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The Dynamics of Risk Beyond Convexity

MARCO MAGGIS

Abstract. — We outline the history of Risk Measures from the original formulation given by
Artzner Delbaen Eber and Heath until the more recent research on quasiconvex Risk
Measures. We therefore present some novel results on quasiconvex Risk Measures in
the conditional setting, focusing on two different approaches: the vector space compared
to the module approach. In particular the second one will guarantee a complete duality
theory which is a key ingredient in the representation of risk preferences.

1. — Introduction: the axiomatic birth of risk measurement
What is Risk?

Due to the recent financial crisis which has sunk the trust and optimism of
people towards financial markets, Risk has become one of the most used and
misused words in everyday life. Nevertheless a rigorous mathematical definition
of Risk is a delicate issue even for financial practitioners.

A seminal contribution to this topic was surprisingly given by Daniel Bernoulli in
1738, who perceived the role of the risk aversion in everyday life decision
making. This was the starting point of the notion of Expected Utility.

‘The determination of the value of an item must not be based on its price, but
rather on the utility it yields. The price of the item is dependent only on the thing
itself and is equal for everyone; the utility, however, is dependent on the par-
ticular circumstances of the person making the estimate. Thus there is no doubt
that a gain of one thousand ducats is more significant to a pauper than to a rich
man though both gain the same amount.

[...] Now it is highly probable that any increase in wealth, no matter how
msignificant, will always result in an increase in utility which is tnversely
proportionate to the quantity of goods already possessed.

[...] First, it appears that in many games, even those that are absolutely fair,
both of the players may expect to suffer a loss; indeed this is Nature’s admonition
to avoid the dice altogether....This follows from the concavity of curve. [...] It is
clear that the disutility which results from a loss will always exceed the expected
gain i utility.

(D. Bernoulli, Exposition of a new theory on the measurement of risk, [3],
English translation by L. Sommer).
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The formulation of these ideas in a modern notation leads directly to the
well known representation of Agents’ beliefs in terms of an expected utility as
studied by Von Neumann and Morgenstern [20]: let L>° =: L>(Q, F, P) be the
space of essentially bounded random variables over a probability space
(Q, F,P) then for any X,Y € L*, X is preferred to Y if and only Ep[u(X)] >
Ep[w(Y)]. Here u: R — RU{—o0} is a monotone increasing concave utility
function as suggested by Bernoulli, which describes the agent attitude to-
wards Risk.

Later on, in a financial environment, many risk procedure were introduced. It
was the case of the Mean-Variance criterion (Markovitz, 1952, [17]), the Sharpe’s
ratio (1964, [18]) and the Value at Risk (V Q R), defined through the quantiles of
a given distribution with a predefined level of probability. This last method is the
most employed in credit institutes and has been pointed out as the reference
parameter by the Basel Committee on Banking Supervision (Basel II 2006).
More in detail, for a given random variable X and a parameter / € (0,1) (usually
2 = 0.01) we have

VaAR,X):=—sup{m e R | PX <m) < 1}.

The capital requirement VQR;(X) due to the risk exposure of position X is
therefore the necessary amount of money to cover eventual losses greater than
m which occur with probability (1 — ). Unfortunately we will be dangerously
affected to all the other losses (those that are under level m), which are rare
events of probability A.

Modern Developments

At the end of the Nineties, Artzner, Delbaen, Eber and Heath [2] produced a
rigorous axiomatic formalization of coherent risk measures, led by normative
intent. The regulating agencies asked for computational methods to estimate the
capital requirements, exceeding the unmistakable lacks showed by the ex-
tremely popular V@ R. The key idea was to provide a set of axioms that any
reasonable risk measure should have, instead of analyzing each single risk
measure.

Risk Measures are real valued functionals defined on a space of random
variables which encloses every possible financial position. It may seem naive to
use a single number to describe the complexity of the distributions character-
izing those random variables. On the other hand this appears as the only way to
succeed in the assessment of the capital requirement needed to a bank to recover
a high possible loss due to risky investments.

The definition of a coherent risk measure requires four main hypotheses to be
satisfied:
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DEFINITION 1. — A coherent risk measure is a functional p : L — R which
satisfies

(1) monotonicity, t.e. X1 <Xo P-a.s. implies p(Xy1) > p(X2) for every
X1,Xs € L™,
(i) cash additivity, i.e. p(X + ¢) = pX) — ¢,
(iii) positive homogeneity, i.e. for every o > 0, p(aX) = op(X),
(iv) sublinearity,ie. pX +7Y) < p(X) + p(Y).

Monotonicity represents the minimal requirement for a risk measure to
model the preferences of a rational agent. Assumption (ii) allows an important
characterization of Risk as

) p(X) = inf{a € R | X +o € A}.

The Risk of a financial position is thus the minimal amount of money that an
institution will have to sum up to X in order to make it acceptable with respect to
some criterium modelled by the Acceptance Set A ={X € L™ | p(X) < p(0)}.

Unfortunately both axioms (iii) and (iv) appear to be restrictive and un-
realistic: the former does not sense the presence of liquidity risks, the latter does
not describe the real intuition hidden behind the diversification process. For this
reason in most of the literature (iii) and (iv) are substituted by

(V) convexity,i.e. ptX; + (1 — )X2) < tp(X7) + A — t)p(X) for all t € [0, 1].

Axiom (v) has a natural interpretation: the risk of the diversified aggregated
position tX; + (1 — t)X; is surely smaller than the combination of the two single
risks.

The class of convex Risk Measures was independently studied by Foéllmer and
Schied (2002, [9]) and Frittelli and Rosazza Gianin (2002, [14]).

Further developments were provided by El Karoui and Ravanelli relaxing
the cash additivity axiom to cash subadditivity (2009, [7]) when the market
presents a stochastic discount factor; finally Cerreia-Vioglio et al. (2010, [5])
showed how quasiconvexity better describes than convexity the principle of di-
versification, whenever cash additivity does not hold true. Following this tra-
jectory we may conclude that the largest class of feasible Risk Measure is the
following.

DEFINITION 2. — A quasiconvex risk measure is a functional p : L — R
which satisfies

(i) momnotonicity, i.e. X1 < Xz implies p(X1) > p(X3) for every X1, X € L,

(vi) quasiconvexity, i.e. p(tXy + (1 —t)X2) <max{p(X1), p(Xo)} forallt €[0,1].

To better explain the quasiconvexity assumption we consider two random
variable X7, Xy € L* such that p(X;) < p(X3). (vi) is the literal translation of the
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diversification principle: actually diversification over a proportion ¢ of the posi-
tion X; and the remaining proportion on the position X, (namely tX; + (1 — ) X5)
should not increase the risk for more than p(Xs).

On the other hand it is important to recall that under the cash additive as-
sumption (ii) we deduce that quasiconvexity and convexity are equivalent. As a
matter of fact quasiconvexity assumes a primary role in those markets for which
the zero coupon bond is illiquid, and cash additivity needs to be dropped.

2. — Risk Measures in the Conditional Setting

Most of the applications that concern with decisions in the future are based on
the notion of sigma algebra, which is the main probabilistic tool aimed to the
description of the information available to the agent. As a consequence the
Conditional Expectation, which is the simplest example of conditional map, ap-
pears as the ‘red line’ that distinguishes Probability from Analysis. The condi-
tional expectation Ep[X|G] filters a random variable X with the information
provided by the sigma algebra G, giving a sort of backward projection of X. In the
dynamic description of Risk, we have the following situation: let 0 <t < T

Time Line 0 > t ~ T
Filtration o(@) G -~ F
Static Risk Measure X)) & £ = X

Conditional Risk Measure X)) & X

where () is the trivial g-algebra. In the dynamic framework the risk assess-
ment at the intermediate time ¢ deals with a future decision and is thus described
by a G measurable random variable p;(X). This means that any Risk Measure has
to be a map that takes value in a set of random variables as will be properly
formalized in the next paragraphs and in Section 4.

Notations

The probability space (@, F,P) is fixed throughout this paper and G C F
is any sigma algebra contained in F. We denote with L%(Q, F,IP) = LO(F)
(resp. L(G)) the space of F (resp. G) measurable random variables that are P
a.s. finite, whereas by LO(F) the space of extended random variables which
may take values in R U {oo}. In general since (2, P) are fixed we will always
omit them in the notation. We define LI (F)={X € L%F)|X >0} and
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LY (F)={X e LF)| X >0}. We remind that all equalities/inequalities
among random variables are meant to hold P-a.s.. As the expected value
Ep[ -] is mostly computed w.r.t. the reference probability P, we will often
omit P in the notation.

Moreover the essential (I° almost surely) supremum esssup, (X;) of an ar-
bitrary family of random variables X; € L%(Q, F, P) will be simply denoted by
sup; (X;), and similarly for the essential infimum. The symbol Vv (resp. A) de-
notes the essential (P almost surely) maximum (resp. the essential minimum )
between two random variables, which are the usual lattice operations.

Capital Requirements in the conditional setting

As explained in the Introduction (see equation (1)) the cash additivity
assumption guarantees the characterization of the Risk as a capital required
to cover future losses or equivalently the minimal amount of money that we
have to add so that the position becomes acceptable. Using the same notation
as in (2) we consider ¢ € [0,7] and a non empty convex set Cr € E C LYF)
such that CT+Lﬂ C Cp. The set Cr represents the future positions con-
sidered acceptable by the supervising agency. For all m € R denote by
vi(m, w) the price at time ¢ of m euros at time 7. The function v;(m, -) will be
in general G measurable as in the case of stochastic discount factor where
vi(m, w) = Dy(w)m. By adapting the definitions in the static framework of [2]
and [5] we set:

3) PreX) = inf {u(V) | X +Y € Cr).

Notice that the previous definition is well posed only if the sum X +Y € E for
any X € E andany Y € L%(G). In some sense Y € L%G) plays the role that o € R
had in equation (1), but since it concerns a future decision then it has to be a G
measurable random variable. For this reason we need to introduce the more
complex structure of module over the ring L°(G) as will be soon explained. Once
the opportune structure ¥ is provided equation (3) defines a Risk Measure
Popw B — L (G). When vy is linear, then Pew, 18 a convex cash additive dynamic
risk measure, but the linearity of v; may fail when zero coupon bonds with ma-
turity 7' are illiquid. It seems anyway reasonable to assume that v:(-, w) is in-
creasing and upper semicontinuous and v;(0, w) = 0, for > almost every w € Q. In
this case

Pern 0@ = 0 _inf (V@) | X +Y € Cr}0) =0, (0@, ),

where p¢,(X) is the convex monetary dynamic risk measure induced by the
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set Cr namely

X):= inf {Y|X+Y .
Pe,(X) YéEO(g){ | X +Y eCr}

Thus in general p, ,, is neither convex nor cash additive, but it is always qua-
siconvex.

3. — Current literature on L°-modules

This section is inspired by the contribution given to the theory of L” -modules
by Filipovic et al. [8] on one hand and on the other to the extended research
provided by Guo from 1992 until today (see the references in [15]).

We will consider L°(G), with the usual operations among random variables, as
a partially ordered ring and we will always assume in the sequel that 7( is a
topology on L°(G) such that (L°(G), 7¢) is a topological ring. We do not require
that 7o is a linear topology on L%(G) (so that (L°(G), 79) may not be a topological
vector space) nor that 7, is locally convex.

DEFINITION 3 (Topological L°-module). — We say that (E, 1) is a topological
LO-module if E is a module over the ring L°(G) and t is a topology on E such that
the module operation

(i) &, x (1) — &, 1), (X1,X2)— X1 + X5,
(i) (L), 70) x (E,7) — (E,7), (,X2) = Xz

are continuous w.r.t. the corresponding product topology.

DEFINITION 4 (Duality for L°-modules). — For a topological L°-module (B, 1),
we denote
4) E:={u: &, ) — (L%0), 10) | 1t is a continuous module homomorphism}.

It is easy to check that (E,E*, (-, ")) is a dual pair, where the pairing is given by
(X, 1y = uX). Every p € E* is L%G)-linear in the following sense: for all
o, p € L%G) and X;,Xs € E

w(oXy + pXo) = ou(Xy) + pu(Xs).
In particular, u(X114 + Xo14e) = u(X1)1a + ((X2)1 ¢ for every A € G.

DEFINITION 5. — A map || - || : E — L°(G) is a L(G)-seminorm on E if

A 19X = IplIX|| for all y € L°(G) and x € E,
) |1 X1 + Xaof < || X1]| + | Xz for all X1,Xs € E.
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The L°(G)-seminorm || - || becomes a LO(G)-norm if in addition
(iii) || X|| = 0 #mplies X = 0.
We will consider families of L%(G)-seminorms Z satisfying in addition the
property:
(5) IX[| =0, V|-l € 2 iff X=0,
As clearly pointed out in [15], one family Z of L°(G) -seminorms on £ may induce
on E more than one topology t such that {X,} converges to X in (¥, 1) iff

| X, — X|| converges to 0 in (L%(G), 7o) for each || - || € Z. Indeed, also the topology
79 on L%G) play a role in the convergence.

DEFINITION 6 (L°-module associated to Z). — We say that (E, Z,1) is a L°-
module associated to Z if:

(1) Z s a family of L°-seminorms satisfying (5),
(i) (E,7)1s a topological L'-module,
(iii) A net {X,} convergesto X in (K, ) iff | X, — X|| converges to 0 in (L°, 7o)
foreach || - || € Z.

Remark 2.2 in [15] shows that any random locally convex module over R with
base (2, G, P), according to Definition 2.1 [15], is a L°-module (£, Z, ) associated
to a family Z of L%-seminorms, according to the previous definition.

ExXAMPLE 1. — Let F be a sigma algebra containing G and consider the
generalized conditional expectation of F -measurable non negative random
variables: E[ - |G]: L%.(Q,F,P) — L} := L%(Q,G,P)

E[X|G] =: HT E[X An|Gl.
N——+00
Let p € [1,00] and consider the L°-module defined as
LY(F) = {X e L%Q,F,P) | |X|G|, € L%Q,G,P)}
where || - |G||,, is the LO-norm assigned by

E[|X|"|GP if p< + 00

(6) 1X161l, =: { _ _
inf{Y e L%G) | Y > |X|} if p=+oo

Then LE(F) becomes a L°-normed module associated to the norm || - |G| » having
the product structure:

LY(F) = LNQLP(F) = {YX | Y € '), X € L’(F)}.

For p<oo, any L°-linear continuous functional p : Lg(}" ) — LO can be identi-
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fied with a random variable Z € Lg(}' ) as u(-) = E[Z - |G] where l + l =1 So
we can identify E* with LL(F). pq

Based on the results of Guo [15] and Filipovic et al. [8], we show that a family
of seminorms on E may induce more than one topology on the L°-module £ and
that these topologies guarantee a generalized version of the Hahn Banach
Separation Theorem. The two different topologies on £ depend on which to-
pology is selected on L: either the uniform topology or the topology of con-
vergence in probability.

These topologies on £ will collapse to the same one whenever G = (%) is the
trivial sigma algebra, but in general present different structural properties.

We set:

[X1s := sup{|IX]| | |1 X]| € S}

for any finite subfamily S ¢ Z of L° -seminorms. Recall from the assumption
given in equation (5) that || X||g = 0 if and only if X = 0.

The uniform topology 7. [8]

In this case, L? is equipped with the following uniform topology. For every
e€ LY, the ball B,:={Y €L"||Y|<e} centered in 0 € L" gives the neigh-

borhood basis of 0. A set V C L° is a neighborhood of Y € L if there exists
¢€ L% suchthat Y+B,CV.AsetVisopenifitis a neighborhood of all Y € V.

A net converges in this topology, namely Yy i Y if for every ¢ € LY, there
exists N such that |Y — Yy|<e for every N > N. In this case the space (L’, | - |)
looses the property of being a topological vector space. In this topology the
positive cone Lﬂ is closed and the strictly positive cone Lﬂ + is open.

Under the assumptions that there exists an X € E such that X14 # 0 for
every A € G and that the topology t on £ is Hausdorff, Theorem 2.8 in [8]
guarantees the existence of Xy € £ and u € E* such that u(X;) > 0.

A family Z of L’-seminorms on E induces a topology on E in the following
way. For any finite S C Z and ¢ € L%, define

Us, ={X€E||X|s<¢}
U:={Us,|S C Z finite and ¢ € L} }.

U gives a convex neighborhood base of 0 and it induces a topology on E denoted
by 7.. We have the following properties:

1. (B, 2,t)isa (L’ | - |)-module associated to Z, which is also a locally convex
topological L%-module (see Proposition 2.7 [15]);
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2. on (E, Z,7.) we can apply the generalization of Hahn Banach Separation
theorem either for closed or open sets (see Theorems 2.6 and 2.8 [8]),

3. any topological (L, | -|) module (¥, 7) is locally convex if and only if 7 is

induced by a family of L’-seminorms, i.e. t = 7., (see Theorem 2.4 [8)).

A probabilistic topology 7., [15]

The second topology on the L%-module £ is a topology of a more probabilistic
nature and originated in the theory of probabilistic metric spaces.

Here L is endowed with the topology 7. ; of convergence in probability and so
the positive cone LE’r is 7, j-closed. According to [15], for every ¢, A € R and a finite
subfamily S C Z of L -seminorms we let

Vsos = {X € B | P(|X|[g<&) >1— A}
V= {Us,, | S C Z finite, e > 0, 0<i<1}.

V gives a neighborhood base of 0 and it induces a linear topology on E, also
denoted by 7, ; (indeed if E = L° then this is exactly the topology of convergence
in probability). This topology may not be locally convex, but has the following
properties:

1. (E, Z,1,,) becomes a (LY, 7, ;)-module associated to Z (see Proposition 2.6
[15]),

2. on (&, Z,7,,) we can apply the generalization of Hahn Banach Separation
theorem only for closed sets (see Theorems 3.6 and 3.9 [15]).

4. — Quasiconvex duality in the conditional setting

The relaxation of the convexity property for the risk maps has an immediate
drawback in terms of the dual representation of the risk measures, since
Fenchell-Moreau theorem fails for a non-convex functional. In the static case this
problem has been addressed by Cerreia-Vioglio et al. in [5], providing a robust
dual representation of the Risk Measures as a supremum over some probabil-
istic scenarios, based on the Penot-Volle dual representation (see [19]). The re-
sult obtained in [5] matches the one that holds for convex Risk Measures (see
[14]) and can be stated as follows.

THEOREM 1 (Cer_reia—Vioglio, Maccheroni, Marinacci, Montrucchio, [5]). — A
function p : L® — R is quasiconvex monotone decreasing and o(L>, L')—lower
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semicontinuous if and only if
pX) =sup R(Eg[ — X1,Q),
QeP
R(m,Q) =inf{p(&) | £ € L™ and Eg[ — &1 =m}

where P is an opportune set of probability measures.

Notice that R : R x P — R and R(m, Q) can be interpreted as the reserve
amount required today, under the scenario @, to cover an expected loss m in the
future.

In this section we consider the following type of Conditional Risk Measures
and we compare the results obtained in two different frameworks. Here (£, > ) is
a partially ordered convex lattice E ¢ L%(F) and we assume that the following
property holds:

(7 XeFandAc F= X1y € L.

DEFINITION 7. — A Conditional Quasiconvex Risk Measure is a map
p: E — L%G) such that

(MON) monotone decreasing if for every X, Y € K
X<Y = pX=pd);
(QCO) quasiconvex if for every X, Y € E, A € L°(G)and 0 < 4 < 1
pPUX + (1 = DY) < pX)Vp(Y);
(REG) regular if for every X, Y ¢ E and A € G
PX 1y + Y1ye) = p(X)1a + p(Y)1ye.

The vector space approach [11]

We now adopt the standard approach in which £ is any locally convex topo-
logical vector space of random variables satisfying the following assumptions

1. The order continuous dual of (K, >) denoted by E*, is a lattice ([1], Th. 8.28)
that satisfies E* — L(F).

2. The space E endowed with the weak topology o(E, E*) is a locally convex
Riesz space.

REMARK 1. — Many important classes of spaces satisfy these conditions,
such as
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— The LP-spaces, p € [1,00]: E = LP(F), E* — LL.

— The Orlicz spaces LY for any Young function ¥: E* = L¥" — L!(F), where
¥* denotes the conjugate function of ¥;

— The Morse subspace M? of the Orlicz space LY, for any continuous Young
function ¥.

In order to state the dual representation in the vector space case we set

P = {% | Q@ < P and Q probability}
and
(8) R(Y.Q) = ?Elg{P(f) | Eql — &Gl =q Y'}.

THEOREM 2 (Frittelli - Maggis [11]). — Suppose that E is order complete (with
Sfurther topological assumptions). If p : E — ZO(Q) is (MON), (QCO), (REG) and
o(E, E*)-lower semicontinuous then

9) pX) = sup R(Eg[—X|G],Q).
QeE*NP

Sketch of the proof of Theorem 2

We here point out the essential arguments involved in the proof of Theorem 2
and we defer to the original article [11] for the details and the rigorous state-
ments.

Unfortunately, we cannot prove directly that Ve > 0, 3Q, € E* NP s.t.

(10) {¢ e B Eq[¢G] >q, E[X|G1} C{E € E | pd) > pX) — &}

relying on Hahn-Banach Theorem, as it happened in the real case (see [19]).
Indeed, the complement of the set in the right hand side of (10) is not any more a
convex set — unless p is real valued — regardless of the continuity assumption
made on p.

Also the idea applied in the conditional convex case [6] can not be used here,
since the map X — Ep[p(X)] there adopted preserves convexity but not quasi-
convexity.

Then our method is to apply an approximation argument and the choice of
approximating p( - ) by

PrCY =" palla,

Aer

is forced by the need to preserve quasiconvexity. Here [ is any finite partition of
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Q and py(X) = sup p(X). Let
A

HX) = sup inf{p(&) | Eql¢|G] =¢ EqlX|G1}
QeEnp <€k

H'(X)= sup inf{p"(©) | Eql¢|G] =q Eq[X|G1}.
QeEnp <CE

I The first step is to prove that:
n'(X) = H' (X)

This is based on the representation of the real valued quasiconvex map
p4. Therefore, the assumptions (MON), (REG), (QCO) and (LSC) on p are
here all needed.

II Then it is a simple matter to deduce p(X) :irrlf X)) = ir}f HI'(X),

where the inf is taken with respect to all finite partitions.

IIT The last step, i.e. proving that ir}f H'(X) = H(X), is more delicate.

It can be shown easily that is possible to approximate H(X) with
R(Eq[ - X|G],Q,) on a set A, of probability arbitrarily close to 1.
However, we need the following uniform approximation: for anye > 0
there exists Q. € E* NP such that for any finite partition I" we have
H'(X) — R(Eq,[ — X|G],Q,)<e on the same set A,. This key approxima-
tion result shows that the element @), does not depend on the partition
and allows us to conclude the proof.

The module approach [16]

We now replicate and empower the same results given in the previous
paragraph using the L°-module technology. The proof of our result is based
on a version of the hyperplane separation theorem and not on some ap-
proximation or scalarization arguments, as it happened in the vector space
setting. By carefully analyzing the proof in [16] one may appreciate many
similarities with the original demonstration in the static setting by Volle [19].
One key difference with [19], in addition to the conditional setting, is the
continuity assumption needed to obtain the representation. We choose to
work, as in [4], with evenly quasiconvex functions, i.e. function having evenly
convex lower level sets. This is an assumption weaker than quasiconvexity
and lower semicontinuity. The notion of conditional evenly convexity has
been studied in [13], matching the characterization originally given by
Fenchel.



THE DYNAMICS OF RISK BEYOND CONVEXITY 453

DEFINITION 8. — Let C be a subset of E.

(CSet) C has the countable concatenation property if for every countable
partition {A,}, C G and for every countable collection of elements
{X,},, € Cwe have Y~ 14, X, €C.

We notice that an arbitrary set C C £ may present some components which
degenerate to the entire module. Basically it might occur that for some A€ G,
Cly=FE1y,i.e., for each ¢ € E there exists n € C such that #14 = £14. In this case
there are no chances to guarantee a separation on the set Q2 as for the results
given in [8]. Thus we need to determine the maximal G-measurable set on which C
reduces to E. The existence of the maximal element has been proved in [13] and
the following definition is well posed.

DEFINITION 9. — Fix a set C C E and A(C) = {A € G|C14 = E14}. We denote
with Ac the G-measurable maximal element of the class A(C) and with D¢ the
(P-a.s. unique) complement of Ac. Hence Cly, = Ely,.

DEFINITION 10. — Let C be a subset of E. We will say that

(i) X € K isoutside Cif 14{X} N14C = & for every A € G with A C D¢
and P(A4) > 0.
(iii) C is conditional evenly convex if C satisfies (CSet) and for every X
outside C there exists a u € E* such that

wX) > (&) on De, V¢ €C.

In [13] it is showed that any conditional evenly convex set is also L°-convex
and it can be characterized as intersection of half spaces.

DEFINITION 11. — A map p : E — L%G) is

(EQC) conditionally evenly quasiconvex if Uy = {E€ E|p(&) <Y} are
conditionally evenly convex for every Y € L°(G).

The following Theorem is the module counterpart of Theorem 2. One may
appreciate the pretty weaker assumptions that allow the statement and the proof
will be a natural application of functional analysis more that a mere matter of
hard analysis as for the vector space approach.

THEOREM 3. — If p: E — L%G) is (REG), (EQC) then

(11) pX) = sup RuX), w),
JuS
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where for Y € L%G) and p,
(12) RV, )= inf {p(&) | (&) > Y}

Sketch of the proof of Theorem 3

We here propose a non-rigorous simplification of the proof given in [13]. We
defer to the original paper for all the technical details. Here we suppose for
simplicity that p(0) = 0.

First there might exist a set A € G on which the map p is constant, in the
sense that p(&)14 = p(n)14 for every &, n € E. For this reason we introduce

A:={B €| plp =pilp V¢ n € Ly(F)}.

There exist two maximal sets A € G and A" € G for which P(ANA") =0,
PAUAM) =1 and
p(&) = pG) on A for every &, ne K,

p(G)<py) on A for some (1, € E.
Fix X € E and G = {p(X) < + oo}. For every ¢ € L)_ (G) we set

Y. =: pX)14 + (pX) — &)1grar + elgenar
and for every ¢ € L(G),, we set the evenly convex set

Co=ACeE|pO <Y} #0
This may be separated from X by x, € E* i.e.
#:(X) > w1, (&) on De,, VE€C,.
Since
{E€E | 1,y < u 1y} C{EEE | p&) > (p(X) — &)l +elge on A},

one can easily deduce that on the set A™

pX)1y > 225 {pO1r | 1, (&) > (XD}

(13) = ég {pOLa | p(&) > (p(x) — &)1 + elge on A}
(14) > (pX) — &lgrar + elgenar

The representation (11) follows by taking ¢ arbitrary small on GNA" and
arbitrary big on G° N A" and observing that on A the representation trivially
holds true.
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Evidences of the power of the L'-module approach: a Complete Duality
result.

A complete duality for real valued quasiconvex functionals has been firstly
established in [4]: the idea is to prove a one to one relationship between qua-
siconvex monotone functionals p and the function R in the dual representation.
Obviously R will be unique only in an opportune class of maps satisfying certain
properties. In Decision Theory the function R can be interpreted as the deci-
sion maker’s index of uncertainty aversion: the uniquesness of K becomes
crucial (see [4]) if we want to guarantee a robust dual representation of p
characterized in terms of the unique R. In mathematical terms

DEFINITION 12. — Let P be the set of probability measures on (2, F). There
exists a complete duality between a class R of maps
R:RxP—R
and a class L of functions
p:E—R
if for every p € L the only R € R such that

pX) = sup R(Eql — X1,Q)
QeP
18 given by
R(m,Q) = giean {p&) | Egl — &1 > m};

and conversely for every R € R there is a unique p € L satisfying the above
equations.

To the best of our knowledge the following Theorem is the first establishment
of such a Complete Duality in the conditional framework for modules of the LP-
type, i.e. £ = Lg(}" ). (see [12] for the complete proof)

THEOREM 4 (Frittelli-Maggis [12]). — The map p : LS(]—' ) — L%G) satisfies
(REG), (MON), (EVQ) if and only if

(15) pX) = SUER(EQ[—XIQ], Q)

where
R(Y,Q)= inf Eq[-¢|g] =Y
¥,Q é;gé(f){ﬂ(f)\ ol-¢g =Y}

is unique in the class M(L2(G) x PY).
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DEFINITION 13. — The class M(L(G) x P?) is composed by maps K : LY(G) x
P! — L) s.t.

(1) K is increasing in the first component.
(i) K(Y1a, Q14 = K(Y, Q)14 for every A € G and ( Zg) >

(i) infycpoq K(Y,Q) =infy g K(Y, Q") for every Q,Q € P.

(v) K is o-evenly L°(G)-quasiconcave: for every (Y*, Q)€ L(G) x P9,
AeG and aeL%G) such that KY* Q)<a on A, there exists
(S*,X*) € L0 (G) x LI(F) with

* QUK *d
Y*'S +E[X e

for every (Y, Q) such that K(Y,Q) > o on A.

]<YS —|—E’[X %g] on A

(v) the set K(X) = {K(E[X
every X € LE(F).
i) K(Y,Q)14 = KXY ,Q2)14, if

7D IG1,Q) | Q € 73‘7} is upward directed for

il% ‘fgf 14, Qi €PY, and A€G.

REMARK 2. — In view of the establishment of a complete duality one could
argue that the vector space approach should be set aside in favor of the module
approach. This is not completely appropriate: as shown by Frittelli and Maggis
[10] the class of quasiconcave maps given by Conditional Certainty Equivalents
leads to a vector space approach using Orlicz spaces. It does not seem reasonable
in such an example to extend the conditional maps to the L°-module set up.
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