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An Algorithm for Solving Systems of
Quadratic Equations in Branching Processes

FEDERICO PoLONI

This document contains a short survey of the talk presented by the author
during the XIX Conference of the Italian Mathematical Union in 2011; it sum-
marizes and recalls the results described there.

1. — Introduction - Markovian binary trees and classical algorithms

We are interested in studying Markovian binary trees [1, 4, 3, 6, 9], i.e., a
family of branching processes characterized by the following laws.

1. At each time instant, a finite number of entities, called “individuals”, exist.

2. Each individual can be in any one of N different states (these model, for
instance, age classes or difference features in a population).

3. Each individual evolves independently from the others. Depending on its
state 4, it has a fixed probability b;;. of being replaced by two new in-
dividuals (“children”) in states j and k respectively, and a fixed probability
a; of dying without producing any offspring.

The characteristics of the population are determined therefore by the vector
a € R]X and the 3-way tensor B € Rﬂ\r’ “NxN - where we denote by R, the set of
nonnegative reals. Instead of B, it is useful to think in terms of the bilinear map
b: Rf X Rﬂ\: — Rf given by

N
(b, 0)]; = byitjvy.

Jk=1

We denote by e the vector, of dimensions that are clear by the context, all of
whose components are 1. With this notation, a necessary compatibility con-
dition for our model is that e = a + b(e, e), that is, for each i we require the
probabilities of all the possible events that can happen to an individual in state
1 to sum to 1.

Markovian binary trees are used not only for population dynamics, but
also for instance for modelling computer and networking systems [5]. A
natural question is computing the extinction probabilities, i.e., the vector
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x € RZJ\: such that a colony starting from a single individual in state 7 becomes
extinct in a finite time with probability «x;. One can prove [1, 3] that x is the
minimal (in the componentwise order) nonnegative solution x, of the equa-
tion

x=a+ bx,x).

As noted above, ¥ = e is a solution for this equation, although not necessarily the
minimal one. In fact, one can define two different families of processes:

e subcritical processes, in which x, = e is the minimal solution, and thus the
colony becomes extinct with probability 1. This corresponds, in a suitable
sense, to the case in which the average number of children per individual is
less than 1.

e supercritical processes, in which x, < e and equality does not hold for all
components. In this case, there is a nonzero probability that the number
of individuals grows indefinitely; this corresponds to the case in which
the average number of children pre individual is more than 1.

There is of course an intermediate case, in which the average number of
children is exactly 1. In this case, the colony becomes extinct with probability 1
but requires on average an infinite time to do that.

There are several algorithms for computing the extinction probabilities x
for supercritical processes. Several fixed-point iterations have been studied
in [1, 4, 3], e.g.,

1) Lpy1 = a + b, vr)
or
2) L1 = &+ b(@p11, k).

The latter iteration can be computed explicitly since the map b(-, x;) is a linear
map from RY to itself and thus is associated to a matrix, and the stochasticity
properties ensure that

I —b(, )

is a nonsingular M-matrix.
With this notation, the Newton method takes a similar form, namely

(3) i = (1= b(, ) — by, ) ' a.

A similar strategy has been suggested in [6], i.e., applying Newton’s method to a
slightly different fixed-point equation.

These fixed-point iterations share several properties, the most interesting
one being that they converge monotonically to the minimal solution x, when
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started from xy = 0, i.e.,
O=xp<a <wp <--- <y, <.,

and x;, — ..

All of them have probabilitistic explanations, in that x; can be seen as the
probability of the colony becoming extinct under additional restrictions de-
pending on k. The probabilistic interpretations are of great interest to the ap-
plied queuing theory community, as they provide better insight on the properties
of the method.

The Newton method (3) has quadratic convergence for supercritical pro-
cesses, but this convergence degrades to linear in the critical case; similarly, (1)
and (2) converge linearly, but the convergence speed degrades to sublinear for
critical processes. This makes sense intuitively in view of the probabilistic in-
terpretation, since we need to “simulate” many more iterations to determine the
asymptotical behavior of a critical process. In particular, it is a common feature
of all these algorithms that the convergence is slower for critical or close-to-
critical processes.

2. — Perron vector-based algorithms

We wish to propose here an algorithm with a completely different origin and
numerical behavior [7, 2, 8]. First of all, for ease of explanation, we make a
change of variable by setting ¥y = e — x. In this way, ¥; is the complement of the
extinction probability, i.e., the survival probability starting from a single in-
dividual. The equation becomes

(4) y =0ble—y,y)+by,e),
or, setting P, := be —v,-) + b(-,e) € RN,
(5) y=Pyy.

Since this is a linear change of variable, there are little changes if we apply
the traditional fixed point iterations to this reformulation. However, (5) can
be interpreted as saying that y is the Perron vector of a nonnegative matrix
depending on y itself. This suggests setting up the following fixed-point
iteration:

(6) Yr+1 = Perron vector of P, .

Perron vectors are determined up to a multiplicative constant; therefore, we
have the additional issue of choosing a normalization for y;.;. We make here
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the choice of imposing that the residual

Y1 — Pr1¥i

be orthogonal to a fixed nonnegative vector w. In principle, any w > 0 could
work. However, the following result shows that there is a clear best candi-
date for w.

THEOREM 1 ([7]). — Let b;, t <1 define a smoothly varying fomily of su-
percritical Markovian binary trees that converge to a critical problem fort — 1;
Let v, y; be the left and right Perron eigenvectors of

(7) Rt = bt(@, ) + bt(', 6)7

which we suppose to be irreducible fort sufficiently close to 1. Then, the Jacobian
Jy of the iteration map is such that

vl biy,yn) - w'y
wlbi(y1,y1) - vl

11?11 py) = |1

In particular, choosing w = vy the right-hand side vanishes and thus we have
superlinear convergence in the limit t — 1.

The work [2] suggests a deflation algorithm to deal with cases in which R; is
not irreducible; essentially, we can split the problem into two smaller ones which
can be solved one after the other. It is proved in the same paper that, when the
algorithm converges, it always converges to the minimal solution rather than
spurious ones.

Moreover, it is possible to construct a Newton-type algorithm based on the
same fixed-point equation (6).

The previous result works whenever R; as in (7) is irreducible in a
neighbourhood of ¢t = 1 (or, equivalently, for ¢ = 1). Problems with a reducible
matrix R = b(e,-) + b(-,e) can be dealt with by reducing to two smaller pro-
blems, with a strategy which is analogue to (block) back-substitution for block
triangular systems.

3. — Numerical experiments

Numerical experiments reveal that, unlike the previous algorithm, the
convergence is not in general monotone; indeed, for problems which are
very far from the critical case (and thus “easy to solve” in the framework
of the classical algorithms), this new method can fail to converge.
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Nevertheless, in close-to-critical problems, convergence is surprisingly fast.
We report numerical experiments for two parameter-dependent problems
in Figures 1 and 2. The upward spikes in the classical Newton algorithm
(red line) correspond to values of A for which the problem is critical; in
these cases, the algorithm is slower as expected. However, the Perron-
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Fig. 1. — Computational times vs. parameter for a parameter-dependent problem
[4, Example 1].

1073
4 Classical Newton
—— Perron-based
j Perron-based Newton

CPU time (s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

parameter A

Fig. 2. — Computational times vs. parameter for a parameter-dependent problem

[4, Example 2].
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based algorithms (the fixed-point iteration (6) and its Newton-based var-
iant) show the opposite behavior and become faster instead when the
problem is close-to-critical.

Overall, the proposed algorithm is faster than the classical algorithms
for close-to-critical problems, and is thus the recommended choice in these
cases.
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