition is a natural
extension of previous ones.

Classical null forms.

Quadratic (semilinear) nonlinearities satisfying the null condition (2.3) are
linear combinations of

(4.4a) Qii(u,v) = Qudw — dudv ,
(4.4b) Qoi(u, v) = dudv — dudw,
(4.4¢) Qo(u,v) = Oudw — Vu-Vo.

By letting (u+,v+) = (Gyu F i4u, 0w F 1Av), one can reduce systems (2.2) to first
order systems in the unknowns %, and v.. Then, one can check that the re-
spective symbols of the above null forms (4.4), corresponding to interactions of
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u,, and v, are given (up to a constant factor) by

¢ — ;i

miyE (&, n) =2
A P

=0y, &m0y, (&) — Oy, (& mOy,0, (1)

81,8 771 B éi
1,62 ) = =0, (e
mOz (€ 77) ( |77| +62 | — é|> ;i Pey z(é ’7)
i 1-ge =) = |v
(é 77) ( 8182| | “f }7|> ‘ ﬂ(ﬂelez(é 77)|

These symbols are of the form (4.1) with @ = 0 and vanish on the space resonant
set. Thus classical null forms are spatially non-resonant, and therefore can be
treated by weighted estimates and without normal forms transformation. Note
that in our system the +— interactions have .7, _ <., _, and our symbols (4.1)
only vanish on the smaller set.7 , . To treat these interactions a normal form
transformation is needed, leading to terms which are not well spatially localized.
This causes a difficulty that will be elaborated on below.

The classical quasilinear null forms are also non-resonant in that their sym-
bols satisfy (4.1) where the homogeneities of @ and b are increased by 1.
However, for general first order systems of the type (1.1), quasilinear equations
lose derivatives in the energy estimates unless there are cancellations present.
In the special case where the first order quasilinear system comes from a second
order system of wave equations with quasilinear null terms, cancellations are
present in the energy estimates. Thus, our results will apply for such non-
linearities as well (%).

Systems with multiple speeds
For systems

(4.5) O — icedur =Y Ty eyt )
I

the phases are given by —c/[¢| + ¢;|C — 5| + ¢x|n|. In the case ¢; # +¢; one has
" =1{0,0}, so that our results will trivially apply.

If ¢; = £cr, 72 = {0, 0} unless ¢, = +¢,. Therefore, in the case ¢, # +c/, global
existence can be obtained provided a suitable null condition is imposed at {0, 0}.
This is similar to the work on quadratic NLS [9]. The full non-resonance condition

(®) More specifically, in the quasilinear case the most efficient proof of the analogue of
Theorem 1.1 would consist of two steps: 1) establishing energy and weighted energy
estimates directly on the second order wave equation so to obtain the weighted bounds in
(5.7); 2) run our proof to show the decay of solutions.
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is then needed only for interactions of the form —c/|&| + ¢¢|& — | £ ¢/|n|. This
extension is similar to the result of Sideris and Tu [29]. We also refer the reader to
the work of Katayama and Yokoyama [15] and references therein for more on
systems with multiple speeds.

Some examples of interest that can be treated using our techniques are:

1. First order systems of the form

(4.6) { Ayu + icAu = |vf*

o +idv = T, (,v) + u?

where ¢ > 1 and m is non-resonant as in definition 4.1. Here no special null
condition at the origin is assumed on the bilinear form in the first equation. This
system does not satisfy any existing null condition criteria set by the vector fields
method. In fact we believe that this system is not amenable to analysis by the
vector fields method due to the simultaneous failure of the Lorentz invariance
and the need of a normal form transform.

Our method works by first applying a normal form transformation on u
(notice that the phase is bounded below by (¢ — 1)|¢]), and then handling the
singularity introduced by such a transformation through a spread-tight splitting
as explained in section 5.

2. Systems of wave equations of the form

Chu = (9w)* + du(Ow)’
(4.7 Cho = 0vow + Q(v,v)
Oew = dvdw + du(dv)
where O, := 02 — ¢?4, ¢ # 1 and Q is any null form. This is an example of a

nonrelativistic system satisfying the weak null condition. Global existence can be
obtained with a weaker decay on u of the form ||Oul|,. <t 1%, for ¢ < 1.

Non-locality and absence of Lorentz invariance

The class of systems (W), under the non-resonance condition given by defi-
nition 4.3, includes the class of second order wave equations

(4.8) O = ThQ(T2u, T5u)

where the T;’s are zero-th order operator and ) is any combination of the non-
linear terms (4.4a)-(4.4c¢) (or their quasilinear version). For systems as (4.8) the
action of the Lorentz boosts L; = x;0; + t0; on the nonlinearity produces some
terms which are too singular to be estimated. This makes the classical [21] vector
fields method difficult to be applied.
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In [27, 28] Sideris considered quasilinear hyperbolic systems governing the
motion of isotropic, homogeneous, nonlinear elastic waves. Like systems with
multiple speeds, these systems are only classical invariant, i.e. they do not possess
Lorentz invariance. By imposing a null condition on the nonlinear terms of the
form F(Vu)V>?u, he was able to show global existence of solutions. As mentioned
in the introduction, several other works have dealt with the problem of long time
existence for classically invariant systems on R3*, see for example [22, 17, 18].
Our methods are also applicable to the systems considered in these works.

A remark about the initial data

In contrast with the results mentioned previously, our initial data belong to a
low weighted Sobolev space. In particular we only ask for wxuy <€ H?> and
|ac|2/1u0 € H', see (1.2). In comparison, the spaces used in [22, 27, 17] would re-
quire (|9c|/1)iu0 € AUL?), for i =0...k and some k > 7. This means that we can
allow more oscillating data. For example, for data behaving at infinity like

cos |x|/|x|*, we can allow any o > % whereas in the other works one would need
. 17
5

5. — Outline of the proof

Before outlining the proof of Theorem 1.1 we would like to point out two
difficulties in our problem:

a) Although the space-time resonance method is algorithmic, its im-
plementation on the space-time resonant set is very much problem dependent.
This is due to the fact that the aforementioned set can be large with no clear
criteria, set by the method, to address how large is large. Its application to
nonlinear dispersive equations has been restricted so far to cases where the
resonant set is very small. In particular, for problems such as the Schrodinger
equation, the resonant set is a point; and for gravity water waves, there are no
quadratic time resonances. However for hyperbolic systems this set is large. For
the system we are considering here the space time resonant set is 4 dimensional
in a 6 dimensional space. Treating such a big space-time resonant set required
new ideas, which we present in this manuscript.

b) When space resonant frequencies are different from time resonant fre-
quencies, and when both types of resonances are present in the bilinear inter-
actions, a normal form transformation is needed

4=+ Ty, 0) < F — F+ f D m(E, ) Fis, ) fs, & — n)d.
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The bilinear term T',,(u, ) need not be well localized in space since the outcome
of the interaction may have a different group velocity, i.e., V:p # 0, which is the
case for (1.1). Thus weighted estimates on this bilinear interaction tend to grow
at a fast rate with time. We refer to these bilinear interactions as spread terms.
This is in contrast to non space resonant frequencies which are well spatially
localized and for which weighted estimates tend to grow very slowly. We refer to
such bilinear interactions as tight terms. The presence of tight and spread terms
is problematic and requires a careful analysis when trying to establish the decay
of solutions. This is the case here for the + — interactions, as was the case for the
2D Schrédinger equation [9]. Our strategy in obtaining the pointwise decay of
solutions will be explained below in more details.

Reduction of system (1.1)

By isolating the terms in equation (1.1) that are most difficult to estimate, we
can considerably simplify our notations and the presentation of the main aspects
of the proof of Theorem 1.1.

Reduction to the —+ case

As the analysis of resonances in section 3 showed, the — + interactions lead to
a more complicated resonant set than the ++ and — — interactions. The — + case
actually contains the difficult aspects of both the ++ and — — cases. More pre-
cisely, in the — + case we will need to decompose the phase space in two sets: one
containing .72_, but not "_, N.77¢ _, and the other one containing.””_, N.7¢ ,
but not .72_, . The analysis on the set containing .72_,, respectively on the set
containing ."_, N.77¢, would be enough to take care of the ++, respectively
the — —, interactions.

Therefore, we focus only on the —+ interactions, and we will drop the —+
indices for lighter notations.

Reduction to a(é,n) = 1 and b(&,n) =1

]

Recall that we are imposing the restriction (4.2) on a. This means that a can
have singularities of the type 1/|5| or 1/|¢ — 5|, but not of the form 1/|&|. By the
symmetry between n and & — 7, we can then assume that a is of the form
1o(&, m)/ || for some u, € By. Moreover, since the presence of symbols in the class
By is irrelevant for our estimates on the terms corresponding to the symbol
a(&, me(&,n), we can simply assume that a is given by 1/7|.

Finally, since we assume that b satisfies (4.3), and since we will show that
|R/u||; ~ is controlled with a decay of ™! (see remark 5.1 below) we can reduce
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matters to b = 1. It will be clear to the reader what minor modifications are
necessary to perform the estimates for a general b € By and satisfying (4.3).
In view of these reductions the non-resonant equation becomes

o, n)
7|

Furthermore, we recall that V:¢ vanishes on the resonant set, and in particular
the following identity holds:

t
61 feo=ho+[[ Mw( + V(& n))f(s &~ n)f(s, mdnds
1

—¢
5.2 =1 .

Splitting of the profile f
Integrating by parts in s in the terms containing the phase ¢ we get

76,0 Y 7@ + 5,8 + 1t, ) 2 Fo© + 5t & + ho(t, &) + I (¢, &)

where

:30) e, [ .~ i dn,

t
G3b) ket Y f [ e, (s, & = nfs,n dnds,
(530 .o f [ 0 (Fs.£ = i) dnds.

This splitting can be understood in the following manner:

1) g comes from the normal form transformation, has very good time decay
but is spatially spread,;

2) hy is a spatially tight term due to the presence of V,¢(¢, );

3) hq is cubic in f.

Regarding iy = ho(f,f) as a bilinear form of f = f; + ¢ + h, we can decompose
ho as

ho(f 1) = ho(fo. fo+ 1)+ ho(fo, 9+ o(g,f) + hoCh, )+ ho(R, 9) + ho (R, fo)

4
(65.4) = ho(g.f) + ho(h, k) + k.,

and thus decompose f further:

(5.5) f=f+9g+hh,h)+ho(f,g) + hy+ h..
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A priort bounds

The proof of global existence and scattering of solutions is obtained from the
following a priori bounds on u = ef:

, 1
lullgy S, Ml st ol 1Bull- < 5

(5.6) t

laf e <8, Ndaf i S1. | l2Par| | st

and a continuation of the local-in-time solution. Here, N is a suitably large
number possibly depending on ¢ and y, which are arbitrarily small but fixed
positive constants. This leads us to define the space X by the norm associated to
these bounds:

[Jlly == sup t 8l g+ Nl e+ ECftl| e+ [ R o)-

)

REMARK 5.1. — The presence of ||Rul|;~ is not surprising because the Riesz
transform is already present in the interaction symbol V,¢. However we remark
here that if b is any symbol in B, satisfying (4.3), the same X-norm above would
work. Indeed, as a byproduct of our estimates we have

(5.7)
7 af g+ Af g+ | olaf|

1 2
(5.8) |REu] . % ¢ [eo + Neul ]
for any k. This is because L™ estimates on u = e~y + e~*1g 4 e~} are ob-
tained by
a) using Sobolev’s embedding on g: ||e~4 —itd
then showing t[le g ||y, < [Jul3;
b) estimating weighted L? norms of the main components of & by means of

the following linear dispersive estimates:
1

Il <lle”g|lyr, for p > 1, and

(5.9) R < 5 )" A
) 1 1 3
(5.10) "Rl < 5 Nl R[5, |l 4R ) -

In both operations a) and b) the presence of Riesz transforms becomes ir-
relevant.

Bounds for g and h

A key aspect of our proof is the different treatment of the components g and
h, and the different treatment of some components of / itself. In particular, the
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bound on ||u||y will follow from the bounds on g

gl Sllellk  legllze SNl [l 42gl < k.
el <t (€], < 3l

and the bounds on %

2 2 12 2
1ol SENuly, [l <Sllully, ekl <Oluly,  |Ach|p < vl

(5.12) 2 2 21 .12 b 12 ; 1, 2

|Alef*R| . St Nullx, || 4clR]|,. St llull, HethLxSEHMHXa

iy . o 1
where a and b are (small) positive constants satisfying 0<y<b< % and a < g

These a priori bounds will imply global existence provided the data is small:
(513) [le™(g+ W)y < llulx = llullx < [[e™folly + 1™ + ||y S0 + [lulk

which in turn gives ||u||x < &. Scattering is also a consequence of the bounds
(5.11)-(5.12). To obtain Theorem 1.1 it is then enough to show (5.11) and (5.12).
Below we briefly explain the main steps needed to obtain these bounds.

Main steps in the proof of (5.11) and (5.12)

From (5.6) and (5.12) we see that & has the same energy and pointwise esti-
mates as f, and better weighted estimates than f. Thus, the bilinear terms that
need to be bounded are g, ho(h, k), ho(f,9) and h;. All the remaining bilinear
terms in (5.5), denoted by #., see (5.4), are easier to estimate because their
arguments satisfy stronger bounds.

The first step in the proof of the bounds (5.11) and (5.12) consists of esti-
mating Sobolev norms. Such estimates are pretty straightforward, since we are
dealing with a semilinear equation.

We then obtain weighted and L estimates for the spread component g de-
fined by (5.3a). This component is the one who is responsible for the fast growth
in time of the weighted norms, see the first inequality in the second line of (5.11).
On the other hand, since g consists of a bilinear term with no time integration, its
decay in L™ can be obtained easily.

Subsequently, we prove a priori bounds on weighted L? norms of ho(h, k).
Thanks to the presence of the symbol V,¢, and to the identity (5.2), we can al-
ways integrate by parts at least twice in time and/or frequency. As a consequence
we can prove that hy(h, h) satisfies the stronger weighted bounds (5.12) that hold
for the h component.
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The next step consists of estimating the L>° norm of %(%, 2), and is one of the
most delicate parts of the proof. In order to obtain the ¢~! decay we perform an
angular decomposition of the phase space into two regions. The first region contains
the space resonant set.”” but is away from the time resonant set.7". In this region
we can perform a normal form at the expense of introducing only a mild singularity
when one of the Fourier variables vanishes. For the quadratic boundary terms
arising in the integration by parts in time, the decay is obtained in a straightforward
manner, as it is done for the g component. For the cubic terms the decay is obtained
as a consequence of L?-weighted estimates. The second complementary region is
away from .7 N.7 ¢ and contains .72. There we can combine the identity (5.2) and
the fact that ¢ can be divided by V,p, to conclude, roughly speaking, that
Vep ~ V,pinthis region. This implies a good control on weighted norms, and decay
is obtained by interpolating in an appropriate fashion these norms.

Eventually, the cubic terms %¢(f,g) and h; are estimated using again the
decomposition f = g + h. Also for these terms the pointwise decay is obtained as
a consequence of the L?-weighted bounds.
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