BOLLETTINO
UNIONE MATEMATICA ITALIANA

SEVER SILVESTRU DRAGOMIR

Some Inequalities of Hermite-Hadamard
Typefor Convex Functions of Commuting
Selfadjoint Operators

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 6 (2013), n.3,
p. 491-511.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2013_9_6_3_491_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2013_9_6_3_491_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2013.



Bollettino U. M. 1.
(9) VI (2013), 491-511

Some Inequalities of Hermite-Hadamard Type
for Convex Functions of Commuting Selfadjoint Operators
in Hilbert Spaces

S. S. DRAGOMIR

Abstract. — Some operator inequalities for convex functions of commuting selfadjoint
operators that are related to the Hermite-Hadamard inequality are given. Natural
examples for some fundamental convex functions are presented as well.

1. — Introduction

If f: I — R is a convex function on the interval I, then for any a,b € I with
a # b we have the following double inequality

b
o f<a;b)§biaff(t)dt§ M

This remarkable result is well known in the literature as the Hermite-
Hadamard inequality [25].

For various generalizations, extensions, reverses and related inequalities, see
[1], [2], [3], [13], [16], [18], [19], [20], [21], [25] the monograph [11] and the re-
ferences therein.

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)).
The Gelfand map establishes a x-isometrically isomorphism & between the set
C(Sp(A)) of all continuous functions defined on the spectrum of A, denoted
Sp(A), an the C*-algebra C*(A) generated by A and the identity operator 15 on
H as follows (see for instance [14, p. 3]):

For any f,g € C(Sp(A)) and any o, f € C we have

0) &(af + fg) = a®(f) + fP(9);

i) @(fg) = 2(f)P(g) and O(f) = D(f)";
(i) 2Nl = IIf]l = tESSl;&)If(t)I;
(iv) @(fo) =1y and &(f1) = A, where fo(t) =1 and fi () = ¢, for t € Sp(A).
With this notation we define
f(A):=&(f) for all f € C(Sp(A4))

and we call it the continuous functional calculus for a selfadjoint operator A.
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If A is a selfadjoint operator and f is a real valued continuous function on
Sp(A), then f(t) > 0 for any ¢t € Sp(A) implies that f(A) > 0, i.e. f(A4) is a po-
sitive operator on H. Moreover, if both f and g are real valued functions on Sp(A)
then the following important property holds:

P) f() > g(t) for any t € Sp(A) implies that f(A) > g(A)

in the operator order of B(H).

For a recent monograph devoted to various inequalities for functions of
selfadjoint operators, see [14] and the references therein.

The following result provides an operator version for the Jensen inequality
(see [14, p. 5]):

THEOREM 1 (Jensen). — Let A be a selfadjoint operator on the Hilbert space H
and assume that Sp(A) C [m,M] for some scalars m,M with m <M. If f is a
convex function on [m, M|, then

(MP) Fl{Aw,2) < (f(A), )
for each x € H with |jx| = 1.

The Hermite-Hadamard inequality (HH) can be extended to selfadjoint op-
erators as follows, see [7].

Let A and B selfadjoint operators on the Hilbert space H and assume that
Sp(A),Sp(B) C [m,M] for some scalars m,M with m<M. If f is a convex
function on [m, M], then

1
f<<Aac,x> ; <By,y>> Soff((l — t)(Aw,x) + t(By,y))dt

1
) < < Lff((l —1A + t<By,y>lH)dt} mc>

[(f(A)2,x) +f((By,y))]

IN
DO = DO| =

<

[(f(A)z,x) + (f(B)y, )]

¥ <Aac,x) (By,y A+ (B ’
G S R
<[f (1-1%)A +t(By, y>1H)dt}x x>
0

for each x,y € H with ||z[| = [|y|| = 1.

and

IN

AN
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It is important to remark that, from the inequalities (1.1) and (1.2) we have the
following Hermite-Hadamard’s type results in the operator order of B(H) and
for the convex function f : [m,M] — R

1
- e Ik [ ra-0a+ s

1
< S L/(4) +f({By, y)ii
for any y € H with ||y|| =1 and any selfadjoint operators A, B with spectra in

[m, M].
In particular, we have from (1.3)

(1.4)

IN

A+ (A
f( > Of (1—B)A + t{Ay, y)15)dt
SLF(A) +£((Ay, )1

for any y € H with ||y|| =1 and

(15) f(A *281H) < f FIA—DA +tsly)dt < %[ F(A) +f(5)14]

for any s € [m, M].

As a particular case of the above results we have the following refinement of
the Jensen’s inequality:

Let A be a selfadjoint operator on the Hilbert space H and assume that
Sp(A) C [m, M] for some scalars m, M with m <M. If f is a convex function on
[m, M], then

Fltaza)) < (£(FHGI o o)

(1.6) §<{ (1= 1)A + t(Ax, 2)1y)dt
1
<3l

(f(A)w, ) +f((Aw,x))] < (f(A)x, ).

A real valued continuous function f on an interval [ is said to be operator
convex (operator concave) if

(0C) J(1=2)A+IB) < (2)(1 - A)f(A) + 4 (B)

in the operator order, for all A € [0, 1] and for every selfadjoint operator A and B
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on a Hilbert space H whose spectra are contained in /. Notice that a function f is
operator concave if —f is operator convex.

A real valued continuous function f on an interval [ is said to be operator
monotone if it is monotone with respect to the operator order, i.e., A < B with
Sp(A),Sp(B) I imply f(A) < f(B).

For some fundamental results on operator convex (operator concave) and
operator monotone functions, see [14] and the references therein.

As examples of such functions, we note that f(t) = ¢" is operator monotone on
[0, 00) if and only if 0 < » < 1. The function f(t) = ¢" is operator convex on (0, co)
if either 1 <7 <2 or —1 <r < 0 and is operator concave on (0,00) if 0 <r < 1.
The logarithmic function f(¢) = In ¢ is operator monotone and operator concave
on (0, c0). The entropy function f(¢) = —¢ In ¢ is operator concave on (0, co). The
exponential function f(¢) = ¢! is neither operator convex nor operator monotone.

Let f : I — R be an operator convex function on the interval 1. Then for any
selfadjoint operators A and B with spectra in I we have the inequality in the
operator order [8]

(1.7) (‘“B) f 1—tA+tB)dt<w.
0

With the above assumptions for f, A and B we also have the inequality [8]

1

(0< ff ((1—t)A + tB)dt — f<A+B>

f(A) +7(B)

<
- 2

- f F(1— DA +tB)dt
0

in the operator order.

For other inequalities of Hermite-Hadamard type for operator convex
functions, see [8].

Motivated by the above results, we investigate in this paper the corre-
sponding Hermite-Hadamard inequality for two commuting operators and show
that, in fact, the inequality (1.7) remains valid in this case for convex functions.
Other related results, refinements, reverse inequalities and some applications
for particular functions of interest are provided as well.

2. — Some General Results

Let (H,{(-,-)) be a complex Hilbert space. Recall that a bounded linear op-
erator A is commuting with the operator B if AB = BA. Moreover, if A and B are
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two commuting bounded selfadjoint operators, then for any continuous function
f:R—=R,f(A)is also commuting with B. Examples of selfadjoint commutative
operators can be taken from Matrices Theory. Commutative matrices have been
studied since late in the last century. They are not often the topic of an in-
dependent study like [31], but usually the reader can find a chapter on com-
mutative matrices in monographs on linear algebra (e.g. [16] and [17]).

It is known, see for instance [30, p. 356-358], that if A and B are two com-
muting bounded selfadjoint operators on the complex Hilbert space H, then
there exists a bounded selfadjoint operator S on H and two bounded functions ¢
and y such that A = ¢(S) and B = w/(S). Moreover, if {£;} is the spectral fl'amily

over the closed interval [0,1] for the selfadjoint operator S, then S = [ tdE;,

0—
where the integral is taken in the Riemann-Stieltjes sense, the functions ¢ and v
are summable with respect with {£}} on [0, 1] and

1 1
2.1) A=p(S) = f o(t)dE; and B = y(S) = f w(t)dE,.
_ 0—

Now, if A and B are as above with Sp(A4),Sp(B) CJ an interval of real
numbers, then for any continuous functions f,g:J — C we have the re-
presentations

1 1
(22) f(4) = [ (£ o 0))dE: and g(B) = [ (g 0 p) (t)dE.

For some applications of these facts to synchronous functions and Cebyéev
type inequalities, see [12].

Now, if the function f : / — R is continuous convex and if A and B are two
commuting bounded selfadjoint operators on the complex Hilbert space H with
Sp(A),Sp(B) C J, then utilizing the representations (2.1) we have in the op-
erator order

F(1= 1A+ IB) = f FI(L= 2)p(t) + A (8)]dE,

(1-2 ff dEt+/1ff ))dE,

= (1 - A)f(A) + 4 (B)

for any 4 € [0,1].

This shows that the usual convexity is preserved for the operator order when
commutativity of the operators A and B is assumed.

Therefore we can state the following particular inequalities of interest:
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Let A and B be two commuting positive operators and p > 1(p € (0,1)), then
(2.4) (1—=AA+AB)P< (>)(1 = L)AP + ABP ). € [0,1].

Moreover, if A and B are positive definite then the inequality with “<” also holds
for p<0.

If A and B are two commuting selfadjoint operators and p > 1 then we have
the modulus inequality

(2.5) |(1-2)A+ABP< (1 - 2)|AP+AB|P, 2 € [0,1].
In particular, we have the triangle inequality
(2.6) |A+ B| < |A|+ |B].

For A and B positive definite and commuting, we also have the logarithmic
inequalities

(2.7 In(1-2)A+iB)>(1-A)InA+21lnB,2€[0,1]
and

53 (1—2A+2AB)In ((1 - ))A + AB)

28) <1-MAInA+2BlnB,2€0,1].

THEOREM 2. — Ifthe function f : J — R is continuous convex on the interval
J and if A and B are two commuting bounded selfadjoint operators on the
complex Hilbert space H with Sp(A),Sp(B) C J, then

1
2.9) f (‘#) < [fa- A+ B2 < w,
0

ProOF. — Since for any 1€][0,1] the operators (1—1)A+ 1B and
JA + (1 — A)B are commutative and Sp((1 — 1)A + 1B),Sp(1A + (1 — 1)B) C J,
then by ( 2.3) we have

7(557) < LA = DA+ IB) +£GA+ (1= DB

for any 4 € [0,1].
Integrating this inequality on [0, 1] and taking into account that

1 1
f F((1= DA + iB)dj = f fOA+(1— 2)B)d2
0 0

we obtain the first inequality in (2.9).
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By (2.3) we also have

1 A B
5 [f((L=2)A+IB)+f(JA+ (1~ )B)] < w
for any 4 € [0,1], which by integration produces the second part of (2.9). O

COROLLARY 1. — With the assumptions of Theorem 2 we have

) )

(2.10) < f F((1 = M)A + iB)ds.

Soé[f(l;B) LA -ZFf(B)}

ProOF. — On making use of the change of variable u = 2/ we have
1/2

ff (1= 2)A + iB)d 2ff( WA +u ;B>du

and by the change of variable v = 21 — 1 we have

ff (1- DA + \B)d sz( - ——i—uB)du

1/2

Utilising the Hermite-Hadamard inequality (2.9) we can write

f<3A+B) <ff< (1—u A—I—uA_;B)duS;{f( )+f<A+B)}
and

f(AZ?’B)sflle—u)A;B ub)au <3| ) +£(%57))
0

which by summation and division by two produces the desired result (2.10). O

REMARK 1. — The second inequality in (2.10) is equivalent with
0 <ff ((1— DA + 2B)dJ. f<A+B>

f(A) +1(B)
2

2.11)
- f F((1— A+ B)dJ,
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1
which shows that [ f((1— 1)A + AB)d/ is nearer in the operator order to
0

f(fﬂ> than to LA =/ (B).
2 2

The interested reader may continue to apply the Hermite-Hadamard
A 3A+B 3A+B A+B
S
ete., however the resulting inequalities are

inequality on other subintervals such as
A+B A+3B A+3B
—_ and |——,B
2 4
complicate and therefore are omitted here.

REMARK 2. — Assume that A and B are two commuting positive operators and
such that A — B is invertible. Then for p > 0, by utilizing the representation (2.1)
and Fubini’s theorem we have

1 1 1
f (1= A+ 2B)Pd). = f ( f (1= 2)p(t) + )u,//(t)]pdE’t) d

0 0 0—

1 1
_ f ( f (1= 2)p(t) + /h//(t)]”d/l) dE,
0— 0

1
1 ferim—wig
“pi Of o) i)
:ﬁ (A—B) ' (Ar+! - pr+).

Similarly, if A and B are two commuting positive definite operators and such
that A — B is invertible, then for p € (— o0, 0)\{—1} we also have

1
f (1—2)A+B)'di = ]% (A—B)(art! — pri1),
0

Also, if A and B are two commuting positive definite operators and such that
A — B is invertible, then
1
f((1 A+ B)'di=(A-B)'(InA—InB).
0
Utilising the Hermite-Hadamard inequality (2.9) we then have for
p=1(pe(0,1)
A+ B\? 1 -1
) — ) <(>)—(A- Pl prtly < (>
(2.12) ( > )()pH(A B)" (AP - B") < ()

where A and B are two commuting positive operators and such that A — B is
invertible.

AP 4 BP

b




SOME INEQUALITIES OF HERMITE-HADAMARD TYPE ETC. 499

If p € (—o00,0)\{—1} the inequality (2.12) also holds for “>” provided A and B
are two commuting positive definite operators and such that A — B is invertible.
With the last assumptions for A and B we also have

-1 1 1
(2.13) (‘#) <(A-B)InA-InB) gA%B.

We also have that
THEOREM 3. — Ifthe function f : J — R is continuous convex on the interval

J and if A and B are two commuting bounded selfadjoint operators on the
complex Hilbert space H with Sp(A),Sp(B) C J, then

2min{t,1 -t} {f(A) 2+f(B) _f(A +B)}

2
(2.14) <A =A)f(A) +4(B) - f((1-)A+/B)
< 2max{t,1—1) {f(A) ;rf(B) f<A-2%B>]

i the operator order.

Proor. — First of all, we recall the following result obtained by the author in
[6] that provides a refinement and a reverse for the weighted Jensen’s discrete
inequality:

(2.15) < Pin . " pif (@) —f<Pini%i>

..........

Wltth = sz > O
i=1
For n = 2 we deduce from (2.15) that

2min{l,1 -1} [f(ac) 'zi‘f(?/) _f<ac -;- yﬂ
(2.16) < (@) + (1= Af(y) —f Oz + (1= 2y)

<2max{1,1- i} [f(“) ;Ff( Y) f(x+y)}

for any x,y € C and 4 € [0,1].
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Now, let ¢ and y the functions that represent the commuting operators A and
B as in the equation (2.1). Then by (2.16) we have

2minz1 - ) [[O0LES010) (o0 010

(2.17) <Hlp®) + (A = O)f (w(t) - f(20(t) + (1—7~) t)

gzmax{ﬂ,,l—/l}[f( (1)) +f( (®) f<<0(t)-2w( ))}

for any A € [0,1] and ¢ € [0,1].
Integrating over dE; we deduce from (2.17) the following inequality in the
operator order

Zmin{) 1-4}

ff dEt+ff dEt 1

x . _ 0[ f(M) dE,

</1ff NAE; + (1 - ffl// \dE,
(2.18)

—ffw + (1= 2)w(t)dE,
§2max{} 1-1}
ff dEt-‘rff t))dE; 1

x N Of f<w> dE, | .

Now, taking into account the integral representation of continuous functions of
selfadjoint operators (2.2) we deduce the desired result (2.14). O

REMARK 3. — If A and B are two commuting selfadjoint operators and p > 1
then we have the modulus inequality

p P P
2 min{1,1 - }['A| +IB| 'A;B ]
2.19) < (1= A)|AP+ABP—|(1 - A + AB”

p p
< 2max{2,1— }{|A|+|B| ’A+B

2 2

]

where 1 € [0,1].



SOME INEQUALITIES OF HERMITE-HADAMARD TYPE ETC. 501

In particular, we have
min{4,1 — 2}[|A| + |B| — |A + B
(2.20) <(1-=A)Al+AB| - |(1—-A)A +/B|
<2max{4,1—-21}[|A| +|B| — |A + B])

for any 4 € [0,1].
If A and B are two commuting positive definite operators, then we have the
logarithmic inequalities

Zmin{i,li}{ln <A+B> lnA—HnB}

2 2
(2.21) <In((1-2)A+iB)—(1-i)InA—2InB

gzmax{z,l—/l}Hln (A;B) _1DA—2+—1nB”

for any A € [0,1].

3. — Some Results for Differentiable Functions

The following reverse of the inequality (2.3) for differentiable functions holds:

THEOREM 4. — Let f:J — R be a convex continuously differentiable function
on the interior J of J and A and B two commuting selfadjoint operators with

Sp(A),Sp(A) C J. Then we have in the operator order
51) 0<1-)f(A)+MB)—-f(1-1A+/B)
' < (1-2)UA = B)[f'(4) —f'(B),

forany A € [0,1].
In particular, we have

s2) o< {AHE —f(A ‘;B) <7 (A-B)[f(4) - (B)

ProOF. — We have the gradient inequality

(3:3) fw) =f@) = f'(v)(w—v)

for any u,v € J.
Utilising the gradient inequality (3.3) we have

(3-4) fl+ (1= 2)y) —f(x) = 1= Df (@)(y - @)
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and

(3.5) fQa+ (1= 2y) —fy) = =i W)y - =),

for any A € [0,1] and a,y € J.
If we multiply (3.4) with 4 and (3.5) with 1 — 1 and add the resultant in-
equalities we obtain

[l + (1= A)y) — i (2) = (1= Hf(y)
> (1 =2 @)(y —2) = 21 = Af (Y)Y — )

which is clearly equivalent with

0 <7f(e)X = )f(y) —f (e + (1 - 2)y)
< (1= —y)lf' @) —f(y)]
for any A € [0,1] and a,y € J.

Now, let ¢ and y the functions that represent the commuting operators A and
B as in the equation (2.1). Then by (3.6 ) we have

0 <M (p®) + 1= Af (w(t) —f(ot) + (1 = Dy(t))
< 1A= DAlp®) —y@)Lf (0(t) 1 (w(2))]

for any 2 € [0,1] and ¢ € [0,1].
Integrating over dE; we deduce from (3.7) the following inequality in the
operator order

(3.6)

(3.7)

0</Lff ))dE; + l—Aff ))dE,
(38) - f F () + (1= Dy (t)dE;
0—

<(@1- Wf(cﬂ(t) —y(®)[f (o) —f'(w(t))dE}
0,
for any /1 € [0,1].
Utilising the representation (2.2) for continuous functions of selfadjoint
operators, we deduce the desired result (3.1). O

REMARK 4. — For A and B positive definite and commuting operators, we
have the following reverse of (2.7)

0<In((1—A)A+iB)—(1—J)InA—ilnB

®.9) <(1-2)AA-B)(B*-471
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and the following reverse of (2.8)
1-AHAmA+ABInB— ((1-1)A+AB)In((1 — 1)A + AB)
<(1-2HAMA-B)(lInA—-InB),

(3.10)

where /4 € [0,1].

We use now the following result whose proof in a slightly more general form
can be found in [4] and [5].

. LEMMAL - Letf :J — R be a convex differentiable function on the interior
J. Then for any a,b € J we have the inequalities

(8.11) OgL ff (1-t)a+th)dt < é(a—b)(f’(a)—f’(b))

and

(3.12) o<ff (1 - t)a + th)dt — f(“”’) <é(a b)(f'(a) — (b))

1. . . . .
The constant g s best possible in both inequalities.

For extensions of these inequalities for functions defined on segments of
vectors in linear spaces and applications for semi-inner products, see [4] and [5].

THEOREM 5. — Lez(f) f:Jd — R be a convex continuously differentiable func-
tion on the interior J Oof J and A and B two commuting selfadjoint operators
with Sp(A),Sp(A) C J. Then we have in the operator order

0< A HB) [ra-na+iBa:
(3.13) 2 i
< g (A= B)((4) - 1'(B)
and
1
0< [£((1-2)A+B)d2 f(A+B>
(3.14)

IN
0l <

(A= B)(f"(A) - f'(B)).
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PrOOF. — Let ¢ and y the functions that represent the commuting operators
A and B as in the equation (2.1). Then by (3.11 ) we have

1
0 < Lo ;f(w(t)) _ f FA = 2D)p(t) + Ap(t))d
(3.15) 0

for any ¢ € [0,1].
Integrating over dE; we deduce from (3.15) the following inequality in the
operator order

1 1
[ flow)dE + [ fot)as,
0—

0< >
(3.16) —f (ff 1 — _A'_iv/( ))d/{) dEt
% f (f'(p(t)) —f'(w(2)))dE;.

By Fubini’s theorem we have

f(ff (1= Do(t) + Iyt ))d},)dEt
—f(ff (-4 +zw<>>dEt)oM

and employing the representation of continuous functions of commuting opera-
tors (2.2) we deduce the desired result (3.13).

The inequality (3.14) can be obtained in a similar manner and the details are
omitted. O

REMARK 5. — If A and B are two commuting positive operators and such that
A — B is invertible, then for p > 1 we have the inequalities

_APE B 1
(3.17) Sz p+l
p(A - B)(AP! — BP)

(A—B)'(Art! — Brtt)

OOlF—‘
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and
p

0< L(A -B)™! (Ap+1 _Bp+1) _ <‘ﬂ)

(3.18) p+l 2

< é p(A—B)(AP~t — BP ).

If A and B are two commuting positive definite operators and such that A — B is
invertible, then these two inequalities also hold for p € (—o00,0)\{—1}.

If p € (0,1) and A and B are two commuting positive definite operators and
such that A — B is invertible, then we have

p P
0< —i (A - B) H(Ar+! — pr) 4 ;B
(3.19) P
< %p(A — B)(Br! — AP
and
p

0< (#) —%(A —B)*I(Ap“ —B”ﬂ)

(3.20) p+

< é p(A—B)(BP! - AP,

Moreover, if A and B are two commuting positive definite operators and such
that A — B is invertible, then we also have

0<(A—B)'(InA-InB) - <A+B) B
(3.21) ) 2
< g(A ~B)(B*-A7)
and
0<A B B4 -mB)
(3.22) X 2
<g(A-B)(B*-A7)

4. — More Results for Twice Differentiable Functions

The following result for twice differentiable functions holds.

THEOREM 6. — Let f:J — R be a twice differentiable function on the in-
terior J and k, K two real numbers such that

(4.1) k<f"(%) < K for any 1 € J.
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o

If A and B are two commuting selfadjoint operators with Sp(A),Sp(B) C J,
then we have in the operator order

% k(1 —2)(A - B)?

(42) <A-A)f(A)+4(B)—-f((1-1)A+/B)
< %m(l —2)(A—-B)?
and
2
%k (A - %) (A-B)y

f((1=2)A+AB)+f((1—2)B+JA) A+B

(4.3) < . _f< : )

2
1K(,1—1> (A—B)?
2
forany 1 €[0,1].

PROOF — Consider the auxiliary function g;:J — R given by gi(x) =
f(x) — élm . This function is twice differentiable on J and i) =f"(x) =k >0

which shows that g;, is convex on J.
By the definition of convexity we have

0 < (1 Agi(a) + gi(b) — (1 — D+ 1b)

(1—=2)f(a)+ A (b) —f((1 — )a + 1b)
1

— k|1 = 2)a? + 20 = (1= Da+ zb)z]

— (1= A)f (@) + A (b) — (1 - Z)a+ ib)

- %ki(l — (@ —b)?

for any a,b € J for any 4 € [0,1].
This implies the inequality

%ma — 2)(a —b)?
< (1= 2A)f(a) + 4 (b) = f((1 = Aa + 2b)

(4.4)

for any a,b € J and for any / € [0,1].
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If we consider the auxiliary function gx:J — R given by gx(x)=

1
QK.%Z — f(«) and apply a similar argument, we deduce the opposite inequality

(1= A)f(a) + A (b) —f((1 = A)a + b)
(4.5)

< ZKi1-2)(a—Db)?

DO| =

for any a,b € J and for any A € [0,1].

Now, utilizing the spectral representation (2.1) for the commuting selfadjoint
operators A and B, the scalar inequalities (4.4), ( 4.5) and a similar argument to
that in the proof of Theorem 3, we deduce the desired result (4.2).

1
From (4.2) for 1 = 5 we get in the operator order

we) ke -pp<OHD) -f(C;D) < LK(C-DP,

for any commuting selfadjoint operators C and D with Sp(C),Sp(D) C J.

If we take C=(1—-2)A+ 1B and D= (1—-1)B+ /A, then C and D are
commuting operators with Sp(C),Sp(D) C J and by (4.6) we deduce the desired
result (4.3). O

REMARK 6. — The above operator inequalities have some particular cases of
interest. For instance, for p > 2, if A and B are two commuting selfadjoint
operators such that Sp(4),Sp(A4) C [m,M] C (0,00), then we have in the
operator order

S 0o — VmP~%i(1 — 1)(A - BY
(4.7) < (1— AP £ 2B” — (1 — 1)A + IBY”
< 3p(p ~ DMPZH(1 ~ 1)(A - B
and
R (e N
(1-AA+ABP+((1 - 2B+ A" [(A+B\’
(4.8) < 5 - ( 5 )
2
<y~ 13 (2-3) (4~ By

for any 2 € [0,1].
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We have also the logarithmic inequalities

%Mﬂ(l — (A - B)*

(4.9) <In((1— A+ iB) — (1 2)In(A) — AIn(B)
; m~2i(1 - 2)(A - B)?
and
2
%M‘Z (z - %) (A—B)*
(4.10) < (@ —A)AHB);rln((l ~AB+IA) (A;B)

1 ./, 1 z 2
< — — — —
< 2m <A 2) (A-B)
for any /4 € [0,1].

We use the following inequalities for twice differentiable functions that are
related to the Hermite-Hadamard inequality:

LEMMA 2. — Letf : J — R be a twice differentiable function on the z;)ntem'orj
and k, K two real numbers such that (4.1) 1s true. Then for any a,b € J we have
the inequalities

B\ 1
(4.11) DNa+w)di— (2% < S K- b,
N
1
(4.12) 112k(a _pp<f@ ;f ®) Of (1= 2)a+ b)di < 1—12K(a —b)?
and
1, _1[f@)+fB) fa+b )
. 5k@=b) Sz{ : +f< )} ff 1 2)a -+ Ab)d.
<%K(a—b)2

ProOOF. — The inequality (4.11) was obtained in [9] while (4.12) was obtained
in [10]. The inequality (4.13) was established in [11, p. 44]. |
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. THEOREM 7. — Let f : J — R be a twice differentiable function on the interior
J and satisfying the condition (é.l). If A and B are two commuting selfadjoint
operators with Sp(A),Sp(A) C J, then we have in the operator order

(4.14) —kA B) <ff WA + JB)d), 4(#) _iK(A BY,
1

(4.15) %k(A _BRP< w_ [ra-na+ima
0

(4.16) < %K(A — B)?

and

1 1[f(A)+f(B) . (A+B
(4.17) 48k(A—B)zgz{ 5 +f< 5 )}

_ff 1- )A+IB)dJ < L K(A - BY.

48

The argument follows in a similar way to that in the proof of Theorem 5 by
utilizing Lemma 2 and the details are omitted.

REMARK 7. — The above operator inequalities have some particular cases of
interest. For instance, for p > 2, if A and B are two commuting selfadjoint
operators such that A — B is invertible and Sp(A),Sp(A) C [m,M] C (0,00),
then we have in the operator order

p(p—1) =2 1

(418) == (A - B)’< S 1A-B) Lartt — pri)
(A;B)iﬂ’S p(P24 1) - "4 BY.
(4.19) %W‘FZ(A _BP< AP + BP
T Jlr {(A-B) At - ey < %M’)_Z(A _pyp

and

plp-1) A LB (A+E ,
o g e (45

1

“or1AB (AM—BP“)SP(Z—;)MP_Z(A_B)Z'
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If p € [1,2), then the above inequalities (4.18)-(4.20) also hold by replacing
MP~2 with mP—2.

Similar results may be stated for p € (0,1),p € (00,0)\ {—1} and p = —1.
However the details are not presented here.

Acknowledgement. The author would like to thank the anonymous referee for
valuable suggestions that have been implemented in the final version of the

paper.
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