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Factorization in the Self-Idealization of a PID

GYU WHAN CHANG - DANIEL SMERTNIG

Abstract. — Let D be a principal ideal domain and R(D) = {(g Z) | a,b € D} be its

self-idealization. It is known that R(D) is a commutative noetherian ring with
identity, and hence R(D) is atomic (i.e., every nonzero nonunit can be written as a
finite product of irreducible elements). In this paper, we completely characterize the
wrreducible elements of R(D). We then use this result to show how to factorize each
nonzero nonunit of R(D) into irreducible elements. We show that every irreducible
element of R(D) is a primary element, and we determine the system of sets of lengths
of R(D).

1. — Introduction

Let R be a commutative noetherian ring. Then R is atomie, which means that
every nonzero nonunit element of R can be written as a finite product of atoms
(irreducible elements) of R. The study of non-unique factorizations has found a
lot of attention. Indeed this area has developed into a flourishing branch of
Commutative Algebra (see some surveys and books [3, 6, 8, 5]). However, the
focus so far was almost entirely on commutative integral domains, and only first
steps were done to study factorization properties in rings with zero-divisors (see
[2, 7]). In the present note we study factorizations in a subring of a matrix ring
over a principal ideal domain, which will turn out to be a commutative noetherian
ring with zero-divisors.

To begin with, we fix our notation and terminology. Let R be a commutative
ring with identity and U(R) be the set of units of R. Two elements a,b € R are
said to be associates if aR = bR. Clearly, if a = ub for some u € U(R), then a and
b are associates. An a € R is said to be irreducible if a = bec implies that either b
or c is associated with a. We say that R is atomic if every nonzero nonunit of R is
a finite product of irreducible elements. It is clear that noetherian rings are
atomic (cf. [2, Theorem 3.2]) and that 0 € R is irreducible if and only if R is an
integral domain. A ring R is a half-factorial ring (HFR) (resp., bounded factor-
ization ring (BFR)) if R is atomic and two factorizations of a nonzero nonunit into
irreducible elements have the same length (resp., for each nonzero nonunit
x € R, there is an integer N(x) > 1 so that for any factorization x = ;- - - @,
where each x; is a nonunit, we have n < N(x)). R is a FFR (finite factorization
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ring) if R is atomic and each nonzero nonunit has only finitely many factorizations
into irreducibles, up to order and associates. A nonzero nonunit x € R is said to
be prime (resp., primary) if xR is a prime (resp., primary) ideal. Hence a prime
element is primary but not vice versa (for example, if 7 is the ring of integers,
then 4 € 7 is primary but not prime). We say that R is a unique factorization
ring (UFR) if every nonzero principal ideal of R can be written as a product of
principal prime ideals (cf. [2, Theorem 4.9]). Clearly, a prime element is irre-
ducible, and so a UFR is atomic.
For x € R a nonzero nonunit, its set of lengths is defined as

L(x) = {k € N | there exist irreducibles u1,...,u; € B with ® = ug - ... - u}.

Clearly, « is irreducible if and only if L(x) = {1}. If x € U(R), we set L(x) = {0}.
The system of sets of lengths is defined as L(R) = {L(x) |« € R\ {0} }. Sets of
lengths and invariants derived from them are some of the classical invariants
considered in non-unique factorization theory (see [8, Ch. 1.4]). The reader is
referred to [8] for undefined definitions and notations.

Let M be an R-module. The idealization R(+ )M of M is a ring, which is
defined as an abelian group R & M, whose ring multiplication is given by
(a,b) - (x,y) = (ax,ay + bx) for all a,x € R and b,y € M. It is known that
R(+)M is a noetherian ring if and only if R is noetherian and M is finitely
generated [4, Theorem 4.8]. Let D be an integral domain, Matg.2(D) be the ring

of 2 x 2 matrices over D, and R(D) = {(g 2) | a,b € D}. It is easy to show

that R(D) is a commutative ring with identity under the usual matrix addition
and multiplication; in particular, R(D) is a subring of Matg.o(D). Clearly, the

map a+— (g 2) embeds D into R(D), and the map ¢ : D( + )D — R(D), given

by ¢(a,b) = (g 2) , is a ring isomorphism. In view of this isomorphism, E(D)
is called the self-idealization of D (cf. [13]). There is also an isomorphism
DIX1/(X?) — R(D) mapping « -+ bX + (X2) to (g
properties of R( 4 )M have been studied in [2, Theorem 5.2]. For more on basic
properties of R(+ )M (and hence of R(D)), see [4] or [11, Section 25].

Let D be a principal ideal domain (PID). Then R(D) is noetherian, and thus
R(D) is atomic. In Section 2, we first characterize the irreducible elements of
R(D), and we then use this result to show how to factorize each nonzero nonunit of

R(D) into irreducible elements via the factorization of D. We show that (8 (1))

is the unique prime element (up to associates) of R(D). We prove that every
nonzero nonunit of (D) can be written as a product of primary elements. Finally,
in Section 3, we completely describe the system of sets of lengths L(R(D)).

2). Some factorization
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We write N = {1,2,3,...} for the set of positive integers, and Ny = N U {0}
for the set of non-negative integers.

2. — Factorization in R(D) when D is a PID

Let D be an integral domain, and

a b

R(D)z{(o a) |a,b €D}

be the self-idealization of D. Clearly, (3 2) is the identity of R(D).

0
homomorphism R(D) — D. Observe that « is a zero-divisor if and only if ¢ = 0.
We write R(D)*® for the monoid of non-zero-divisors of R(D).
We begin this paper by characterizing the units of R(D), which is very useful
in the proof of Theorem 5.

If o= <a 2) € R(D), then nr(x) = a is the norm, and this is a ring

LeEMMA 1 (cf. [11, Theorem 25.1(6)]). — If D is an integral domain, then

%= (g Z) € R(D) is a unit of R(D) if and only if a is a unit of D.

Proor. — If o is a wunit, then «- vy - 10
0 x 01

) for some
<x Z) € R(D). Thus ax =1, and so a € U(D). Conversely, assume that a

0

' ' o a b\(u —bu?\ (1 0
is a unit, and let v =a"". Then (0 a)(O u >—(0 1 and

2
<7(“)L 7?7 ) € R(D). Thus « is a unit. O

For an arbitrary commutative ring R, there can be two elements a,b € R
such that a and b are associates but a # ub for all u € U(R) (see, for example,
[2, Example 2.3]). This cannot happen in the self-idealization of an integral
domain.

LEMMA 2. — Let D be an integral domain and o,f € R(D) and let

a,b,x,y € D suchthat o = (g 2) and ff = (ﬁg Z) The following statements
are equivalent.

1) o and f are associates.
(2) There exists 0 € UR(D)) such that f = Q.
(3) There exists u € U(D) such that x = au and y = bu mod a.
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PrOOF. — (1) = (2): If « and f§ are associates, then there are some 7,6 € R(D)

so that o = fy and f = ad. Hence if y = (%1 Zl> and 0 = (%1 Zl>, then
1 1

a = xa; and & = axy, and so a;,x; € U(D). Thus y,0 € U(R(D)) by Lemma 1.

%
0
that x = au and y = av + bu = bu mod a.

3) = (2) and (1): Let v € D be such that y = bu + av. Define 0 = (u v >

2) = 3): Let 0 = ( Z) By Lemma 1, u € U(D). From f = 0o it follows

0 u
Then 0 € U(R(D)) by Lemma 1 and f = 0a. Thus, « and f are associates. O

We write o ~ f if o, f € R(D) are associates.

a b
0 a
coprime c,d € D, then there exist y,0 € R(D) with o=y and nr(y) =c,
nr(d) = d. This representation is unique in the sense that, if y/,6 € R(D) with
o =90 and nr(y) ~ ¢, nr(d) ~ d, then y ~y and § ~ .

LEMMA 3. — Let D be a PID and let oo = ( ) € R(D)". If a = cd with

PrOOF. — Euxistence: Since 1 € GCD(c,d) and D is a PID, there exist e,f € D

such that b = ¢f + ed. Then y = (8 i) and 0 = ((é ];) are as claimed.

/

/ ! !
Uniqueness: Let y = (c ¢ > and &' = (d f > with ¢/, ¢',d’,f’ € D and

0 ¢ 0 d

suppose that « = y'¢d'. Let u,v € U(D) such that ¢/ = cu and d’' = dv. Since
c'd’ = cd, necessarily v = L. Since ¢f + ed = c/f’ + €'d' = c(f'u) + d(e'v), we
have ¢(f'u) = ¢f modd and f'u = f modd, i.e., f' = fvmod d. Therefore &' ~
and similarly y ~ . O

COROLLARY 4. — Let D be a PID and let o € R(D)* \ UR(D)). Then there

exist fy,...,p, € R(D)* of pairwise distinct prime power norm, such that

o=p;-...- B, This representation is unique up to order and assoctates.
ProoF. — Letnr(o) = pf' - ... p% withn > 0, p1,...,p, € D pairwise distinct

prime elements and ey, ...,e, > 1. By induction on » and the previous lemma,

there exist f;,...,p, € R(D)* such that o = f; - ...- f, and nr(f;) = p;’ for all
1€ [1,n].

Suppose o = f8; - ... 8, is another such factorization. Since D is a UFD, then
m = n and there exists a permutation = € &,, such that nr( ﬁ;@) ~ nr(f;) for all
i € [1,n]. The uniquenes statement of the previous lemma implies f; ~ f; for all

1€ [1,n]. O
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As a consequence, to study factorizations of o € R(D)®, it is sufficient to study
factorizations of « € R(D)* with prime power norm.

We next give the first main result of this paper, which completely char-
acterizes the irreducible elements of R(D) when D is a PID.

THEOREM 5. — Let D be a PID and o. = ( g 2 ) € R(D). Then o.1s trreductible
if and only if either (1) a =0 and b€ UD), (1) a =p or (i11) a = up”™ and

1 € GCD(a, b) for some prime p € D, u € U(D), and integer n > 2.

PROOF. — Necessity. Assume that a=0, and let f= (b O) and

0 b
)= (8 é) Then «—p-y and «R(D)+ BRD) because b+ 0. Hence
aR(D) = yR(D), and 50 y = & - & for some d = (gg Z) ¢ R(D). Thus bx = 1.

Next, assume that a # 0. If @ is not of the form up”, then Lemma 3 implies
that o = f§ - y with nr(f) and nr(y) nonzero nonunits. Hence « is not irreducible, a
contradiction. Thus a = up” for some prime p € D, u € U(D), and integer n > 1.
If n =1, then up is also a prime element of D and we have case (ii).

Finally, assume that % > 2 and p* € GCD(a, b) for some integer k > 1. Let
b=>bp, where b;€D. Then o=0-¢ where 0= <28 2) and

upnfl b pk’l o .
<= < 0 ulpn—l >r but 0,¢ ¢ aR(D), a contradiction. This completes the

proof.

0 X1 0
show that f or y is a unit, and thus o is irreducible.

Sufficiency. Let o = f - y, where ff = (901 yl) and y = (962 ZZ ) We will
2

CASE 1. —a =0and b € U(D). Note that x; = 0 or x2 = 0; so for convenience,
let £ = 0. Then a2 = b, and since b € U(D), we have x; € U(D). Thus fis a unit
of R(D) by Lemma 1.

CASE 2. —a = pfor aprime p € D. Then o = f§ - yimplies that either x; or xz is
a unit in D. Hence f or y is a unit in (D) by Lemma 1.

CASE 3. — a = up” for a prime p € D, u € UD), n > 2 and 1 € GCD(a, b).
i
Since p is a prime and a«=pf-y, we have f= (vg vﬁk> and

-k
y = wp” y? for some 0 < k,n —k <mn,x,y € D,and v,w € U(D) with
0 wpnk

vw = u. Hence b = pvy + p™ *wa, and thus k = 0 or n — k = 0 because a and b
are coprime. Therefore f or y is a unit in (D) by Lemma 1. O
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g Z) € R(D) be a nonzero
nonunit such that ¢ € GCD(a, b), a = cay, and b = cby for some c,a1,b1 € D. Let
c=upi---po and a; = q’fl <+~ gk (when a # 0) be prime factorizations of ¢ and
ay, respectively, where w € U(D). The following is a factorization of o into
wrreducible elements.

B (0 w\ & (pi 0\%
(1)]fa-0,thenoc-<0 0){1:%(0 pi>.

€ m {Cf .

@) If a #0, thena(u 0>(H<pi 0) ) (11 % C,i_ ) for some
0 u i-1 0 pi j=1 0 qu

¢; € D with 1 € GCD(cj, g)).

COROLLARY 6. — Let D be a PID and o = (

Proor. — (1) Clear.

. - c 0 a1 b1
(2) We first note that o = < 0 c) ( 0 a > and

c 0\ [(u 0 ploe’“_pnoe”

0 ¢/ \0 u/\0 p 0 pu/) ~
Next, assume that a; = bads for some by, de € D with 1 € GCD(bg, d2). Then
there are some «,y € D such that be(xb;) + da(yb1) = by because D is a PID, and

hence <a1 bl) = <b2 yb1> (dz xbl). Note that 1 € GCD(ay, by); hence

0 o 0 by 0 do
1 € GCD(bz,yb1) and 1 € GCD(dz, xby). So by repeating this process, we have
m KT
(661 21) =11 g 11 for some ¢; € D with 1 € GCD(c;, g;). 0
1 j=1\ 0 qu

COROLLARY 7. — If D is a PID, then (g (1) ) 18 the unique prime element (up
to associates) of R(D).

Proor. — Clearly, prime elements are irreducible, and hence by Theorem 5,

we have three cases to consider. Let oo = (g 2) € R(D) be irreducible.

CasE 1. — a =0 and b e UD). Note that if we set I — <8 (1)) then

o=1- (8 2) and (8 2) € U(R(D)) by Lemma 1; so « and [ are associates.

Let f = (ag Z),y: (8 f) € R(D). Then fy € IR(D) if and only if zc = 0; so

if = 0 (for convenience), then f € IR(D). Thus [ is a prime.
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CASES 2 and 3. — a # 0. Note that
<a b—1)2_ @ 2a(b—1)
0 a \o a?
<a b><a b—2) R(D)
o a/\o o ) ’

but (?) b— ) ¢ aR(D) because a ¢ U(D). Thus « is not a prime. O

For zero-divisors and elements with prime power norm, the following
lemma further refines Corollary 6, by giving all possible factorizations, up to
order and associates. The general case can be obtained in combination with
Corollary 4.

a b
0

(1) Suppose a =0 and b=gq-...-q,, with (possibly associated) prime
powers q1, . ..,q, € D. Then, for every choice of a1, ...,a, € D,

(0 N\ 1r(4¢ @
= (o o) II(5 5)

and this is a factorization into irreducibles if and only if for all i € [1,n]
either q; is prime or 1 € GCD(q;, a;).

(2) Suppose a = p" with p € D a prime element andn € N. Foralll € [1,n]
let my € No and for all j € [1,my] let a; ; € D. Then

B n o om pl al,j)
’ EE(O P

if and only if n = Z myl and b = Zp” l(Z alj> This is a product of
wrreducibles if and only ifle GCD(al D) fm” alll € [2,n] andj € [1, my].

LEMMA 8. — Let D be a PID, and let o = < ) € R(D)\ {0} witha,b € D.

Up to order and associativity of the factors, all the factorizations of o are of
this form.

Proor. — This is checked by a straightforward calculation. The statement
about the irreducibles follows from the characterization of the irreducible ele-
ments in Theorem 5. That every representation of o as a product of irreducibles is,
up to order and associates, one of the stated ones also follows from this
characterization. O
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COROLLARY 9. — Let D be a PID.

1) R(D) is a BFR.

(2) R(D)is a FFR if and only if D/pD s finite for all prime elements p € D.

3) If D is a field, then every nonzero nonunit of R(D) is a prime, and hence
R(D) is a UFR with a unique nonzero (prime) ideal.

a b
0 a) € R(D), then

the lengths of factorizations of « into irreducible elements are less than or equal to
that of the prime factorization of a or b in D, plus at most one. Thus R(D)is a BFR.

(2) Suppose first that D/pD is finite for all prime elements p € D. Then also
D/p"D is finite for all n > 1 and all prime elements p € D. Hence, by the Chinese
Remainder Theorem, D/cD is finite for all nonzero c € D.

Let ¢ € D*. By Lemma 2(3) there exist, up to associativity, only finitely many
elements y € R(D) with nr(y) ~c. If o € R(D)® and y|a, then nr(y)|nr(x), and
therefore there are, up to associativity, only finitely many irreducibles that can
possibly divide o. Together with (1), this implies that every o« € R(D)® has only
finitely many factorizations.

ProoF. — (1) By Corollary 6, R(D) is atomic, and if & = (

Ifa = (8 g) € R(D) is a zero-divisor, then every factorization has exactly

one factor associated to (0 (1)> and if y is any other factor in the factorization

then nr(y) | b (cf. Lemma 8(1)). By the same argument as before, o has only
finitely many factorizations.
For the converse, suppose that p € D is a prime element and |D/pD| = oc.

Since
P 0\ _(p a\(p -a
0 p2) \0 p)\O0O p )

2
for all a € D, (p 02> has infinitely many (non-associated) factorizations
in R(D). 0 »

3) Let oo = (g 2) € R(D) be a nonzero nonunit. Since D is a field, by

Lemma 1,a = 0 and b € U(D). Hence « is associated with I := (8 (1)>, and so «
is a prime by the proof of Corollary 7. Thus R(D) is a UFR and IR(D) is a unique

nonzero (prime) ideal of R(D). O

If D is a PID but not a field, we will see in Corollary 15 that R(D) is not a
UFR, even when D is the ring of integers.

We next prove that every nonunit of B(D) can be written as a (finite) product
of primary elements.
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LemMMA 10. — Let R be a commutative ring. If a € R is such that vaR is a
maximal ideal, then aR s primary.

PRrROOF. — Let x,9 € R be such that xy € aR but x ¢ vaR. Note that
VaR ¢ vaR + xR; so aR + xR = VaR + xR = R because vaR is a maximal
ideal. Hence 1=as+ at for some s,t € R. Thus y = ylas + xt) = a(ys) +
(xy)t € aR. O

COROLLARY 11. — If D is a PID, then every irreducible element of R(D) is
primary. In particular, each nonzero nonunit of R(D) can be written as a finite
product of primary elements.

a b

PROOF. — Let o = (0 a) € R(D) be irreducible. By Theorem 5, there are

three cases that we have to consider.

CASE 1. — a =0 and b € U(D). By Corollary 7, « is a prime, and hence a
primary element.

CASES 2 and 3. — a = up” for some prime element p € D, u € U(D), and n € IN.
By Lemma 10, it suffices to show that /oR(D) is a maximal ideal. Let

f= (g Z) € R(D)\ vaR(D). Note that if 6 = (8 g) ¢ R(D), then & — 0,

and hence § ¢ +/zR(D). Hence (”5 2) ¢ /aR(D) and <“§ ug"> ¢ VaR(D).

But then (]g 2) € vaR(D). Note also that if € pD, then x = pa; for some

x 0\ (p O x; O ..
21 € D, and so <0 90> = <0 p) < 0 gﬁ) € vaR(D), a contradiction. So

x¢ZpD, and hence axz;+pzz=1 for some z;,22€D. Thus

1 0 _ 1 0 P 0 29 0 0 —yz
(0 1)—ﬂ-(0 21>+(0 p)(O 22>+<0 0 )eﬂR(DH-\/W(m_
Therefore /«R(D) is maximal. 0

REMARK 2.12. — In view of Corollary 11, Corollary 4 in fact corresponds to the
(unique) primary decomposition of xR(D), as every prime ideal of (D), except for
0( +)D, is maximal (cf. [4, Theorem 3.2]).

Associativity is a congruence relation on (R(D)°, -), and we denote by R(D); 4
the corresponding quotient monoid. Corollary 4 may also be viewed as a monoid
isomorphism R(D);oq =2 [[ R(D(p))seq, Where the coproduct is taken over all as-

P
sociativity classes of prime elements p of D, and D, is the localization at pD.
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3. — The sets of lengths in R(D) when D is a PID

Let D be an integral domain and R(D) = {<g Z) | a,b € D}. In this sec-

tion, we characterize the sets of lengths in R(D) when D is a PID.

LEMMA 18. — Let D be a PID and o, € R(D).

(1) If afp # 0, then L(x) + L(f) C L(ap).
2) If nr(e) and nr(f) are coprime, then L(x) + L(f) = L(af).

Proor. — (1) Clear.

(2) Let n € L(ef). Then there exist irreducible y,,...,7, € R(D)* such
that af=yp;-...-y,. Then also nr(x)nr(f)=nr(y)-... -nr(y,). Since
1 € GCD(nr(«), nr(f)), we may without loss of generality assume nr(x) ~
nr(y) - ...-nr(y,) and nr(f) ~nr(y.,,) ... -nr(y,) for some ke[0,n]. By
Lemma 3, therefore a~y;-...-y, and fo~y ...y, and n=k+n —k) €
L(a) + L(p). O

For a prime element p € D we denote by v,:D — NoU {oco} the corre-
sponding valuation, i.e., v,(0) = co and vp(apk) =kif k€ Ny and a € D* is co-
prime to p.

THEOREM 14. — Let D be a PID, o € R(D) and suppose o = <g Z) with
a,b e D.

1) Ifa=0,andb=p{ - ... po with pairwise non-associated prime elements
P1,-- €D andey, ... e, €N, then L(o) =[14+n,14+e1+...+¢e,].

2) Let peD be a prime element, n €N and suppose a=p" and
V() =k € NogU {oo}. Then L(x) = {1} if and only if k =0 orn =1 If
k>n—1, then

38,2 —2]Uu{n} C L&) CI[2,n—2]1U{n},
and if k € [1,n — 2], then
B,k+11C Ll C[2,k+1].

Moreover, if k > 1, then 2 € L(«) if and only if n is even or k< g

PRrROOF. — (1) This is clear from Lemma 8(1), as every factorization of b into
prime powers gives a factorization of o (choose a; = 1), and conversely.

(2) The cases k = 0 and n = 1 are clear from Theorem 5, so from now on we
assume k > 1 and n > 1. Let b = up® with w € D and 1 € GCD(u,p). We re-
peatedly make use of Lemma 8(2), and the notation used there to describe a
factorization, without explicitly mentioning this fact every time.



FACTORIZATION IN THE SELF-IDEALIZATION OF A PID 313

CLamM A. — L() C [2,min{k + 1, n}].

Proor. — Because o is not an atom, 1 ¢ L(x). Any factorization of o is
associated to one in Lemma 8(2); we fix a factorization of « with notation as in
the lemma. The length of the factorization is then ¢ = Z my. Since Z myl =

=1

clearly ¢ <mn. Moreover, necessarily m; =0 for all l >n—(t—1). Since

b= zp%*l(z a,;), therefore k= vy(B) = v,(p" ") =t — 1, i, t <k + 1.
Jj=1
CrAM B. — 2 € L(x) if and only if » is even or k< g

ProOF. — Suppose 2 € L(x) and n is odd. Then n=1I0+m—1) and
b=p"la;; + pla, ;1 with1 € GCD(a;1,p) and 1 € GCD(a,,_;1, p)- Since nis odd,

then n — [ # [ and therefore k = v,(b) = min{n — [, [} < g

For the converse suppose first 1 < k< g Then n=k+mn—Fk),n—k>k
and b= p" % .1+ pk(u —p* %) with 1 € GCD(u — p"2%,p). If n is even and

k> g then 1 — g n g and b = p¥(1 + (up®% — 1)) with 1 € GCD(up" % — 1, p).

CLamM C. = If n —1 € L(x), then k =n — 2.

Proor. — For a corresponding factorization we must have m; =n —2,
mg = 1,and m; = Oforalll > 2. Thenbd = p”fl(alyl +...+a1-2) +10"*2a2’1 with
1 € GCD(ag1,p), whence k = v, (b) = n — 2.

CrLAM D. — Let n > 3 and k > 2. If either k = 2 or n # 4, then 3 € L(x).

Proor. — Suppose first that » is odd and set b’ = b/p. Then

(p 0 , . ;o pnfl Y
1) zx-(o p)(x with oc—( 0 prt)

and, by Claim B, 2 € L(¢/). Therefore 3 € L(«).
If n is even, n > 6, and k > 3, then

o= (pz u > <p”‘2 u(ph=? —229"‘4))7
0 p 0 pr

where the first factor is irreducible and the second has a factorization of length 2
by Claim B.
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y P 0 2 pan »
—\o P 0 pn—Z

is a factorization of length 3.

If £ =2, then

Cramm E. = If k > n — 1, then n € L(x).

ProOF. — We use Lemma 82). Set my=mn, a1 =up* @V and
12 =...=a, = 0. Then p" H(up~"D £ 0+...+0) =b.

Cramm F. - If k € [1,n — 2], then [3,k + 1] C L(x).

ProoF. — If n <3 or k=1, then the claim is trivially true, so we may
assume k > 2. We proceed by induction on n. Suppose n >4, and that the
claim is true for n — 1.

Let &' = b/p and let o' be as in (1). We have v,(b') =k —-1> 1.

Ifk=2,thenl=k-1< nT—l, and hence 2 € L(«') (by Claim B). Therefore

{3} =13,k+1] C {1} + L&) C L(w).
If k>3, then by induction hypothesis, [3,k] C L(«/), and thus
[4,k+1] = {1} + L&) C L(»), and by Claim D, also 3 € L(x).

CLAM G. — If £ > n — 1, then [3,n — 2] C L(®).

ProoF. — If n < 4, then the claim is trivially true. We again proceed by in-
duction on n. Suppose n > 5 (then k > 4), and that the claim is true for n — 1.

Let 0’ = b/p and let o be as in (1). Again, v, (b') = k — 1 > 3 and by induction
hypothesis [3,n — 3] C L(¢/). Therefore [4,7 — 2] C L(x) and by Claim D also
3 € L(w).

If kK > n — 1, then the claim of the theorem follows from claims A, B, C, E
and G. If k € [2,n — 2], then the claim of the theorem follows from claims A, B
and F. O

If « € R(D) is a nonzero nonunit, and L(x) = {l1,ls,...,l;}, then the
set of distances of « is defined as 4()={l;—1l;i1]7€[2,k]}, and
A(RD)) = U A). For k€ Nxo, set Uy (R(D)) = U L(a).

2€R(D)\ ({O}U U(R(D))) oeR(D).kel(x)

COROLLARY 15. — If D is a PID, but not a field, then Us(R(D)) = N5, and
A(RD)) = {1,2}.
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Proor. — This follows directly from Theorem 14. O

COROLLARY 16. — Suppose D is a PID that has infinitely many pairwise
non-associated prime elements. Then

LR(D)) = {{0},{1}} U {[m,n] |m € [2,n]}
U {[m,n]u{n+2} | m € [2,n] and n even }
U {[m,n]u{n+2} |'m € [3,7] and n odd }
U {m +2[0,7] | with m € Nsg, and n € N}.

Proor. — The sets {0} and {1} correspond to units and irreducibles. For
zero-divisors, the sets of lengths are discrete intervals and completely de-
scribed in Theorem 14(1). By Corollary 4 and Lemma 13(2), the sets of lengths
of nonunit non-zero-divisors are arbitrary sumsets of sets as in Theorem 14(2),
i.e., of sets of the form {1}, [2,n] (for n > 2), [3,n] (for n > 3), [2,n]U {n + 2}
for even n > 2, and [3,n] U {n + 2} for odd n > 3. O

Finally, we remark that other important invariants of factorization theory
(their definitions readily generalize to the zero-divisor case) are easily de-
termined for R(D) using the characterization of sets of lengths and Corollary 4.

COROLLARY 17. — Let D be a PID but not a field. R(D) is a locally tame ring
with catenary degree c(R(D)) = 4. In particular, A(R(D)) = [1,c(R(D)) — 2.

Proor. — We first observe that the catenary degree (see [8, Chapter 1.6]
for the definition in the non-zero-divisor case) of R(D) is 4: Let first o € R(D)
with nr(«) # 0. Using Corollary 4, we can reduce to the case where nr(«) is a
prime power. Since then min L(x) < 3, we can argue as in bifurcus semigroups
(cf. [1, Theorem 1.1]), to find c(x) < 4. In view of Lemma 8(1), and with a si-
milar argument, the catenary degree of a zero-divisor is at most 2. Together
this gives c(R(D)) < 4. Since there exists an element with set of lengths {2, 4},
also c(R(D)) > 4.

We still have to show that R(D) is locally tame (see [8, Chapter 1.6] or [10] for
definitions). For this we have to show t(R(D), y) < oo for allirreducible y € R(D). Let
o € R(D) and y € R(D) be irreducible. If y is prime, then t(R(D), y) = 0, hence we
may suppose that y is associated to one of the non-prime irreducibles from Theorem
5, and hence there exist a prime element p € D and n € N such that nr(y) = p™. If
o € R(D) is a zero-divisor, then t(x, y) = n follows easily from Lemma 8(1).

A standard technique allows us to show t(R(D)®,y) <oo: By [10, Proposition
3.8], it suffices to show that two auxiliary invariants, w(R(D)*, ) and ©(R(D)*, y)
are finite.
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Suppose I C (R(D)*,-) is a divisorial ideal. If we denote by gp)(I) the ideal of
R(D) generated by I, one checks that ppy(I) N R(D)* = I. Since R(D) is noe-
therian, R(D)® is therefore v-noetherian. By [10, Theorem 4.2], w(R(D)*,y) is
finite.

Recalling the definition of 7(x,y) (from [10, Definition 3.1]), it is immediate
from Theorem 14 together with Corollary 4, that ©(R(D)*,y) < 3. Altogether,
therefore t(R(D), y) < oco. Od

REMARK 3.18. — Suppose D is a PID but not a field.

(1) Trivially, Theorem 14(2) holds true for R(D)*.
(2) Let K be the quotient field of D, and H = R(D)*. We have

H:{(‘(’; Z) |beD,aeD°},

and the complete integral closure of H is equal to

f]:{(% 2) |beK,aeD‘}

" n n—1
because (g 2) = (C:) naan b) for all a,b € K and n € N. This

shows H # H, and even more we have {= (H : H )=0 (note that
(D : K) = (). Thus the monoid under discussion is neither a Krull nor a
C-monoid, which have been extensively studied in recent literature (see
[8, Chapters 2.9, 3.3, and 4.6], [9], [12]).
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