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A Note on Some Nonlinear Fourth Order
Differential Equations

ELVISE BERCHIO

Abstract. — For a family of fourth order semilinear ordinary differential equations we
discuss some fundamental issues, such as global continuation of solutions and their
qualitative behavior. The note is the summary of a communication given at the XIX
Congress of U.M.1I. (Bologna - September 12-17, 2011).

1. — Introduction

The present note is the summary of a communication held at the XIX
Congress of U.M.I. (Bologna - September 12-17, 2011). It contains results proved
in [5] complemented with some remarks and comments.

Consider the following fourth order nonlinear equation

(1) w"(s) + kw'(s) +fw(s)) = 0 (seR)

where k € R and f is a locally Lipschitz function. When k is negative, (1) is known
as the extended Fisher-Kolmogorov equation, whereas when k is positive it is
usually referred to as Swift-Hohenberg equation.

Equation (1) serves as model in several contexts such as the pattern forma-
tion in many physical, chemical and biological systems or the spreading of de-
formation in a strut confined by an elastic foundation, see [7, 22]. In particular, if
f) =@t +1)" —1and k = ¢, where c is the wave speed, (1) describes traveling
waves in a suspension bridge according to the model suggested by McKenna-
Walter [20]. Here, w denotes the vertical deflection of the bridge and f re-
presents the forces on the bridge composed by gravity and by the action of the
suspension cables. The positive part in f reflects the fact that cables obey the
Hooke’s law, with a restoring force proportional to the displacement if they are
stretched and no restoring force if they are compressed. Later, Chen-McKenna
[10] suggest to replace the piecewise linear function with the nonlinearity
f(t) = ¢! — 1 sharing many qualitative properties with the original one but being
analytic. See also [13, 14] for further comments on this model.

Our interest in (1) is also due to the fact that it arises when dealing with a
suitable family of biharmonic coercive equations. For instance, when k = —4 and
f is the smoothed nonlinearity in the suspension bridge model, equation (1)
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comes from a suitable transformation of the biharmonic pde

1

(2) Au+ e = i in R*\ {0},

|oe

namely a fourth order coercive nonautonomous version of the celebrated Gelfand
problem [15, 16]. For other values of # and k further biharmonic equations arise,
see Section 3. While not much is now about (2), its noncoercive versions have
recently attracted much interest both in R* (see [4,9,19]) and in R" for n > 5
(seell,2,3,4,6,11, 12]). The study of (1), though lying in an apparently different
context, may contribute to reach a better knowledge to (2).

Two fundamental issues related to (1) are global continuation of local solu-
tions and their qualitative behavior. In Section 2 we collect some results con-
cerning these topics. The problem of existence of homoclinics is also briefly
discussed there. In Section 3 we show how the results given in Section 2 can be
applied to the family of biharmonic coercive equations to which (2) belongs. In
the last Section we describe the main tools applied in the proofs referring to [5]
for the details.

2. — Global continuation of solutions and their qualitative behavior
First we discuss global continuation of solutions to (1). From [5] we know

THEOREM 1. — Let k € R and assume that f satisfies
(3) f € Lip,(R), f@®t>0 foreverytecR\ {0}
(@) If a local solution w to (1) blows up at some finite R € R, then

4) lim ilglf w(s) = — oo and limsupw(s) = + oo .
s—. s—R

(11) If f also satisfies
f@® J@)

(5) lim sup 5 < + oo or lim sup - < + o0,

t—+o00 t——o0

then any local solution to (1) exists for all s € R.

In other words, from Theorem 1-(7) we infer that, under assumption (3), the
only way that finite time blow up can occur is with wide oscillations of the so-
lution. This clearly suggests a possible strategy to prove the second part of the
statement: to get global continuation one only needs to rule out solutions blowing
up in finite time with this kind of behavior. The proof of Theorem 1 is quite long
and technical, see [5, Section 4] for the details. It is based on elementary calculus



A NOTE ON SOME NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATIONS 351

arguments but applied in a refined way. One of the crucial tools exploited is a
suitable energy function, see our Section 4.1.

A few comments on (5) are in order. If both the conditions in (5) are satisfied
then global existence follows from classical theory of ODEs. But (5) merely re-
quires that f is “one-sided at most linear”. Of course, (5) does not cover functions
f (satisfying (3)) with uncontrolled behaviors at both + occ. Nevertheless, if we
exclude these cases, assumption (5) appears general enough to include many
interesting models satisfying (3). In particular, (5) is satisfied if f is either con-
cave Or convex.

Let us now turn to assumption (3). One may easily find examples of functions
showing that if it is violated global continuation may fail. For instance, if
f(t) = 24(t — t°) then w(s) = tans solves (1) for k = — 20 and blows up in finite
time. Here, (5) holds at + oo while (3) is not satisfied. See [5] for further ex-
amples.

A more difficult problem is to find examples showing that when (3) holds and
(5) is violated, (4) really occurs. The following result is due to [13]

THEOREM 2. — Fix any integer m >5 and consider equation (1) with
n? —4n + 8

k= 5 <0 and
nn —4)\* n—
(© s = (M5 e e
There exists a solution to (1) which is defined in a neighborhood of s = — oo and

such that (4) holds for some finite R € R.

The nonlinearity given in (6) satisfies (3) but not (5). As far as we are aware,
this is the first explicit example where the finite time blow up with wide and
thinning oscillations (4) occurs. In [13] the authors also showed that this phe-
nomenon is typical of (at least) fourth order problems such as (1) since it does not
occur in related lower order equations. The proof of Theorem 2 is achieved by
studying some applications of Theorem 1 to suitable semilinear biharmonic pro-
blems at critical growth. This justifies the special form (6), see [13, Section 3.2].

Once global continuation of solutions to (1) has been discussed the natural
subsequent step consists in studying the behavior of global solutions as s — =+ oc.
Here we recall some statements about this topic. All the proofs can be found in
[56]. If k£ > 0, then solutions to (1) have oscillations.

THEOREM 3. —Let k>0 and f satisfy (3) with limsup f(¢)<0 and
I%m +inf f@) > 0. If wis a global solution to (1), then fmmeo

liminf w(s) < 0 < lim sup w(s) ,

§—+00 $—+400
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so that if lir+n w(s) exists then
S——+00

Iim w(s) =0 .

§—+00

Furthermore, if w0 then w(s) changes sign infinitely many times as
s — + oo. Similar statements hold for s — — cc.

Figure 1 shows that a completely different behavior may occur when k <0.
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Fig. 1. — The plot of the solution to (1) with f(t) =e¢' — 1 and k=4 or k = —4 (right)
corresponding to the initial values w(0) = w'(0) = w"'(0) = 0 and w’(0) = —2.

What is suggested by the figure can be proved rigorously. Indeed, we have

THEOREM 4. — Let k<0 and assume that f satisfies (3) and
(7 inf f(t)=—-M > — o0,
teR

then there exists a global solution w of (1) which is eventually negative, de-
creasing, and concave as s — + oo; in particular,

lim w(s) = — o0 .
§—+00
If; instead of (7), f satisfies
(8) sup f(t) =M< + oo.
teR

Then there exists a global solution w of (1) which is eventually positive,
ncreasing, and convex as S — + oo; in particular,

lim w(s) = +o00 .

§—+00

Similarly, there exist solutions having the above mentioned behaviors as
s — —o0.
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We point out that (7) (respectively (8)) implies the second (respectively the first)
condition in (5) so that Theorem 1 states that all the solutions are global. We also
emphasize that assumption (7) is essential in the previous statement. The next
statement shows that if it is violated, then the solution is bounded from above.

THEOREM 5. — Let k<0 and f satisfy (3), (8) and

9) tim LY~ o

t——o00 t
Then any solution w of (1) is global and

supw(s) = oo and infw(s) > —oo .
seR seR
On the contrary, suppose that (8) is replaced by (7) and (9) holds as t — + co.
Then any solution w of (1) is global and
supw(s)< + oo and infw(s) = —oc .
seR seR
Important global solutions are the so-called homoclinics. These are nontrivial
solutions w such that
lim w(s) = 0.
§—+o00
In literature, one may find different definitions which also involve the derivatives
of the solutions. For instance, by successive integrations of the equation it can be
proved that if f : R — R is a continuous function such that f(0) = 0 and w is a
global solution to (1) such that ligrn w(s) = 0, then
S§——+00

(10) lim w'(s)= lim w'(s) = lim w”(s) = lim w"(s)=0.
S——+00 S§——+00 §—+00 S—+00

The same result also holds with — oo in place of + co. See e.g. [5, Proposition 11]
for a proof.

Existence of homoclinies to (1) is a tricky problem (see [21, Problem 6.2]) and,
as far we are aware, only partial results are known. We collect some of them in
Theorem 6 below. Here and in the sequel we denote

t

F(t) = f f@dr.

0

In particular, by (3) we see that F'(t) > 0 for all £ # 0.

THEOREM 6. — Let f satisfy (3). The following statements hold

(@) ik < 0 equation (1) has no nontrivial bounded solutions. In particular,
it has no homoclinic solution.
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(1) if 0<k <2 and f satisfies

(11) @21 VE#£0),

then equation (1) has no homoclinic solution.

(i12) Iff is differentiable at t = 0 with f'(0) = 1 and tli{n % =0, then there

exists a homoclinic solution to (1) for almost every k € (0, 2).

The proof of statement (i) can be obtained by repeating the proof of
[22, Theorem 10.1.1] where the explicit nonlinearity f(t) = ¢’ — 1 is considered.
On the other hand, a very simple proof of the second part of statement (i) can
be obtained by exploiting a suitable energy function, see our Section 4.1. The
same energy function has been used to prove statement (¢7) in [5, Section 11],
see again Section 4.1. Statement (ii7) has been proved in [24] by using a
mountain-pass procedure. We note that an alternative approach in getting
existence of homoclinics consists in studying a suitable constrained mini-
mization problem. This has been developed in the work [23]. We refer the
interested reader to [23, Sections 2 and 7]. Finally we mention that, when
f@) = ¢’ — 1, a multiplicity result for homoclinics is obtained in [8] by means of
a computer-assisted proof.

We conclude our short survey on homoclinic solutions with a couple of com-
plementary results from [5]. See also [17, 18] for further results.

THEOREM 7. — Let k > 0. Assume that f satisfies (3) and it is differentiable at
t = 0 with f'(0) = 1. The following statements hold

(@) ifwis a homoclinic solution to (1), and if {su },,>, denotes the increasing
sequence of zeroes of w as s — + oo, then

.. vk + vk +12
(12) 17}113 g;cf (Sm+1 — Sm) = 5%

A stmilar statement holds as s — — oc.
(1) If k<2, then any homoclinic solution w to (1) satisfies w € H*(R).

From Theorem 3 we know that any homoclinic solution changes sign infinitely
many times as s — + oo (cfr. Theorem 6-(2)). Theorem 7-(2) states that the dis-
tance between two consecutive zeroes of an homoclinic solution stays bounded
away from zero as s — =+ oco. Finally, we note that the limit value k¥ = 2 comes
from the dynamical system analysis, see Section 4.2.
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3. — Related biharmonic Gelfand-type problems

Here we give an interpretation of the results stated in Section 2 in terms of
suitable biharmoniec equations. Let k € R and consider the equation

(13) Au—2n — 4)”|V|‘m (n26n+12+k)|m|é
X X

X - Vu+elbzi

—(n —2)[(n — 2)* + k] :
&

where x € R" \ {0} (n > 2). For any k € R, (13) admits an explicit global radial
solution which is given by %(x) = —4 log |x|. To see this, one may write (13) in its
radial form, that is

1

734 b

/// (/},.) // (/}")

W)+ 6 LY Y (T)

u(v) _

+(1+k) —=

where r = |x| € (0,4 oo). Then, with the change of variables

s = logr w(s) := u(e®) + 4s seER,

one finds that w = w(s) solves (1) with f(¢) = ¢/ — 1 and the singular solution
u(x) = — 4 log |x| to (13) corresponds to the trivial solution w = 0.
For problem (13), Theorem 1 reads

COROLLARY 1. — Let k € R and Bpr be the ball in R" (n > 2) with radius
0<R < + oo and center the origin. Then, any radial solution to (13) in Bg \ {0}
admits a radial extension to R" \ {0}. In particular, equation (13) in Bg \ {0}
subject to the boundary condition

lim u(x) = oo,
x| =R
admats no radial solution.
On the other hand, Theorem 6 reads
COROLLARY 2. — Let k < 0 and let u be a radial solution to (13). If
lim (u(x) +4loglx|) =0= lim (u(x)+4log|x]),
[e|—0 ] =00

then u(x) = —4 log |x|.

Let us consider some meaningful values of » and k in (13).
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If n = 4, (13) becomes

A . 1
Au+ (4+k) —%—2@ +e'=—p, x e R {0}.
] ] ]
Hence, if furthermore k = — 4 we get equation (2).
If n = 2, (13) corresponds to the equation
V4 A 1
Sfu 47 v2u+(4+k)—®;+e“:—4, x e R?\ {0}.
] || ]
Thus, by taking k = — 4, the equation reduces to
2 x - Vdau w i 2
Au+4 e +e _|ac\4’ x e R\ {0}.

Finally, for any n > 2, taking k = — (n? — 6n + 12) € ( — oo, —3] we have

-VA . 1
x|v|2“+(n—2)x Vil L= L e e RN\ {0},
X

Au— 2 — 4) 1
||

||
while taking k = —(n — 2)* € (— 00, 0] leads to

V4 A 1
¢ V2“+—“2 tet=—0r, xeR"\{0}
|| || ||

Ay — 2(n — 4)

4. — About the proofs

As already remarked, the proofs of the statements given in Section 2 are
mainly based on elementary calculus arguments but applied in a refined way. We
refer to [5] for the details. Nevertheless it is worth mentioning two fundamental
tools which turn out to be crucial in most of the proofs. Namely, the exploitation
of suitable energy functions and the analysis of the dynamical system associated

to (1). The next two subsections are devoted to a description of these tools.

4.1 — Energy functions

To equation (1) we may associate the following three different energy func-

tions each one characterized by suitable properties:

B(s) = s - g W (s — Fu(s)),
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1 RV k 10 N\2 / " / 7
E(s) = 5 w'(s)” — 5 w(s) —w (s)w"(s) — Flw(s)) = E(s) — w (s)w'" (s)

and
H(s) :=w(s)w'(s) — ws)w” (s) — kw(s)w'(s)

for any s € R.

E(s) turns out to be constant on critical points of solutions. Indeed, let
w = w(s) be a solution to (1) and let s; and sy be such that «/(s;) = w'(s2) = 0. By
differentiating we obtain

E'(s) = w" (s)w'(s) — kw" (s)w'(s) — faw(s))w'(s).

Hence, if sy > sy, an integration by parts yields

m@fmm:fy@w

§1

= f (w" ()w" (s) — kw" (s)w'(s) — fau(s)w'(s)) ds

=— [ (") + k() + s/ () ds = O,

where we used w'(s;) = w(s2) = 0 and (1).
The second energy function is constant on solutions. Indeed, if w solves (1),
there holds

) =w"Sw'(s) + w"'(s) — W Ew" ) =0 = &) =0C,

for some C € R. Therefore, if one is interested in homoclinics, by (10), £(s) =0
for all s € R. This property has been exploited to prove Theorem 7-(2).
Next we turn to H(s). Let w be a solution to (1), a short computation gives

H'(s) = w"(s)* — kw'(s)® + w(s) f(w(s)).

If k < 0 and f satisfies (3), then it is readily deduced that H is nondecreasing.

This gives a simpler proof of the second part of Theorem 6-(7). Indeed, let w be a

homoclinie solution to (1), (10) yields lirin H(s) = 0. Since H is nondecreasing,
S—T0o0

H = H' = 0 and we have a simple proof of the fact that no homoclinic solution
exists.

The energy H may also be exploited when k£ > 0. See e.g. the proof of
Theorem 6-(i7) as given in [5].
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4.2 — Dynamical system analysis

In some situations, it may be useful to transform the fourth order ode (1) into
a first order system of four equations. Let w = w(s) be a solution to (1) and put
Y(s) = (y1(8), y2(8), y3(s), ya(s)) = (w(s), w'(s), w" (s), w" (s))

so that (1) may be rewritten as a system

Yy = Y2
Yo = Y3
(14) :
Ys = Y4
Y, = —kys — fy).

If we define @ : R* — R* by

D1, Y2, Y3, Ya) = (Y2, Y3, Y4, —kys — f(y1))
then any solution Y (s) = (y1(s), y2(s), y3(s), y4(s)) of (14) may be rewritten as

Y'(s) = &(Y(s)).

In view of (8), f(s) admits a unique zero at s = 0. Therefore, the dynamical
system (14) admits a unique stationary point which is O = (0,0, 0, 0). This point
corresponds to the solution w = 0 to (1). We now study the stability of O.

If we assume that f is differentiable at ¢ = 0 with f'(0) = 1, then the linearized
problem at O for (14) reads

0 1 0 0
o o 0o 1 o0
Y =AY®), A=|. o o 1

10 -k 0

The eigenvalues / of A satisfy the equation A* + k4% + 1 = 0 and therefore also

 —k+VEE—4

Hence, if k< — 2 the eigenvalues of A are all real and are given by
, |k| + VK2 — 4 k| — VK2 —4
A€ Q£ 5 , 5 .

If —2<k< 2, the eigenvalues of A are

V2—k 24k V2—k 24k
ie{i 5 +1 5 , 5 Fi 5 .

A.Z
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If kk > 2, the eigenvalues of A are given by

e {ﬂwi E g eV M}

2

If k = —2 the eigenvalues of A are A € {+1}, they both have multiplicity 2, and
the corresponding eigenvectors are v, = (1,1,1,1) and v_ = (1, 1,1, —1).
If k = 2 the eigenvalues of A are 1 € {£1} (with multiplicity 2) and the cor-
responding eigenvectors are v = (1,7, —1,—7) and v = (1, — %, —1,7).
Summarizing, we have

PROPOSITION 1. — Assume (3) and that f is differentiable at t =0 with
f0)=1. For any ke R, (14) has a unique stationary point O = (0,0,0,0)
which satisfies

(@) ifk< — 2,0 has a 2-dimensional stable manifold and a 2-dimensional
unstable manifold, both not oscillating near O;
@) ifk = =2, 0 has a 2-dimensional stable manifold (tangent tov_near O)
and a 2-dimensional unstable manifold (tangent to v, near O);

(1) if —2<k<2, O has a 2-dimensional stable manifold and a 2-di-
mensional unstable manifold, both having locally the form of a spiral
near O;

() if k =2, the linearized problem at O has 2 (opposite) double purely
maginary eigenvalues;

W) if k > 2, the linearized problem at O has 4 purely imaginary eigen-
values.

If £ > 0, by Theorem 3 we know that any global solution to (1) changes sign
infinitely many times as s — + 0o. The dynamical system analysis performed
above suggests that oscillations may also occur when —2<k <0 since A has
complex eigenvalues. On the other hand when & < — 2 we expect solutions having
eventually one sign. More precisely, from [5] one has

THEOREM 8. — Assume that f satisfies (3).
() If k < —2 and f also satisfies one of the following
(15) f@ >t neart=0 or fit)<t meart=0

then any global solution w to (1) such that lli1+n w(s) = 0 is of one sign

as s — +oo. Moreover, a similar statement holds with + oo replaced
by —oc.
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(i) If —2 < k<0, f is differentiable at t = 0 with f'(0) = 1 and also satisfies

(16) lim inf @ > k2,

|t| =400

then any global nontrivial solution w to (1) changes sign infinitely many
times both as s — =+ oo.
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