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A Deconvolution Algorithm for Imaging Problems
from Fourier Data

MARCO PrRATO

Abstract. — In this paper we address the problem of reconstructing a two-dimensional
mmage starting from the knowledge on mnonuniform samples of its Fourier
Transform. Such inverse problem has a natural semidiscrete formulation, that is
analyzed together with its fully discrete counterpart. In particular, the image re-
storation problem in this case can be reformulated as the minimization of the data
discrepancy under nonnegativity constraints, possibly with the addition of a fur-
ther equality constraint on the total flux of the image. Movreover, we show that such
problem is equivalent to a deconvolution in the image space, that represents a key
property allowing the desing of a computationally efficient algorithm based on
Fast Fourier Transforms to address its solution. Our proposal to compute a reg-
ularized solution in the discrete case involves a gradient projection method, with
an adaptive choice for the steplength parameter that improves the convergence rate.
A numerical experimentation on simulated data from the NASA RHESSI mission
is also performed.

1. — Introduction

In many imaging problems, one has to reconstruct a two-dimensional image
of a certain object starting from the knowledge of one or more corrupted ver-
sions of it, depending in general of the data acquisition system that introduces
blurring effects and statistical noise. In this cases, the data and the unknown are
both “vectorized” images, possibly with different size, whose relation can often
be assumed as linear thanks to the use of suitable physical approximations. In
imaging problems arising in several scientific areas (e.g., radioastronomy, X-ray
astronomy, computed tomography, magnetic resonance imaging [7, 13, 21]), in-
stead, the data belong to a space different from the one of the unknown object. In
particular, the specific nature of the acquisition system provides measures (or
estimates) of the Fourier Transform of the object in a set of hardware-depending
spatial frequencies. In the general case, the distribution of such frequencies in
the Fourier plane is highly sparse and irregular, with specific zones in which the
data are concentrated side by side to other areas with a total lack of information.
This problem presents both theoretical and computational difficulties: from the
theoretical point of view, we are dealing with an inverse problem which is ill
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posed in the sense of Hadamard [22]. In fact, due to the sparsity of the samples in
the frequency space, infinite solutions are admissible; moreover, some of these
solutions could not be physically meaningful because of the error which poten-
tially affects the data. On the other hand, from the computational point of view,
the possible strong irregularity of the data sampling makes the use of the
Nonuniform Fast Fourier Transform (NFFT) algorithm [17] very dangerous,
since the choice of the interpolation strategy at the basis of NFFT could play a
crucial role in arbitrarily filling the areas in the frequency space which lack in
information. Moreover, for measured data affected by a high level of noise, the
interpolation phase may lead to an amplification of this noise level on the re-
sampled data with the result of artifacts formation and undesirable effects in the
corresponding reconstructed image.

Here we propose an alternative strategy to reconstruct the desired image
from the available set of Fourier samples that does not perform any inter-
polation and resampling procedure, thus avoiding arbitrary assumptions and
possible noise amplifications. In particular, we reformulate the imaging pro-
blem as a constrained optimization problem, in which the stationary points of
the objective function can be viewed as the solutions of a deconvolution pro-
blem with a suitable kernel. We propose a fast and effective gradient projec-
tion algorithm to provide regularized solutions of such a deconvolution pro-
blem by early stopping the iterations [2, 11]. An adaptive steplength para-
meter choice is adopted to improve the converge rate of the algorithm; more in
details, we implemented a suitable alternation of the two Barzilai-Borwein
rules [1], which recently obtained very good results in signal and image de-
noising and deblurring problems [2, 11, 28, 32]. Since the objective function
involves a convolution operator, the algorithm can be effectively implemented
exploiting the (uniform) Fast Fourier Transform.

The paper is divided in five further sections. In particular, sections 2 and 3 are
devoted to the semidiscrete and fully discrete mathematical formulation of the
problem, respectively. The analytic expression of its generalized solution is
provided and the equivalent constrained optimization problem is deduced
through the introduction of a particular convolution operator. In section 4, the
optimization algorithm is described and the regularization issue is discussed.
Numerical experiments involving synthetic data from a real-world astronomical
application are given in section 5, while some conclusions and ideas for future
developments of the method are offered in section 6.

2. — From Fourier samples to the continuous object

Inverse problems in which continuous functions have to be inferred from the
knowledge of a measurements array are called semidiscrete problems [3, 4]. In
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our case, the unknown is a non-negative two-dimensional distribution f(x,¥)
defined on a square 7 = [X;, X2] x [Y7, Y2] in the image plane, while the data

array ¢ € CM consists in a certain number of the object’s Fourier Transform
estimates corresponding to the spatial frequencies (uy,v;), k=1,...,M, ac-
cording to the relation
0] g = f fa, e D ey,

T

Each component & of the data array can be considered as the evaluation of a
continuous distribution

2) Vi, v) = f Fla, )X D dudy, (u,v) € R2
A

in the specific frequencies (uy,, v;). We consider the Hilbert space X = L3(Z, )
and the semidiscrete operator H : X — C¥ defined as

3) ) = [ e Ddady, k=1,....M, feX.
A

The adjoint of the operator H, H* : CM _ X, also called back-projection, is de-
fined as follows: given ¢ € C¥

M
(4) (H*C)(W, y) _ Z Ckef2m'(ukx+1)kil/)’ (.CU, y) cT.
k=1

Indeed, we have

M
(M Q) on = Y o [ Tl e 010 dudy
A

k=1

M
ff(x, ?/) Z cke’zni(”’c“/”’fy)dacdy _ <f7 H*C>X
T k=1

where (-,-) . and (-, -)x denote the inner product of CM and X, respectively.
Thus, the image reconstruction problem can be formulated as a linear inverse

problem with discrete data [4]
(5) Hf =y,

which is ill posed since it has infinite solutions.
We show now that equation (5) is equivalent to a deconvolution problem in the
space domain. If we recall definition (2), we observe that the discrete data g, can
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be expressed as

g = Vg, vp) :fa‘(u — v — o)V, v)dudv, k=1,... M.
R2
M
By introducing the sampling function S(u,v) = > o(u — uy, v — vi), we define
k=1
the “dirty image” f; as the Fourier Transform of the product SV:
F-1
Ja = SV.
f

In particular, for (x,y) € Z, we have

JaCe,y) = f S(u, V)V (u, v)e 2w+ gy dy
R?
M .
(6) = Z f S — wp, v — V)V (u, v)e 2D dydy
k=1 R?

M
=3 gee T = (10 g) e, ).
k=1

Using the Convolution Theorem, the function f; can be expressed as the
convolution of the inverse Fourier Transform of S and V (see figure 1):

F-1
Kxf = SV,
f
where K is the Fourier Transform of the sampling function S
f71
K =S8
j:
SPACE FREQUENCY
y
V
/ —
Convolution | l Sampling
(_
d SV
o =

Fig. 1. — Space-frequency scheme.
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defined, for (x,y) € R?, as

Kw,y) = f Su, v)e Y dudy

R?
M .
(7) = Z f S — g, v — Vg )e T dy
k=1 R2

M
— 2 : e—2mﬁ(uw+vw)
k=1

Thus, the image reconstruction problem can be formulated also as a deconvo-
lution problem in the space domain: find a function f € L?(Z) such that

8) K«f =fa.
We remark that, for f € X and (x,y) € Z,

K e y) = [ K~y - y)f @y dy

7
M . , ,
_ Z o~ 2miu @)+ (y—y") f(x/, y/)dx/d?/
T k=1

e—Zni(ukarvky) (ff(x/’ y’)ezm(“’“”*”ky”dac’dy’)
7

M= M

(Hf)ke—Zni(ukx-&-vky) _ (H*Hf)(x, y)

=
I

1

and, therefore, that

9) IK «f = fallx = |HHf — Hgl3-
From the identity

(10)  |HHf —H gl = (Hf — g)" HHHS — g) = [[Hf — gl 300+

we can see that the data discrepancy measured in the norm in C¥ induced by the
Gram matrix HH* can be expressed by means of a convolution in the space X.

Since it is natural in an image reconstruction problem to require the radiation
flux to be real and non-negative, we are interested in solving the minimization
problem

min J(f),
(11) feL*Z,R)
>0
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where J(f) is one of the equivalent distance measures defined in (9) or (10).
Moreover, it could be useful to insert also an equality constraint

[ fpdedy =,
7

where F' represents the total flux emitted by the source and inferred in some way
from the data. We observe that problem (11) can be still ill-posed, since the set of
nonnegative functions is closed and convex in L? but not compact.

3. — Discrete formulation

Although in principle the semidiscrete problem can be solved with classical
approaches with a resulting continuous solution for the unknown diseribution, in
practice a discrete version of the problem described in section 2 is considered,
thus leading to a target object in the form of a matrix. To this aim, we consider a
uniform grid over the square Z given by the points

=X+ —-Dde, y, =Y1+ " -4y, jh=1..,N

and we discretize the integral of equation (1) by the rectangular rule obtaining a
vector g € CM with

N .

g~ 3 g ) R g gy k=1, M.
=1

In the discrete settings, we would like to find an approximation of the values

fin =f @, ydedy, j,h=1,... N.

. ~N2 . .
Therefore, given a vector fj;, € N we define the linear operator H as

N

(12) Hf Y =Y fue™estown =1, ..M
=1

and its adjoint is
M .

(13) (H*C)]h = Z Ckeizm(ukxijvkyh% j7 h = 17 Ty N7
=1

where ¢ € CM, The operators (12) and (13) can be considered a numerical ap-
proximation of (3) and (4); in these settings, the discrete inverse problems is
given by

Hf =g.
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Following the process described in section 2, now we discuss the discrete version
of equation (8). With the same settings introduced before, we define the grid
points

v =X+ (- Ddx, yp, =Y1+ (" —Ddy, jh=-N,—-(N-1),...,0

and denote by Kj, the values K(x;, y,)dedy (j,h = —N, ..., N).
Thus, the discrete counterpart of (8) becomes

N
K «)@pyy) = > fnKpigon

jh=1

N M
. . —2mi(wg, (e — )+ Yg —Yn))
- 3 3o
k=1

jh=1

(14) Moo N .
— Z o~ 2miui0y+0kYg) Z f7h 2y )
k=1 jh=1
M .
_ Z efzm(ukxp+vkyq)( Hf)k
k=1
= (H *Hf )pq7

where (x),%,) is a grid point and H, H* are defined in (12) and (13), respectively.
Since

M
(15) fd(mjv yh) = ng‘e_zni(ukxj+vkyh) = (H*g)ﬂu j7 h = 17 "'7Na

k=1
we can write the analogous result in (9) as
(16) IK «f —fall* e = I|HH — H'g| 0.
We remark that also in the fully discrete setting we can write the identity
(17)  |H'Hf — H'g|* e = (Hf — gy HH(Hf — 9) = |Hf — gl 0

which shows the equivalence between the deconvolution problem and the least
squares one in the norm induced by the Gram matrix.

Therefore, our optimal real positive radiation flux image will be the solution of
the following minimum problem in the space domain:

min _ J(f),
(18) feRry
=0

where J(f) is one of the equivalent distance measures defined in (16) or (17).
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As in the semi-discrete case, the flux conservation condition can be easily
imposed by adding the equality

N
Z ]?'h =F
jh=1

to the constraints of problem (18), where again F' represents the total flux
emitted by the source.

4. — The Space-D algorithm

The simple form of the constraint to be imposed on the unknown image
suggested us to adopt a gradient projection (GP) method [5, 6, 11, 30] to address
the numerical solution of (18). The GP approach can be applied to any mini-
mization problem
min  J(f)

(19) fec

where J is a differentiable real valued function and C is a convex closed subset of
R™. Clearly, problem (18) is a special case of (19), since, even if the data are
complex numbers, the objective function is real valued and its variable is con-

strained in a subset of RV". The general form of the GP algorithm is described in
Algorithm 1, where P denotes the orthogonal projection on the set C.

Algorithm 1 Gradient Projection (GP) Method

Choose the starting point f© € C, set the parameters f, 0 € (0, 1), 0 < typin < oz
and fix a positive integer K.
For k =0,1,2,... DO THE FOLLOWING STEPS:

STEP 1. Choose the parameter oy € [0in, %macl;

StEP 2. Projection: y® = Po(f® — 0, VJ(F®));

STEP 3. Descent direction: d® = y® — f®;

STEP 4. Set 4y = 1and Jye =  max  J(f*P);
. 0<j<min (k,K—1)

STEP 5. Backtracking loop:

let Jyew = J(f® + 2,d®);
Ir Jnew < Jmcm; + ﬁjkaJ(f(k))Td(k) THEN

go to Step 6;
ELsE

set A = 0J; and go to Step 5.
ENDIF

STEP 6. Set f*+D = &) 4 ) d®),
ENDp
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In practice, each SGP iteration is based on the descent direction d*, obtained as
the difference between the current point f*® and the projection y® of the scaled
gradient on the feasible set. The global convergence of the algorithm is obtained by
means of the standard monotone Armijo rule in the linesearch procedure described
in step 5 (see [11]). We emphasize that any choice of the steplength o, € [ot5, %niaz]
is allowed; this freedom of choice can then be fruitfully exploited for introducing
performance improvements. An effective selection strategy is obtained by means of
the Barzilai and Borwein [1] rules (hereafter denoted BB), defined as

T T ,(k—
S(lc—l) S(lcfl) @ S(kfl) t(k 1)

1)
(20) =" —T__ . -7 "
s-DT -1 7 t(k—l)Tt(k—l)

where s®-D = f® _ &b ang (%D = v j¢®) - vJ(r* ). In our GP im-
plementation, the values produced by these rules are constrained into the in-
terval [oin, %mas] in the following way:

1F (s®D)¢k=D < 0 THEN
1 .
ol = min{10 - oy 3, s };

ELSE
1 s BB1 .
O‘ﬁc) = mln{“mam maX{OCmm, 0‘](9 )}}’
ENDIF

1F (s®D)¢k=D < 0 THEN
9 .
(x}c) =min{10 - o1, tmax};

ELSE
2 : BB2 .
OCEC) = mln{“max; maX{OCmm, O‘](c )}},
ENDIF

The recent literature on steplength selection in gradient methods showed
that remarkable convergence rate improvements can be obtained by alternation
strategies of the two BB formulae [30, 33] that force the selection to be made in a
suitable order of both low and high BB values. Frassoldati et al. [20] realized this
aim by means of an alternation criterion, which compares well with other popular
BB-like steplength rules, namely

1F o2 /ol < ), THEN
Oy =
Tpr1 = 0.9 - 745
ELSE
o = OCECD;
Tp1 = 1.1 75
ENDIF
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where M, is a prefixed positive integer and 7; € (0,1). As observed in several
experimental studies [2, 11], the GP method equipped with this alternation of the
two BB formulas is more efficient with respect to the same algorithm with other
steplength selection rules and also to other iterative approaches as the projected
Landweber method [18].

About the complexity of the algorithm, the main tasks are the computation of
the objective function J(f) at every backtracking loop and the gradient VJ(f) at
each main iteration, both depending of the quantities H*Hf%® and H*g. We re-
mark that H*g, that is the dirty image 1, needs to be computed only once at the
beginning by formula (15), while, thanks to the equivalence (14), the matrix—
vector product H*Hf can be efficiently computed by the FF'T algorithm. Thus,
taking into account of the zero boundary conditions on the reconstructed image,
the cost per iteration is O@2n? log(2n?)).

The last (but not the least) aspect we have to take into account is the criterion
adopted to arrest the iterations. Since problem (18) is ill conditioned and the data
are affected by noise, some regularization techniques are needed to achieve a
meaningful solution. Even if a rigorous theoretical study is not yet available, the
numerical experience on image reconstruction from noisy data demonstrates
that the GP method exhibits the semiconvergence property [3, 19]: the results of
the iterations first provide better and better approximations of the true object
but after a certain point they turn to the worse, due to increased noise propa-
gation. Therefore, regularization is obtained in practice by a suitable stopping of
the iterations: in this way, the GP algorithm is employed as an iterative reg-
ularization method. We chose a stopping rule based on Morozov’s discrepancy
equation [19, 31]. In particular, we assume that the measured data g° can be
represented in the form ¢° = g + dg, where dg denotes the noise affecting and
g = Hf, where f is the object to be reconstructed. Furthermore, we assume that
the quantity n = ||dg|| (or an estimate of it, as in the case of the application de-
seribed in the following section) is known. Then, a regularized solution f® is
computed if we terminate the optimization procedure when

(21) IHf® —g’ll <

As far as we know, no result exists proving that this criterion, applied to the GP
iteration, leads to a regularization method for the constrained least square
problem (18). However, in [2] it has been shown the practical effectiveness of the
GP method equipped with criterion (21) on image deconvolution problems.

Moreover, we include a further stopping condition based on the relative
difference of the objective function between two successive iterates

(22) IO = JFED)] <l J(FP)

where ¢ is a prefixed tolerance (in the following numerical tests we used
¢ =10"%). The criterion (22) is a quite standard condition to check the con-
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vergence of an iterative optimization algorithm. Its main purpose is to devise the
point where no significative decrease in the objective function is obtained (see for
example [32]). We include this condition in our algorithm since, from the nu-
merical experience, the discrepancy criterion alone may terminate the optimi-
zation procedure too soon [2], especially when the error norm 7 is overestimated.
In summary, our proposal is a gradient projection method with a suitable
alternation of the two BB rules for the steplength selection and a combination of
Morozov’s discrepancy principle with the further stopping rule (22) to arrest the
iterations. The resulting algorithm will be referred with the name Space-D.

5. — Numerical experiments: the RHESSI mission

In this section we show some numerical experiments to test the efficacy of
Space-D in a real-world context. The particular application we consider is the
reconstruction of the X-ray emission during solar flares starting from the data
collected by the Reuven Ramaty High Energy Solar Spectroscopic Imager
(RHESSI), launched from Cape Canaveral on February 5 2002 with the aim to
recover temporally, spatially and spectrally resolved X-ray and y-ray images of
solar eruptions [24, 25]. The RHESSI satellite is still working and keeps on
providing every day a large amount of data with very high quality.

The RHESSI instruments design is based on the Rotating Modulation
Collimator (RMC) technique [23], that is a widely used approach for X-ray
imaging that does not require focusing optics. Thanks to its nine bigrid RMC
system, imaging information is recorded as a set of complex numbers, called
visibilities (varying from tens to two or three hundreds according to the strength
of the signal), measured at spatial frequencies arranged around nine concentric
circles in the Fourier plane whose radii form a geometric sequence with common
ratio v/3. An example of a typical sampling of RHESSI data in the Fourier plane
is shown in figure 2, where we can see that, especially in the high frequencies
where the sampling is more sparse, the impact of the interpolation method can be
non negligible.

The tests we present in this paper are divided in two groups. First, we simulate
images with different geometries and we show the Space-D capability of providing
satisfactory reconstructions independently of the object’s shape. Afterwards, we
investigate the very challenging task of detecting a faint source in presence of a
stronger one, that represents a sort of measure of the resolution achievable by a
method. Further tests on simulated and real data can be found in [9, 10]. All the
simulations have been created by means of the hsi_modelcbe2image.pro routine,
written in Interactive Data Language (IDL) and available within the official Solar
SoftWare (SSW) of the RHESSI mission. For all the simulations, a comparison of
the Space-D results with the ones achieved with a Maximum Entropy Method
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Fig. 2. — Example of a typical sampling of RHESST data in the frequency plane.

(MEM) developed for RHESSI imaging [12] has been performed. MEM is based
on the maximization of an entropy functional with constraints on the chi-square
and the total flux of the image. A gridding initial step is performed on the mea-
sured visibilities in order to make possible the use of the FFT algorithm in the
iterative optimization procedure adopted to solve the maximization problem. The
analyses have been carried out on a computer equipped with a 1.60 GHz Intel Core
i7 in a Windows 7 environment.

In figure 3 we can see the reconstructions obtained by MEM and Space-D of
three maps containing very different source morphologies:

e an extremely elongated source with height very close to the best spatial
resolution achievable by the RHESSI hardware (SIM1);

e a sequence of four circular sources plus a weaker one placed at the left side
of the other ones (SIM2);

e a compact asymmetric source surrounded by a weaker halo (SIM3).

Fig. 3. — Reconstructions of the three simulations SIM1 (left panels), SIM2 (middle
panels) and SIM3 (right panels) with MEM and Space-D. For each case, the restored
maps and the plots of the central rows have been provided.
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Due to the simulation routine, only a qualitative analysis of the re-
constructions is possible, since the true pixel values are unknown. Therefore, we
normalized the reconstructions so that their maximum values become equal to
the reference image’s one. Besides the resulting images, for a better compar-
ison we also plotted the central rows of the true images and the corresponding
reconstructions. From figure 3 we can appreciate the ability of Space-D in re-
covering all the different morphologies, together with the well-known tendency
of MEM to overfit the data, as remarked also in [16, 26]: diffuse objects are
reconstructed as a combination of sharper and narrower sources. We point out
the good reconstruction of the fainter source in SIM2, that is a tough task that
we further investigated with a second set of simulations.

We consider six images of two compact circular sources with equal size but
different peak values, with relative ratios ranging from 1 (equal sources) to 1/30.
The intermediate peaks ratios are 1/5, 1/10, 1/15 and 1/20. In figure 4 we report
the same graphs provided in the previous case, namely the reconstructed maps
together with the plots of the central rows. From these last curves, rather than
from the images whose scale do not allow a deep investigation, we can see that
Space-D recognizes the presence of a second source even in the more difficult
case, while MEM behaves well only up to a peak ratio of 1/10. Such tests de-
monstrate the ability of Space-D in reconstructing details of the image, that are
(possibly) hidden by the smooth interpolation step performed by MEM in the
gridding procedure.

PEAKS RATIO; 02 PEAKS RATIO; 0.1
o | ——omoma S [— omonu]
m % - Men % -
- SIACE-0) - - - shace-0|
@ { @
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Fig. 4. — Reconstructions of the “resolution tests” with MEM and Space-D. From left
to right, peaks ratios equal to 1, 1/5, 1/10, 1/15, 1/20 and 1/30 have been considered. For
each case, the restored maps and the plots of the central rows have been provided.
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6. — Conclusions and future work

In this paper we considered the image reconstruction problem in which the
data at one’s disposal are estimates or measurements of the unknown target
Fourier Transform sampled nonuniformly in the frequency plane. Despite the
more common approaches, we avoided to exploit interpolation techniques to
resample the data on a uniform grid, since possible arbitrary impositions could
be introduced in the data. Our proposal is to look for the image whose Fourier
Transform is as close as possible to the measured data (in a least squares sense),
with the addition of a non-negative constraint on the pixels content, that is a
natural requirement for many real-world problems. The resulting formulation is
a constrained optimization problem, and we addressed its solution by means of a
suitable gradient method. Finally, regularization is achieved by means of an
early stopping of the iterations, obtained through a combination of the Morozov’s
discrepancy principle with a numerical check on the objective function decrease.
Simulated tests on solar X-ray images from RHESSI visibilities showed that our
algorithm is able to provide effective reconstructions with different target
morphologies, with a notable capability of detecting details of the image that in
many cases result to be hidden by the strongest sources.

Future studies will address a semiblind deconvolution approach [14, 15], in
which Space-D could be used within an alternating minimization scheme [8] to
deduce exact values for the roll angles o (that now are arbitrarily assumed to be
uniformly distributed in each of the nine circles). Moreover, if combined with an
existing software which infers the Fourier Transform of the emitting source
(instead of the emission flux) [27, 29], images of the emitting particles could be
reproduced.
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