BOLLETTINO
UNIONE MATEMATICA ITALIANA

MICHEL ARTOLA

On Derivatives of Complex Order in Some
Weighted Banach Spaces and Interpolation

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 6 (2013), n.2,
p. 459-480.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2013_9_6_2_459_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2013_9_6_2_459_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2013.



Bollettino U. M. 1.
9) IV (2013), 459-480

On Derivatives of Complex Order in Some Weighted Banach
Spaces and Interpolation

MICHEL ARTOLA

Abstract. — Notion of complex derivatives is used to prove interpolation theorems
mainly i weighted Banach spaces studied in [5]. A conjecture of [4], concerning the
weights is solved and a characterization is given. Thus [3], [4], [5], are somewhat
revisited.

1. — Introduction

The paper extends to weighted Banach spaces studied in [5] an interpolation
theorem of intermediate derivatives previously proved in [3] using Fourier
transform and the notion of derivative of complex order defined in [30].

The property is generally the following:

“If u is a function on RYN, po-intégrable with values in a Banach space Ao,
such that all derivatives of order m arve pi-integrable with values in an other
Banach space Ay, then the derivatives of order u, 0<p<m, are p,-integrable (p,
given 1 section 4) with values in an intermediate Banach space “between” Ay
and Ay which is obtained by interpolation”

Several authors were interested in some properties of that type: see (by
chronologic order) ([15], [14], [11], [26]) for “scalar” cases and ([17], [19], [6], [12],
[1], [2], [3], [4], ) for “vector” cases with weights or not.

In particular in ([6], [12]) N = 1 and weights of ¢* type are considered and in
[1], [2] results of [17] are extended in the framework of [20] to weighted Hilbert
spaces with decreasing weights. (%)

For unweighted Banach spaces the result given in [19] is obtained by
real interpolation while for Hilbert spaces the results generally related with
complex interpolation method are slightly distincts, so that it was to obtain
a satisfactory generalization for Banach spaces that [3] was done. Two
proofs were given there, one with the help of Fourier Transform, the other
with the notion of derivatives of complex order but, in both cases, the
complex interpolation method gives the result.

(") And also for some increasing weights by duality.
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The disadventage to use Fourier transform for functions with vectorial values
is that generally the Fourier transform is not locally intégrable [27], so that the
class of Banach spaces must be “restricted” to those, B, for which the following
condition holds:

(Condition M) : the theorem of Michlin on multipliers is true in F(LP(B)).

A real characterization of such spaces seems still unknown, howewer for appli-
cations the spaces A; (¢ = 0, 1) are mainly LY(RN), W™4(RN) (Sobolev spaces),or
LP4(RN) (Lorentz spaces), Besov spaces, ..., spaces for which the condition M is
valid.

On the other hand the method is based on the properties of the basic
derivative D" of complex order in, 5 € R, defined by convolution with
1 Pf 1
L(—ap) " gt
bol Pf. represents the “finite part” or “the pseudo-function” in the sense
of Laurent Schwartz, x, =max(0,2), I' is the usual Gamma function

(1301, [31D. (%)

Here, in a way, that is the “dual condition” which play the main part i.e.:

the tempered distribution Y_;, = , n € R where the sym-

(C — condition) : “Y_;, is a convolutor of LP(B)”

if B is the Banach space considered.

In fact from [3]if p > 1 every Banach space satisfies the C-condition and from
certain point of wiew the second method is more general.

A set of conditions on the weights is given in [4] and in particular here the
C — condition reads “Y_;, ts a convolutor of LY(B)” where w is a weight. Such a
condition seems both a condition on spaces and on weights. An other condition,
on the weights, is also to be in a prominent position in [4]: the (P — condition):

“If € L\(R) and f = Yy, +f then fx¢ is continuous from LL(B) in itself.”

Thus we can find sufficient conditions like: either w belongs to the class A(p)
introduced by B. Muckenhoupt (see [25]) for maximal Hardy functions, or the
weigth w is non increasing.

If we introduce (see [4], [5]) the class of Hardy H(p), we know ([5]) that
A(p) C H(p) on the line, and that every non increasing weight belongs to H(p)
but may be not in A(p) (ike w(t) = e, 1 > 0, for example).

In such conditions it was natural to conjecture that the good class for the
weights is the Hardy class. This is done and solved below.

(?) see also [29], where the comparison with différent approachs may be found.
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The present paper is constructed as follows. Section2 contains the main no-
tations and is devoted to remember some class of weighted spaces studied in [5]
as well as the class of weights A(p), H(p). General derivatives of complex order
are introduced in Section 3 and the properties of Y_;, xf, when f is a step
function gives necessary and sufficient conditions on the weights to prove con-
diton C and condition P.

Therefore, in Section 4, one uses complex interpolation method to obtain the
main theorem of intermediate derivatives which improve a result of [5] using a
method of interpolation relatd with the notion of space of traces. Results for
fractional derivative spaces are also considered.

Finally, in Section 5, we return to the case of unweighted spaces to revisite
the Fourier method and the condition M related with the notion of Banach
spaces of p type introduced in [27].

2. — Notations and background

If X, Y are vectorial topologic spaces, X C ) means always algebric in-
clusion with continuous injective mapping and we denote L£(X,)), or L(X) Gf
Y = X) the space of continuous linear mappings from X into ).

Let X be a normed space with norm |.|y, L"(a,b.X) (resp. L"(X) if
(a,b) = [0,400)) means the space of strongly measurable functions
r— integrables on (a,b) C R with values in X. Provided with the norm

b 1/r
u— |ul,= ( Il \u(a)\}}dc) , L"(a,b; X) is a Banach space. We take usual mod-

ification when » = +oo.

2.1 — Weighted L spaces

Let B a real or complex Banach space equipped with the norm |.|5, and let »
be a positive locally integrable function defined on 2 C R" and tacking values in
R =10, 4 oo[. Define the measure v, to be such that dv = w(x)dx, where w > 0,
is a density with respect to the measure of Lebesgue in RY. Such a density o will
be called a weight.

One denotes by L?(B), 1 < p < 400, the space of functions % strongly me-
surables with values in B satisfying

f (@)% dv < +00
Q

with usual modification for p = + oco. The space L (B) becomes a Banach space
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when equipped with the norm

1/p
u — |ulpp= (fm(x)@d") .
2

In what follows, we shall take N = 1, @ = R™, and like in [5] it is also of interest
to set w = ¢?, where ¢ > 0 satisfies

1

loc loc

2.1) cell (RY), % eL} (R"), %+

Indeed, when o = ¢, the condition u € L2 (B) is equivalent to cu € LP(B), using
Lebesque measure. Accordingly, we still refer to ¢ as a weight. So, in what
follows the space LY(B) always denotes the space of function u, such that
cu € LP(B). The letter w is reserved exclusively for the density w = ¢?, where ¢
satisfies (2.1).

REMARK 2.1. — Suppose B reflexive and B’ the dual (or the antidual) of B, then
the dual space of L2(B) is L” (B') and of = &' 7 = ¢77".

Obviously condition (2.1) is reasonable for ¢ to have by Hélder inequality
VT >0, LP(0,T;B) c LX0,T;B),

with continuous injective mapping.

In what follows we are interested to say the least by two kinds of weights: the
class A(p) and the class H(p). (see [5]).

We recall that ¢ (or w) belongs to H(p), if ¢ satisfies :

+00 )] Up / ¢ do 1/p'
2.2) sup ( tf [7} da> ( Of W) <+
while, ¢ belongs to A(p) if

1 v 1 do "
(23) Sup (7' If (c(a))”da) <|7 If W) ,

where I are any intervals I C R".( |I| = length of I).
One recalls that (2.2) is a necessary and sufficient contition for the continuity

t
of Hardy’s operator H: f — % [ f(o)do in LE(B)), while (2.3) play a similar
0

condition for the maximal Hardy-Littlewood operator on the line.
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2.2 — The spaces W™

Co,C1

We follows the notations of [5] to define the space Wé;"gl
Let Ay, A; be two Banach spaces continuously embeded into a (real or com-

plex) topologic vector space A with
(24) X = Ay NA; is equipped with the norm |u|y= max(|uly,, [u|4,)

(2.5) Y =A+ A1, is equipped with the norm |uly= inf (|OL0|AO—|—|0L1 |A1)

a=an+ay

thus X, Y, are banach spaces, and, of course, we have X C A; C Y, (1 =0,1). We
assume that

(2.6) A; 18 reflexive
and
2.7 X is dense into A;, 1 =0,1.

For:=0,1, let w; = cg”", p; € [1, + o] be weights satisfying (2.1), we consider
the spaces

(2.8) X; = LL(R"; Aj) = LLi(Ay), the norm being denoted Ny(.).
and one defines for m > 1,
W(M)[pov COaAU; D1, ClvAl] == W(WL)

the space of functions u, locally integrable on R*, with % € X, and such that
D"y € X1.The last condition must be understood as follows: u is m-time dif-
ferentiable at the sense of distributions on R with values in Y and D™ is locally
integrable, so that the product with ¢; makes a sense.

Indeed, since D™ is locally integrable, then D™ 1 is absolutely continuous,
hence continuous, then we can consider that « is (m — 1)-time continuously dif-
ferentiable on R*with values in Y and D'u(t), 0 <i < m —1, is defined for
t € 10, +oo[. Therefore if tli—% Diu(t) = ain Y exists, we shall said that Diu has a

trace D'u(0) = a at t = 0.
Equipped with the norm
(2.9) U — || ullym = max®Now), N1(D™u),

Wi a Banach space.
B If we let D(R+;X) the space of functions in D(R;X) restricted to
R = [0, + o[, one has

LEMMA 2.2. — The space DR ' ; X) is dense in W™ if ¢; € H(p1)

Cp,C1

Proor. — see [5].
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3. — Complex derivatives and main results

To define derivatives of complex order z for a distribution &, we consider
first, following Laurent Schwartz ([30], tome I1,V,&:VI), the convolution Y, * @,
where

1

(3.1) Y. =5

Pfail ife¢g N, Y =0 ife=ke—N.

Pf. meaning the finite part (%) or Pseudo function, defined by the function mi‘l,
the symbol Pf. being unavailing if Re( — z) > 0.

I is the classical eulerian function and x, =« if « > 0, = 0 f ©<0.

We recall, that one has (Pf .f, $) = Pf.(f, ¢) at the sense of distributions, that is

(Pseudofunction f,¢) = Finite part A) ( o).

Like I'(z) has the same poles that Pf .xi’l it follows that z — Y, is continuous
with respect to z, and we can say that Y, is an analytic (holomorphic) function of
the z variable on C tacking its values in S'(R).

From eulerian integral properties, one deduces by analytic prolongation that

(3.2) Ve, leC, Yox Ve = Yoo,

If D', is the space of distributions on R, whose the support is bounded on the left,
then 7', is an algebra with the respect of convolution product and J is the unity,
so that from (3.2) the inverse of Y, is Y_, and like from (3.1) Y_;, = D* one defines
the derivative of order z for a distribution @ by

(3.3) Dig=Y_ .+ ®.

8.1 — The operator D" =Y _;,x, n€ R

For Re(z) = 0 we have

1
I'(—1)

1 .
Yy = Pf. [ mq] if n#0, Yy =6
Ly

If ¢ € D(R™) then
! —i
(34)  D=—1  Lim ( pe-m) gk ") 10,

I'(—1in) :—+0 altin —in

and obviousely D% = ¢ x ¢.

() Partie finie in french.



ON DERIVATIVES OF COMPLEX ORDER IN SOME WEIGHTED BANACH SPACES ETC. 465

It is known in the unweighted case that if either B = R, or C, (see [24], [32],
[3]) and B = H (Hilbert space), or B is a Banach space subject to some conditions
(see [3]), then one has

THEOREM 3.1. — For p > 1, the mapping f — DUf = Y_i, xf, is continuous
from LP(B) into itself.

REMARK 3.2. — It is easy to see that D" ¢ L(L'(B)) if ## 0 except for = 0.
(cf. remark 3.4).

Quasi systematically the proof in [24] and [25] are based on the study of the

1. . . .
kernel K,(x) = prETTR if x| > e =01f |x|<e and its Fourier transform fol-

lowing the methods for singular integral improving the results of [9] in [32].
Like it was said in the Introduction, we have independantly studied the point
in [3] for some Banach spaces using two methods. We will return on the case in
section 5.
In what follows we give a very simple direct proof which avoid the methods
of [32] on R" for the space L¥(B) now valid for p > 1.

3.2 — Main results

THEOREM 3.3. — Assume 1 <p <400, and that c satisfies (2.1), then
D" e L(LY(B)) if and only if ¢ € H(p).

PROOF. — In what follows, to simplify notations, we let f = Df.

a) Necessity of condition (2.2).
x being the caracteristic function of the interval Ja, b[, 0 <a<b,and f € B, we
can choose u(t) = x(t) ® f and (3.4) gives

Wt =0, if 0<t<b, = 1@ pif a<t<b,

1 1 1
= " ) - - ) ) t b
nl'(—1n) [(t —a)" (- b)m} ob yt>

and we check that
2

. b—a
2 sintlLoga-+ 5=,

t>b = |u®)g= yin

with

_ 1 _ (nshy 1/2
y(ﬂ)_IF(in)l_< - )
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+ 00
If we want @ in LE(B) then (a fortiori) f ()P (D)dt < e1(b— a)|flg t > b,

and like for large ¢, ()5~ c(B, B, mt ™" one deduces a first necessary condition:

(3.5) >0, f

Now we see that if the function c¢ is of order — 1 with respect to logt when
t — + 0 then there is a contradiction with the assumption (2.1). On the other
partif ¢ is of order + oo with respect to logt when ¢t — + oo, then it is (3.5) wich
is not true.

Then from Bourbaki [8] the integral in (3.5) is equivalent to ¢” ()t P*!(up to a

dr exists.

¢

multiplicative constant) and f ¢ P (v)dr ~ (constant) te? (t) when t — + 0o or
0

t — + 0. One concludes that (2.2) is satisfied, so that

(3.6) ¢ € H(p) is a necessary condition for D" e £( LE(B)

REMARK 3.4. — If the weight ¢ = 1, then the integral in (3.5) is infinite when
p = 1 thus D doesn’t processes in L' like it was said in Remark 3.2.

REMARK 3.5. — Let yp the characteristic function of (0, T'), then from (2.1) it is

obvious that u(t) = [X(Tt;l]t;)o' el? (R™), and we can hope some necessary conditions
c
on the weight from the fact that there exists a constant y such that
T 1/p
57 i< 7l [-x
. Pp+ PPty — —
LRHS Ve =7 J [c@®)]

It is of interest to consider the particular case where c(t) = t*, with ap’<1.
Obviousely we can check that ¢ € H(p) and also ¢ € A(p), but forgetting this point
for the time being, we want to check (3.7).

One has

. .
. / U / 1

< - _ . 71,;771 _ —op _ ¢ —op — .

for 0<t < T, a(®)=g(n) Lim, (f 2t — )™ de ot ) 9() T in

&

tacking « = &t in the integral and using eulerian integral properties, one has

- tap i in—1 op’ & _ F(l_ap,) —ap'—i
ult) = F(—m)e—>+0 (fé - n(t) )_F(l—ap’—in)t o
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and a simple computation gives

T

T T
(3.8) Of ([a®le®)’dt < y(p',n,2) Of (lu®le®)’dt) = Of cQr

on the other hand

T/t

(3.9) for t>T, t)=g(n) f (t— ) " d = gt~ [ (1— & e g,
0

/

1—op’

T
As the principal part of the last integral in (3.9) is »(p’, o, ) n , When
t — + oo, one deduces that there is a constant still denoted y, such that
1—ap’
(3.10) |a@)| ~ p ,ast>T.
Therefore
+ 00 + o0

1-o
f (Ja®)|e®) dt _yl[T ”] f [c(t)]
! T

Like we assume that (3.7) holds, we must have a fortiori

3.11 T 1 ] 1/p< )"
s [e] |[ET =ey)

1—ap
then, ob that fT di 7T 1) implies 2.2
en, o servin a =), . mplies (&2.4).
& @] —1—ap P

Hence we obtain there an other direct proof of the necessity condition (2.2) for
ct) =t*, ap’ <1.

'ﬂ\Jr

b) The condition (2.2) is a sufficient condition.
1) The key of the proof is

PRrOPOSITION 3.6. — Let ¢ a locally integrable function with compact support
C (0, T) with values 1n B, then there 1s a constant y(n) such that

(3.12) ‘%(QT)‘BS y%fT |6t pet
0

ProOF. — One uses two steps for the proof.

— First step.
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i=k—1
Let a step function with compact support [0, '] given by fy = >~ B, ® 114, 4,10
i=0
with ap =0, ay = T, and supp.fi, C [0,T1, f5; € B. '
A simple computation for D"(¢,) = ¢,, when ¢ > T gives

=k—

‘%k(t)’B <y Z ]

=0

Ait1— = laH—l a;
sin 1oy 1+ 613 < 0 T

Qjy1

(we have used |sinu| < |u|, and log(1 +v) < v, 0<v<]1).
Now if we choose t = 2T, then T'— a;,; >0, 0 <% <k — 1, and one has

1Ic1

(3.13) ‘¢k(2T)‘ <y(77)— Z (@1 = adlfilp = 70D 5 f |60 pdr

and the proposition is proved for f;. (with y(5) = (_;78: ;7) )-

— Second step.

For a given ¢ € L(0, T; B) with compact support contained in [0, 7], we can
always find step functions with compact support ¢, — ¢, a.e. and in L*(0,T; B)
norm as k — + oo.

If we start with the corresponding inequality (3.13), we can replace in the last
integral of the right member ¢, by ¢ when one pass to the limit as k — + oo;

Now, observing that the kernell of <,7Dk(2T) 1s bounded because 2T —x > T,
0 < a < T, the Lebesgue dominated convergence theorem gives (3.12).

2) The proof

Let, f € L}
sequence 6,,:

(RT) and fix t > 0. One introduces, for n € N, the truncating

loc

977/(T)=1,0S’L'St—1/7@,

Hn(r):n(tfifr), t—lgrgt—i
2n n 2n

0,(r) =0, fzt—i
2n

1
thenf, = 6, f has a compact support C (0, — %). We can apply (3.12) to f;, and

pass to the limit by Lebesgue theorem as n — + oo, to obtain
(3.14) @], < yH(f1p)D), for all t > 0.
If we assume f € LE(B) and ¢ € H(p) then H(|f|) € LE(B), accordingly, one has

(315) |H(|f|B’Lf(R+)§ k|f|L§(B)
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Multiplying the two sides of (3.14) by c¢(2f) and observing that
H(f1p)®) < 2H(|f|z(2t), we can take the integral on Rt of the power p of
each side in (3.14.), to obtain the wanted result.

REMARK 3.7. — Thus we have proved that Y_;, is a convolutor for LE(B) if and
only if ¢ € H(p). That is the so called condition (C) used in [4].

An other main result obtained in the same way is

THEOREM 3.8. — Assume c¢c H(p) and f c L'(R"Y), uw € LE(B). Setting
v=1Y_ 4 xv, one has f xu € LE(B) and there is a constant y such that

(3.16) If * < v el -

ProOF. — Weintroduce, fort > 0 ﬂ{(ed, the truncating sequence 6, and letting
uy, = 0,1, we can write g, = f * ty, = f * Uy, so that

2t

f F@t — oyun(o)do

0

t—1/2n

902)]= < [ |fet-o|m@lyds,
0

from the definition of u,,. ) s
Now as we have see before that ’ f (S)‘ < ? [ 1f(©d¢|, one deduces from the
last inequality 50

t—1/2n 2t—a t—1/2n
u(0) 1
92015 Of [2t_a< Of If(C)dC)]daSVIfllm Of 1,()|gdo

Like at the end of the proof of theorem (3.3), we can pass to the limit as
n— + oo to get

(3.17) vt >0, |9@20)|p< 7| f, H(|ulp)®).

and the proof is ended as before to obtain the wanted result.

Now, let Ay, A;, Xy, X7 given like in subsection 2.2, satisfying (2.4), (2.5),
(2.7), then from theorem 3.3, using real A or complex @) interpolation methods,
one has

(*) see [21], [28], [33].
(®) see [10], [18].
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PRrOPOSITION 3.9. — Let

1 1-6 0
0e10,1[, - = +—, 1< p; <oo, (i=0,1), 09:0(1)’00(1)
p Po D1

then {Y_iyx},cp belongs to L(LE, [(Ao,Al),;’p]) and to L(LE,[(Ag,A1),]).

PrOOF. — Theorem 3.3 means {Y_;},.p € L(X;), i =0,1 and by real or
complex interpolation method, one has {Y ;},.p € L](Xo, X1) or

]
€ L[(Xo,X1),] and we know [10], [18], [21], [28], [33], "

Cy

(X0, X1)g,= L8, (A0, A1)y, |, (X0, X10)p= L2, (Ao, A1), ).

REMARK 3.10. — For 5 € R, consider the space Wf?m) = {u; Y_j xu € WM},
From theorem 3.3 , like [Y_;,.] o Yiy*, one has W C W hence we can say
that W ~ W™ with equivalence of norms.

4. — Interpolation with complex method for the spaces W™
4.1 — Intermediate derivatives properties.

Now we can give the main theorem of intermediate derivatives for W
improving results of [4] and [5].

THEOREM 4.1. — Assume c¢; € H(p;) then the mapping u— Diy,
0 <j < m—1,is continuous from W™ into L [(Ao, A1), with
(4.1) ¢ = c(l)_j/mcj/m, 1 = 1-j/m +j/_m.
Pj Po P1
morever one has
(4.2) Nj(DIu) < yNy 2™ )N (D)

REMARK 4.2. — Theorem 4.1 stated here with j an integer 0 <j <m — 1, is
also naturally valid for any derivative of order » < m.

Proor oF THEOREM 4.1. — We are going to proceed in two steps.
1) First step.
Letting 4 = D™, one has

we LX) X+ X

W(m) 4 — X1 C X(] +X1

(where C means always continuous embedding)
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Forz e C, let
A=Y %,

and we claim

LEMMA 4.3. — Whenz=p+1i(, 0< p<1, (€R, the operator A/c LW™ Xy +X1).

PROOF OF THE LEMMA 4.3. — If u € W™, obviouslely A*u(t) takes its values
(a.e.) in Y and from theorem 3.3, the lemma is true for p = 0 and p = 1.

From lemma 4.1 it is sufficient to prove the result, when 0<p<1, for
u e D(l_f;X ). Accordingly with (3.2), we can write

(4.3) A=Y e pymeint = Ys x Yy x Y_jpx, s = (1 — pym, n=m(
and one has

(4.4) Au =Y, « D™, with D™ € X,

so that

(4.5) £u)) = s f t — o) ' D"i()do

where the integral in (4.8) take a sense because s — 1 > —1. B
Now we can find two smooth functions ¢;, ¢ = 0,1 defined on R+, satisfying

(4.6) S+ ¢, =1 fort >0,
and
(4.7) D" [ts‘l%} e L\R™), 15"”‘1<,’01 e L\R™)

In order to do that we can take ¢, = 1 —e ™", ¢, = 1 — &, k sufficiently large.
Then we obtain a decomposition of A°u in Xy + X; by
(4.8) Aut) = wo@®) + (), v; € X5, 1=0,1
with 1 ) 1,
D’/}Z S— S— DWL
Yo = F(S) [ (t ¢0)] V1= F( )t ¢1 * ( u)

The kernels of y, and w; being in L'(R") one can apply theorem 3.8 to obtain
(4.9) No(wo) < po(m, p)No(w), Nilyy) < y1(m, p)N1(D"w)
and the proof of lemma 4.3 follows by density.

2) Second step.

We are going to use interpolation by complex method. We recall that if
Ay, A1, A, , X, Y, are like Ay, Ao, A an intermediate space between Ay, A; is
any normed space A such that X c A C Y with continuous embedding.
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Such a space A is a space of interpolation, if every linear mapping from Y into
itself which is continuous from A, into itself and from A; into itself is auto-
matically continuous from A into itself.The complex method (see [10], [18]) is a
method which allows to construct interpolation spaces from two normed spaces,
Banach spaces or Hilbert spaces, Lorentz spaces and so on...

Let Ay, A; two Banach spaces and consider the space K(4y,A) of analytic

functions .
fiz={+in—f)

with values in Y, which is defined on the open strip B = {0<(<1, n € R},
continuous on the closed strip B = {0 < { <1, n € R} and such that

(4.10) fGan) € Ay, and n—f(@in) s continuous and bounded from R, — A,
(4.11) fA+1n € Ay, n—f +in) is continuous, bounded from R, — Ay

equipped with the norm
(4.12) Fliciy = sup | F@nls,, sup |FL+inly]
n n

and from a theog#em~ of Carleman [23] (known also as “Theorem of three lines”)
one see that (A, A7) is a Banach space.
For 0<0<1, one defines

(4.13) (Ay, Ay),={aeY; a=f0)}
which is a Banach space equipped with the norm

(4.14) lallg = @nf | lcag,ap-
fO=a

REMARK 4.4. — Boundeness in (4.13), (4.14) is not essential for the theory (see
[20]). In fact we can consider also the case

(4.15) | fCml g, < 7€, |F+ iy, < ye,

one obtains a space K,s,(Ao, A1) normed by (4.15) where e~ *If is subsituted to f.
However one has

(4.16) ICemp(Ao,Al) = IC(AO, Al), with equivalence of norms.

Like Y_;, is a group of operators, from the properties of semi-groups of class C°
one has

(4.17) vneR,|Y_, < eVl 9. 0 = constants > 0

*Hc(X)

(in the case ¢; = 1, we can make 7, o« more precise (see [3]).
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Thus we are in the framework of remark 4.4, if we choose f(z) = A°. In order
to take in account (4.19) we define, with z = p + ¢{, a function

(4.18) (2, 1) — f(z, 1) = @) Lult), u € W

where

(4.19) 7(2) = explm(z — p)*]

then

(4.20) 2(p) =1, xlim|e™ < + oo, [x(1 +inle < + oo, n=m¢,
Now, let

fR) =t—f(z,0)

therefore f': z — f(2) is analytic bounded from B={0<p<1, n€ R} to Xo+Xi,
and continuous bounded from B to X, + X7, then by complex interpolation

(4.21) fp) € (Xo,X1),, p€10,1.
But, we know

(4.22) (X0, X1)p= LL! [(Ao, A1)y]
where

(4.23) co = cy’cl, pig = lp_o / U%
with

(4.24) IFO)lp< [No@)T*INy(D" ).

hence one can take 6 = p =j/m, 1 <j <m — 1, and theorem 4.2 is proved.

REMARK 4.5. — The theorem 4.1, valid for ¢; € H(p), improve too, of the point
of view of the spaces, the result of [5] (Th. 5.7), which gives the same result (with
only ¢; € A(p)) but we have only

(4.25) D’u € LT} (00, Ag; 00, A1)]

where TJ(.’") is the space of trace of order j of the space W™ (c0,1,A; 00,1, Ay).
From [21] T;W ~ S(c0,j/m,Ag; 00,1 —j/m,A;), so that from [28]
T;.m) ~ (AO,A1)9,OC- Now again from [21] one has

(Ag,A1) C (Ag,A1),C (A9, A1).000-

0.1

The result follows.
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4.2 — Fractional derivatives.

First, consider the case m = 1. In this case, lemma 4.3 being true, theorem 4.1
gives

THEOREM 4.6. — Assume m = 1, and let 0 < u < 1, then if u € W one has

(4.26) D'u =Y, xu € L [(Ao, A1), ]
with
(4.27) N (D"u) < [No@)" *No(Duw)}.

REMARK 4.7. — Consider the case Ag=A; =R, and ¢y = ¢; = 1, then the
corresponding space W is the Sobolev space W'(R") = WI(R™) and theorem
4.5 gives
(428) Dru=Y ,xueL}RY), |Dul,< ylul} *Duli< ylully:, 0<pu<l.
The result can be found also using Fourier’s transform (see section 5).

Now we consider for 0 <u <1 the space

W = {u; ue Lg(Ao), Yopxu € Ll (A1)}

Which is a Banach space provided with the natural norm.
We claim

THEOREM 4.8. — Assume ¢; € H(p;), i = 0,1 then for all u € W%, one has

(4.29) D'(w) € L@f’[(Ao,Al)vL 0<v<y,
with
¢, =cy e 1 1-v v
O T pe ;e
and
(4.30) N(D"w) <y [Ngw)""[N1(D*w)]".

ProoF. — Like for theorem 4.1 we consider 4* = Y_ .+ and to prove lemma 4.3
we have only to check that (4.11) holds. This is obvious for ts‘lgbl and like the
choice of ¢, implies t*~1¢, € WL(R™), the remark 4.6 gives the result.
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5. — Return to unweighted spaces

When ¢y = ¢; = 1 théorem 4.1 and similar results for fractionnal derivatives
are obviously true without conditions on the spaces excepted the fact that Y_;,
does not works for p = 1 and one extends simply the result to RV.

Infactift = (¢1,...,tn), 7= (ny,...,ny), one defines

Y—in = Y—iih ®...Q Y—i’ﬁw
and the associated function f(z). Therefore if

W = [u; u e LP(RY, Ay), DP(w) € LM (RN, Ay),
B= By, Bds 1Bl = 1Bil + -+ |yl = m,

Which is a Banach space provided with the norm

(5.1)

(52) e,y = Notw) + S Ni(DPw),
=t

one has for j = Gjr, .. .jw), 1<|jl<m, 0=|jl/m,

j 1 1-60 6
J Po [ PN _ 2 v
(5.3) Di(u) € LP"[RN, (Ao, A1), = Xo, o=t
with
(54) DIy, < 7 INo@)I 'L Y Ni@w))’.

B=m

Like Fourier transform is a good tool when 4;, i = 0,1, are Hilbert spaces (°)
and gives the same results that the direct method of theorem 4.1, we can hope to
use this transformation also in the case where A; are Banach space. However the
case is more complicated and we are leading to restrict the class of the spaces
considered to do that.Now we return to simplify to the case of N = 1. Letting as
above X; = LPi(4;), 1 = 0,1, and if

(5.5) F:f—f=F

is the Fourier transform of the vectorial distribution (*) f defined by

7@ = [ et @yda

R

(® see [17], [20].
(") see [31].
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(when f is a function), we let
(5.6) X, =FX)=, i=0,1

which is a Banach space for the topology carried out by F.
Let @ be any functor ) of interpolation

LEMMA 5.1. — F is an isomorphism from &(Xy, X1) onto @(Xo,Xl) and one
has

(5.7) B(Xo, X;) = DXy, X1).

Proor. — See [3].

But we know () that if f € LP(B), B being a Banach space, one has generally
f Z Llloc(B), so that, we don’t have an Hausdorff-Young theorem like for functions
with scalar values, that is: if f € L?, 1<p <2, then f e L”, 2<p < oo,

1 1 . .
5 + 17 = 1. Then it is natural to introduce the

DEFINITION 5.2. — We shall said that B is of type p, 1 < p <2,if f € LP(B)
implies f € L” (B) l+ 1 1
'pop

One has (see [27]): every Banach space is of type 1, every Hilbert space is of
type 2 and if B is reflexive and of type p, then the dual B’ is also of type p. [27].

Now if we consider the spaces 4;, © = 0,1, like in subsection 2.2, we have in
particular

PROPOSITION 5.3. — Assume A; of type p;, (¢ = 0,1) and suppose that LP(Ag)
or LP'(A;) to be reflexive, then for 0 < 0 <1, (Ao, A1), ts of type py, given by
1 1-6 0
R + —.

Po Po y4i

ProoF. — From assumptions we have
F: X, =LPA)—X; =LA, i=0,1,
then from lemma 5.1

(5.8) Fio (o Xo)y— (LA, LHAD),

(®) that is a method to construct interpolation space ([3], [13]).
(®) for example see [27].
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But, from ([10], [18]), the assumption of reflexivity implies

(5.9) (X0, X1)g= L [(Ag, A1)y)

and

/ / / 1 1
(L (Ag), LP1(A1)), C L7 [(Ag,A1)y], —+ =1
Po Py

The result follows.

REMARK 5.4. — From lemma 5.1 and some properties in [21] the result of
Proposition 5.3 is also valid by real method for (49, A1) 0p which is of type p = py,
but here without the assumption of reflexivity.

Now if Wim) ={u; u € Xo, D"u € X1} provided with the natural topologie
we can state

THEOREM 5.5. — Assume A; of type p; i1 =0,1), and reflexive, then for
every j, 0<j<m, the mapping u— Diu is continuous from W{m) mto
Xy =LP[(Ao,A1),], 0=j/m and one has

D]y, < 3NN D)
PRrOOF. — Consider with X; = LP/(4;), i = 0, 1:
(5.10) W = fv; v e Xo, €™ e Xy}

provided with the norm

(511) [0l = ol + 01l

1

Wim) is a Banach space isomorphic to F (W{"™).
Like from assumptions, Lemma 5.1 and Proposition 5.3, one has (5.8), (5.9),
and also that (4, A4;), is of type py, we have only to prove the continuity of

(5.12) i—s |V = Ty, W — ()?0,5(1)_/ L 0<j<m.
j/m

We can take notice that one has the scheme (S)
W X R+ X
o T % R+ X
then introducing the function of the complex variable z = p + 7,

2z — UR)=T.u
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we have to check that
U is analytic bounded from B — )A(o + )A(l, and continuous from B — )A(O —i—)A(l,

where B and B are the strips defined in section 4.
Analyticity and continuity are obvious and for boundeness we look on the
decomposition

(5.13) Tmza(@:%w[ww%] = ¥ +¥, ¥, eX,;, i=0,1.
mp
Like the factor w(é) = lf|| R is bounded as 0<p <1, and because

¥, € X; = LPi(4;), one has ¥; € LP(4;,), i =0, 1.
On the other hand, from the scheme (S):

(5.14) sup UG- < collitll , sup [[UQA +in)|| < e||E" @]l
R Xo X' yer X1

ne

therefore one deduces by complex interpolation

(5.15) U(j/m) € (Xo,X1);,,,, 0<j <m,

with

(5.16) UG 3,2, < cllfall 11l
= jm

and the wanted result follows with the help of proposition 5.3.

REMARK 5.6. — We can extend obviously the result to RV to obtain (5.3), (5.4)
for the space W defined by (5.1), (5.2).

REMARK 5.7. — If we do not assume the conditions of p type, we have to work
with X; = F[LPi(A;)] and one arrives to formula (5.13) where we need to have

(5.17) ¥, e FILP(AY], i=0,1.
Like the factor u(¢) satisfies the Michlin condition
(5.18) sup [|E[Du(E)]| < + oo

EeRN

it is natural to assume that A; is such that the theorem of Michlin on multipliers
was true in F[LPi(A;)], that is the condition M of [3] (see introduction).
Therefore the result of theorem 3.5 and the Remark 5.6 can be extended to
that general case. Like one don’ thave a characterisation of spaces satisfying the
condition M, spaces of p type gives a realistic example for applications.
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