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The Power Mapping as Endomorphism of a Group

ANTONIO TORTORA

Abstract. — Let n # 0,1 be an integer. A group G is said to be n-abelian if the mapping
Jnix—2" is an endomorphism of G. Then (xy)" = x"y" for all x,y € G, from
which it follows [x",y] = [x,y]" = [x,y"). In this paper we investigate groups G
such that f, is a monomorphism or an epimorphism of G. We also deal with the
connections between mn-abelian groups and groups satisfying the identity
[x", y] = [x,y]" or [x",y] = [x,y"] Finally, we provide an arithmetic description
of the set of all integers n such that f, is an automorphism of a given group G.

1. — Introduction

Let n # 0,1 be an integer. A group G is said to be n-abelian if the mapping
fu i e a" is an endomorphism of G. Then (xy)" = «™y" for all x,y € G, from
which it follows [x", y] = [x,y]" = [x, ¥"]. Clearly, every group of finite exponent
dividing » or n — 1 is n-abelian. It is also easy to see that a group G is n-abelian if
and only if it is (1 — n)-abelian. The structure of n-abelian groups has been de-
scribed in [2] and [1] (see [7] for an account). If » # 0,1 and G is an n-abelian
group, then the quotient group G/Z(G) has finite exponent dividing n(n — 1).
This implies that every torsion-free n-abelian group is abelian. Of course 2-
abelian groups are precisely all abelian groups, whereas 3-abelian groups are all
2-Engel groups (i.e. groups satisfying the identity [x, ¥, y] = 1) with commutator
subgroup of exponent 3 (Levi [13], Kappe and Morse [10]).

It is well-known that torsion abelian or nilpotent groups are direct products of
their primary components. Our first result shows that a similar factorization is
also valid for torsion n-abelian groups. Here and throughout the paper, except
the last section, we assume that n # 0,1 is an integer, =, and 7,,_; are the sets of
all primes dividing » and n —1, respectively, and P is the set of all primes.
Moreover, we set n;, ; = P\m,_; and n;l(n_l) = P\, Ump_1).

THEOREM 1.1 (Baer [2]). — The elements of finite order in any n-abelian group
form a subgroup which is the direct product of a m,-group, a w,_1-group and an
abelian ), _,,-group.

For finite groups a stronger result holds: a finite group is 7-abelian if and only
if it is a homomorphic image of a subgroup of the direct product of a finite abelian
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group, a finite group of exponent dividing » and a finite group of exponent di-
viding % — 1 (see [1]). This is a consequence (but not immediate!) of the following
characterization of n-abelian groups.

THEOREM 1.2 (Alperin [1]). — A group is n-abelian if and only if it is a
homomorphic image of a subgroup of the direct product of an abelian group,
a group of exponent dividing n and a group of exponent dividing n — 1.

In this paper we are mainly concerned with some questions related to -
abelian groups. More precisely, in Section 2, we investigate groups G such that £,
is either a monomorphism or an epimorphism of G while, in Section 3, we deal
with the connections between n-abelian groups and groups satisfying the iden-
tity [x",y] = [, y]" or [x",y] = [, y"]. Finally, in Section 4, we provide an ar-
ithmetic description of the set of all integers » such that f;, is an automorphism of
a given group G.

2. — Some classes of n-abelian groups

In this section, following [8], we denote by 8, and €, the classes of all
groups G for which f, : x+— 2" is a monomorphism and an epimorphism of G,
respectively. Since B_; = €_; is the class of all abelian groups, we may assume
|n| > 1. Then, G € B, if and only if G is an n-abelian group without elements of
order dividing n. Similarly, G € €, if and only if G is n-abelian and for any
g € G there exists an element x € G such that g =«". It follows that, if
G eB,UC,, then G" ! < Z(G) and G is (n — 1)-abelian [8, Proposition 2.2].
Hence, G’ has finite exponent dividing » — 1. We also set A, = 8, N €,,. This
class has been studied in [16], [18] and [15]. Of course, groups of exponent
dividing n — 1 are in 21,,.

For all integers n # 0, every divisible abelian group is in €,. In particular,
the additive group Q of rational numbers is in 2, as well as every Priifer group
7(p*), with ged(p,n) = 1. The class B, is subgroup closed, but the class €, is
not: in fact the group 7 of all integers is not in €,. The class €, is quotient
closed, but the class B, is not: for example Q/7 is not in B,,. Each of these
classes is closed under forming direct products of its members. However, they
are both not closed under extensions. For example, let G be the wreath product
of a cyclic group of order p by Z(p>). Then G is an extension of groups in 2, for
all integers n with ged(p,n) = 1. But Z(G) is trivial and so G is not n-abelian
when n # 0, 1.

Applying Theorem 1.1, we can characterize torsion groups in B, UE,, as
follows.
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THEOREM 2.1 (Delizia, Tortora [8]). — Let G be a torsion group. Then:

(1) G € B, if and only if G = A x B where A is an n-abelian m,_1-group
and B is an abelion n;(n_l)—group;
) G e Sy ifandonly if G = A x Bwhere A is an n-abelian m,_1-group and
B = B" is an abelian m,_,-group.

If T denotes the class of all torsion groups, we deduce by Theorem 2.1 that
(%) A, NT=P, NTCE,NT

for all integers n, where the inclusion can be proper: for each prime p, the
group Z(p>)isin €, \B,. Nevertheless, for groups of finite exponent we have:

ProposiTION 2.2 (Delizia, Tortora [8]). — Let G € &, be a group of finite
exponent. Then G € U,,.

Now we use Theorem 2.1 to obtain characterizations of groups in ®8,, and in €,,.

THEOREM 2.3 (Delizia, Tortora [8]). — Let G be a group. Then G € B,
if and only if G is isomorphic to a subgroup of the direct product of
an n-abelian m,_1-group by an abelian group without elements of order
dividing n.

ProoOF. — Assume G € B,,. Let V be a maximal torsion-free subgroup of
Z(G) and let W/V be the subgroup consisting of all n,-elements of Z(G)/V.
Notice that G/W is torsion because so are G/Z(G) and Z(G)/V. Furthermore,
if x€e WNG, then there exists a m,-number m such that ™ €V. As
ged(m,n —1)=1 and "' =1, we get x = 1. So, W has trivial intersection
with G'.

Let x € G. First, suppose (x¢W)" = W. Then 2"V € W/V and «™V =V for
some 7,-number s. But "1 € Z(G), so that x € Z(G). Thus 2V € Z(G)/V is a m,-
element. Therefore x € W and G/W has no elements of order dividing n, that is
G/W € B,. Suppose now (xG')" = G'. Then 2" € G, so "V = 1. This implies
"1 =1. Hence x € G’ and G/G € B,

Finally, since G is isomorphic to a subgroup of G/W x G/G’, the claim follows
by (¢) of Theorem 2.1.

The converse is clear. O

THEOREM 2.4 (Delizia, Tortora [8]). — Let G be an n-abelian group and denote
by T its torsion group. Then G € €, if and only if T = A x B, where A is a 7,1~
group, B = B" is an abelian ©, ,-group, and G/T is a p-divisible abelian group
for any prime p dividing n.
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PROOF. — Assume G € €, and let p be a prime dividing #. Then n = ap for
some integer a and, for allg € G, there exists x € G suchthatg = «" = (x*)* € G”.
This means that G/T is in €,,. The rest follows by (i¢) of Theorem 2.1.

Conversely, given g € G, we have gT = «"T for some « € G: in fact, G/T is n-
divisible. Thus g~'a" € T and, by (), there exists ¥ € T such that g~1a" = y".
Therefore g = «"y ™" = (xy~!)", that is G = G". O

Notice that in Theorem 2.4 one cannot replace the hypothesis that G is »-
abelian by the weaker hypothesis that A is n-abelian. For example, consider the
wreath product G of the cyclic group of order 2 by (. The torsion part 7' of G is
the base group, that is an infinite group of exponent 2. Moreover, G/T = Q.
Finally Z(G) =1 and so G is not n-abelian for all » # 0, 1. In particular, G ¢ C,,.

3. — n-Levi and n-Bell groups

In [9], a group G is said to be n-Levi if [, y] = [x,y]" for all 2,y € G, and n-
Bell if [x", y] = [x,y™] for all 2,y € G. Following [5], we also say that G is a Levi
group (resp. Bell group) if it is n-Levi (resp. n-Bell) for some integer n # 0, 1. The
class of n-Levi groups clearly includes all 2-Engel groups, for any integer 7, and all
groups with n-abelian normal closures. Consequently, n-abelian groups are ex-
amples of n-Levi groups. The converse is not true in general: there exist n-Levi
groups which are not m-abelian for any m # 0, 1. For example, if G is a (non-
abelian) torsion-free 2-Engel group, then G is n-Levi for any %. On the other hand,
if G were m-abelian for some m # 0,1, the identity (xy)™ = &y [y, 2] " V/?
would imply [#,y] = 1 for all #,y € G, which is impossible.

It is also obvious that any n-Levi group is n-Bell. Then, for a group G, each of
the following conditions is a consequence of the previous one:

() the normal closure x€

(1) G is an n-Levi group;
(112) G 1s an n-Bell group.

18 n-abelian for all x € G;

If n = 2 it can be easily seen that these three conditions are equivalent, since
each of them is equivalent to the 2-Engel condition. A similar result holds when
n=3.

THEOREM 3.1 (Kappe, Morse [10]). — For a group G the following conditions
are equivalent:
(@) % is 3-abelian for all x € G;
(#1) G s 3-Levi;
(111) G 1is 3-Bell;
() G 1is 3-Engel (i.e. [x,y,y,y] = 1) and [ac,y,y]3 =1forallx,y € G.
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In[11], Kappe and Morse proved that the equivalence is true even whenn = pis
aprime and G is a metabelian p-group. However, in general, such conditions are not
equivalent: Brandl and Kappe [4] constructed a metabelian 2-group in which the
law [%, %] = [, ¥*] does not imply [, %] = [«, y]4. An easier counterexample is
then SL(2, 5). It has a 6-Bell subgroup which is not 6-Levi and it is 30-Bell but not 30-
Levi[9, Kappe]. We also point out that Delizia, Moravec and Nicotera showed in [6]
that there exist n-Bell groups which are not m-Levi for any m # 0, 1. Therefore the
class of Levi groups is properly contained in the class of Bell groups. Nevertheless,
these two classes coincide if we consider only locally graded groups [6].

Recall that a group is locally graded if every non-trivial finitely generated
subgroup has a non-trivial finite image. The class of locally graded groups is
rather wide, since it includes locally (soluble-by-finite) groups, as well as re-
sidually finite groups. In the realm of locally graded groups, every torsion #-Bell
groups is locally finite.

THEOREM 3.2 (Delizia, Moghaddam, Rhemtulla [5]). — If G is a locally graded
n-Bell group, then the elements of finite order in G form a locally finite subgroup.
In particular, G is an extension of a locally finite group by a torsion-free nil-
potent group of class at most 2 (see also [3]).

In any group G the set Ro(G) = {x € G : [x,y,y] =1 for any y € G} of all
right 2-Engel elements of G is always a characteristic subgroup [12]. It plays the
same role for n-Bell groups as the centre does for n-abelian groups.

THEOREM 3.3 (Kappe [9] and Brandl, Kappe [4]). — Let G be an n-Bell group.
Then G/Ry(G) has finite exponent dividing n(n — 1).

The question then arises whether R2(G) can be replaced by the second centre
in Theorem 3.3. In fact, given an n-Bell group, the exponent of G/Z2(G) is always
finite [5, Delizia, Moghaddam, Rhemtulla]. It divides 3n%(n — 1)? /2,and 3n(n — 1)
when the group is n-Levi [17, Tortora]. But, in this latter case, the bound is also
the best possible [5]. Notice also that, if G is a torsion-free nilpotent group of class
two, then G is an n-Levi group such that G/Z(G) is torsion-free [17].

The next result shows that locally finite n-Bell groups can be represented
similarly to torsion n-abelian groups (compare with Theorem 1.1).

THEOREM 3.4 (Brandl, Kappe [4] and Tortora [17]). — Let G be a locally finite
n-Bell group. Then G = A x B x C where A is a nty-group, B is a m,—1-group and
C is a 2-Engel 0, _,-group. Furthermore, A" < Ry(G) and B"™' < Ry(G)

As a consequence of Theorem 3.4 we obtain structural results about »-Bell
groups for special values of .
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COROLLARY 3.5. — Let G be an n-Bell group.

(@) Ifn =3, then G is nilpotent of class at most 4 (Kappe, Morse [10]).
(1) Ifn =4, then G s locally nilpotent (Brandl, Kappe [4]).

COROLLARY 3.6 (Tortora [17]). — Let G be a locally graded n-Bell group.
(@) If |n| and |n — 1| are both prime powers, then G is locally nilpotent.
(i) If either |n| or |n — 1| is equal to 2*p® where p is a prime and a,b are
non-negative mntegers, then G is locally soluble.

4. — An arithmetic approach
We begin this section with some information on the sets IE(G), [.(G) and B(G)

of all integers n for which a given group G is n-abelian, n-Levi or n-Bell re-
spectively, i.e.:

B(G) ={n € 7| (xy)" = «"y" forall x,y € G},
IAG) ={n € Z|[x",y] = [x,y]" for all x,y € G},
B@G) ={n € 7 |[x",y] = [x,y"] for all x,y € G}.

These subsets of 7 are multiplicative semigroups containing 0 and 1. It is also
easy to see that if n belongs to one of them, then so does 1 — n.

The set E(G) is called the exponent semigroup of G. An arithmetic char-
acterization of £(G) for an arbitrary group G was obtained by Levi ([14], see also
[9]). Following [9], we have that E(G) is either {0,1} or a Levi system, that is a
subset W of 7 satisfying the following conditions (here [n],, denote the residue
class of n modulo w):

() n,m € W implies nm € W;
(1) m € W implies 1 —n € W,
i) 0 e W;
(iv) there exists we W,w >0, such that for all ne W we have
7% = n (mod w) and [r],, C W;

('U) [n]wa [W, + l]w cw 1mp1195 [n]w = [O]w-

In other words, E.(G) is either {0,1} or Z or a set of residue classes modulo
some integers depending on G. More precisely, let q1, go, . . ., g; be integers with
q; > land ged(g;, qj) = 1for # j. Let B(q1, g2, - . . , q;) be the subset of Z which is
the union of 2! residue classes modulo g¢; satisfying each a system of congruences
m = 9; (mod q;), where i =1,... t and ¢; € {0,1}. Then E(G) = {0,1}, or Z, or
B(q,...,q) with ¢; > 2 (see [9]).
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Concerning [.(G) and B(G), they were introduced by Kappe in [9] and are
called respectively the Levi semigroup and the Bell semigroup corresponding to
G. Surprisingly, their characterization is the same as the one that we have for
E(G).

THEOREM 4.1 (Kappe [9]). — Let W be a subset of 7. Then the following
statements are equivalent:

(1) W = 1L(H) for some group H;
(i1) W = B(K) for some group K;
(7it) W ={0,1} or a Levi system;
(iv) W =1{0,1},7Z or B(qy, - - ., q) with q; > 2.

Following [8], with f,, : x € G— «" € G, now we introduce the set
AG@) ={neZ : f, € Aut(@)}.

This is a subsemigroup of E(G) containing 1. Obviously 0 € A(G) if and only if
G = {1};in that case A(G) = Z. We may therefore assume G # {1} in the sequel.

LeMmMA 4.2 (Delizia, Tortora [8]). — Let G be a group and suppose that A(G)
satisfies one of the following conditions:

@) 2 e AG);
@i1) 3 € AG);
(112) n € AG) and —n € A(G) for some n # 0;
() n € AG) and m € AG) with ged(n —1,m — 1) < 2.

Then G is abelian.

Notice that E(G) = 7 if and only if G is abelian. On the other hand, it is easy
to show that A(G) =7\ {0} if and only if G is isomorphic to a direct sum of
copies of Q. However, G is abelian if and only if —1 € A(G). So, in that case,
—n € A(G) for all n € A(G). Furthermore, if G is abelian, n € A(G) if and only if
p € A(G) for all primes p dividing 7. The semigroup A(G) is thus generated by
—1 and all primes in A(G). Therefore, if 7(G) denotes the set of all primes in-
volved in the decomposition of orders of elements of (z, and d(G) denotes the set
of all primes p such that G is p-divisible, one can easily realize that:

THEOREM 4.3 (Delizia, Tortora [8]). — Let G be an abelian group. Then A(G) is
the multiplicative subsemigroup of 7. generated by (6(G)\ (@)U {-1}. In
particular:

(1) if G is torsion, then A(G) is generated by (P \ n(G)) U {—1};
(1?) if G 1s torsion-free, then A(G) is generated by 6(G) U {—1}.
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By Theorem 4.3, A(7) ={-1,1} = A(Q/7) and, if G is a torsion abelian
group, then A(G) = 7\ Upenp”. We also point out that, given a set 7 of
primes, there always exists a torsion-free abelian group G such that A(G) is the
multiplicative subsemigroup of 7 generated by = U {—1}. For example, the ad-
ditive group of all rational numbers with a z-number as denominator has the
above properties.

Finally, let G be a non-abelian group and suppose that G is n-abelian for some
n #0,1,80 {0,1} C E(G) C 7. By [14] (see also [9]), the set £(G) of all integers
n such that G is n-abelian and G < Z(G) is an ideal of 7. Let [¢(G) = w7.. Thus
w > 2, G is w-abelian, G* < Z(G) and w is the least positive integer with such
properties. Moreover, if w = q1qo . . . q; is a factorization of w (witht > 1, q; > 2
for all i =1,2,...,¢ and ged(g;,q;) = 1 for ¢ # j), then E(G) = B(q1,q2, - - -, q-
Since n,n — 1 € E(G) for all n € A(G), we have n — 1 = 0 (mod w). Hence:

THEOREM 4.4 (Delizia, Tortora [8]). — For each group G, A(G) C [1],,.

In general, the equality does not hold in the theorem above. For example,
consider a non-abelian group H of exponent 3, and the direct product G of H by
the cyclic group of order 4. Clearly, Eo(G) = 37Z. But, 4¢ A(G) since G has an
element of order 4. Thus A(G) # [1]s.
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