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Multigrid Methods for (Multilevel) Structured Matrices
Associated with a Symbol and Related Applications (*)

MARCO DONATELLI - STEFANO SERRA CAPIZZANO

Abstract. — When dealing with large linear systems with a prescribed structure, two key
mgredients are important for designing fast solvers: the first is the computational
analysis of the structure which is usually inherited from an underlying infinite di-
mensional problem, the second is the spectral analysis which is often deeply related to
a compact symbol, again depending on the infinite dimensional problem of which the
linear system is a given approximation. When considering the computational view-
point, the first ingredient is useful for designing fast matrix-vector multiplication
algorithms, while the second ingredient is essential for designing fast iterative solvers
(multigrid, preconditioned Krylov etc.), whose convergence speed is optimal in the
Axelsson, Neytcheva sense, i.e., the number of iterations for reaching a preassigned
accuracy can be bounded by a pure constant independent of the matrix-size.

In this review paper we consider in some details the specific case of multigrid-type
techniques for Toeplitz related structures, by emphasizing the role of the structure and
of the compact spectral symbol. A sketch of several extensions to other (hidden)
structures as those appearing in the numerical approximation of partial differential
equations and integral equations is given and critically discussed.

1. — Introduction

We investigate multigrid methods for multilevel linear systems whose coef-
ficient matrices are generated by a real and nonnegative multivariate polynomial
f and belong to multilevel matrix algebras like circulant, tau, Hartley, or are of
Toeplitz type.

In the case of linear systems, where the coefficient matrix belongs to one of
the above mentioned matrix algebras, we prove that the convergence rate is
independent of the system dimension even in presence of asymptotical ill-con-
ditioning (this happens iff f takes the zero value). More precisely, if the d-level

coefficient matrix has partial dimension #n, at level », with » = 1,...,d, then the
d

size of the system is N(n) = [] n,, n = (04, ..., nyq), and O(N(n)) operations are
r=1

required by the considered V-cycle multigrid in order to compute the solution

(*) The work was partially supported by MIUR 2008, grant number 20083KLJEZ.



320 MARCO DONATELLI - STEFANO SERRA CAPIZZANO

within a fixed accuracy. Since the total arithmetic cost is asymptotically
equivalent to the one of a matrix-vector product, the proposed method is optimal
in the sense stated in [3]. As a specific important application, we consider the
image deblurring problem in the case of a known space invariant blur and proper
boundary conditions. In particular, we show that the spectral information given
by the symbol can be used for defining a regularizing multigrid which improves
the restoration, when an iterative regularization method is used as smoother.

1.1 — Multigrid methods for structured matrices

Multigrid methods for tau and Toeplitz matrices were firstly introduced in
[23] and then applied to two-level Toeplitz matrices in [24]. These early works led
to several generalizations, other matrix algebras in [40, 12], different projecting
strategies for Toeplitz matrices in [30, 9, 13], and to further developments in the
theoretical analysis on the convergence rate [9, 13, 36, 2]. In [2] it was proved that
in the one-dimensional case the Algebraic Multi-Grid (AMG) firstly introduced in
[23] for tau and Toeplitz matrices and in [40] for circulant matrices generated by
nonnegative polynomial functions, under slightly stronger conditions, is optimal
when using the V-cycle and only one iteration of relaxed Richardson as post-
smoother. The optimality is in the sense of Axelsson and Neytcheva [3], i.e., the
problem of solving a linear system with coefficient matrix 4,, is asymptotically of
the same cost as the direct problem of multiplying A, by a vector. These slightly
stronger conditions are translated into the choice of a projector which results
more powerful than the previous proposals, when the coefficient matrices pos-
sess a generating function with zeros of order greater than two.

The multidimensional setting was studied in [1], by considering structures
belonging to multilevel circulant, tau or Hartley algebras and generated by
nonnegative multivariate polynomial functions. More specifically, under slightly
stronger conditions and for the class of matrices mentioned above, the AMG
proposed in [24, 36, 40] is optimal, when using the V-cycle and at least one (pre or
post) smoothing iteration of relaxed Richardson. A similar analysis can be done
for other stationary methods.

Here we review such results by showing that the total cost of the considered
AMG is given by O(N(n)) arithmetic operations, since:

1. all the matrices appearing in the AMG have a number of non-zero diag-
onals independent of n and they can be computed within a number of
operations proportional to log(N(n)),

2. each iteration requires the same computational cost of the matrix-vector
product, i.e., O(N(n)) arithmetic operations,

3. the number of iterations required for the convergence is bounded by a
constant which does not depend on n.
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We observe that the last point means that the convergence rate is in-
dependent of N(n) which is the main ingredient for the optimality of the re-
sulting method. Furthermore, the matrices at each multigrid level belong to the
same algebra and then the recursive V-cycle procedure is well defined.

In the case of the considered matrix algebras the cost by direct methods using
fast transforms is O(N(n) log N(n)) operations, while an optimal technique would
require just O(N(n)) operations. This kind of linear systems associated with
matrix algebras is widely encountered when preconditioning more complicated
problems (dense multilevel Toeplitz systems, discretization of multidimensional
differential and/or integral equations, ete. [10, 35]) or directly arises in some
image restoration problems with shift-invariant kernel and suitable boundary
conditions (see [28, 38]).

The tau algebra is also the key to extend the proposed AMG to multilevel
Toeplitz matrices. In this direction there are several proposals [30, 36, 9, 13, 2]. The
proposal in [30] does not follow a Galerkin strategy and hence there are not many
useful tools for a theoretical analysis, while the proposal in [2] extends the one in
[36] preserving more information at each recursion level when the generating
function has a zero of arbitrary finite order. In [36] the optimality is proved in the
Two-Grid case, while in [9, 13] the level independency in the one and twodimen-
sional case is also proved with generating function having zeros of order at most
two. The latter implies the optimality using the W-cycle, but, as shown in [2], it is
not enough for the optimality of the V-cycle. We emphasize that for multilevel
Toeplitz matrices with nonnegative generating functions having a zero of order at
most two, all the generalizations described in [30, 36, 9, 13, 2] of the original idea
contained in [23, 24] define exactly the same multigrid procedure. Furthermore for
generating functions having zeros of order greater than two there are no results
on the optimality of the cited proposals. We recall that in [36] the level in-
dependency is implicitly proved but not explicitly stated for a zero of arbitrary
order. However the experimentation in [1, 2] confirms numerically an optimal
behavior of our proposal also for zeros of order greater than two already in the V-
cycle case. In this case the fast direct techniques require a computational cost of
O(N@m)"™) [32] and need further stabilization tricks, while the most popular
preconditioning strategies can be far from being optimal [41].

We remark that generally it is not true that if we have optimality for a given
iterative solver in the one-dimensional case, then the same property transfers to
the multidimensional case. A notable example is the preconditioning of multilevel
Toeplitz systems using multilevel algebras like the circulant algebra: indeed
many optimal preconditioners can be found in the one dimensional case while in
the multidimensional case this has been shown to be theoretically impossible, see
[41]. On the other hand, by using multilevel band Toeplitz preconditioners (see
e.g. [35]), it is possible to reduce the computation with dense Toeplitz systems to
the case of Toeplitz linear systems whose coefficient matrices are generated by
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nonnegative polynomials. Therefore it is of special interest to be able to solve in
an optimal way these preconditioned systems. This numerical solution can be
performed with the proposed AMG.

We expect that the theoretical tools introduced in this paper for the multilevel
matrix algebra case can be employed for proving the AMG optimality in the
multilevel Toeplitz context as well. However, the simplification of considering the
case of matrix algebras, instead of the Toeplitz case, is the same simplification
that is done in the classical Local Fourier Analysis (LFA) for the geometric
multigrid (see [17] for a comparison between our analysis and the LFA). As an
example, some discretizations of PDEs with periodic boundary conditions lead to
circulant matrices while Dirichlet boundary conditions lead to Toeplitz matrices.

1.2 — Multigrid methods for reqularization purposes

We consider the de-blurring problem of noisy and blurred images in the case
of known space invariant point spread functions with four choices of boundary
conditions. We combine our algebraic multigrid defined ad hoc for structured
matrices related to space invariant operators (Toeplitz, circulants, trigonometric
matrix algebras, ete.) and the classical geometric multigrid studied in the partial
differential equations context. The resulting technique is parameterized in order
to have more degrees of freedom: a simple choice of the parameters allows us to
devise a quite powerful regularizing method. It defines an iterative regularizing
method where the smoother itself has to be an iterative regularizing method
(e.g., conjugate gradient, Landweber, conjugate gradient for normal equations,
ete.). More precisely, with respect to the smoother, the regularization properties
are improved and the total complexity is lower. Furthermore, in several cases,
when it is directly applied to the system Af = g, the quality of the restored image
is comparable with that of all the best known techniques for the normal equations
ATAf = ATg, but the related convergence is substantially faster. Finally, the
associated curves of the relative errors versus the iteration numbers are “flatter”
with respect to the smoother (the estimation of the stopping iteration is less
crucial). Therefore, we can choose multigrid procedures which are much more
efficient than classical techniques without losing accuracy in the restored image
(as often occurs when using preconditioning). The numerical experiments show
the effectiveness of our proposals.

1.3 — Plan of the paper

The paper is organized as follows. § 2 is devoted to present multilevel
circulant, tau and Hartley algebras and the multilevel Toeplitz matrices, by
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emphasizing their main common properties and especially the role of the
symbol for describing spectral features. In § 3 the V-cycle AMG procedure
is presented while in § 4 three constraints for the AMG optimality are dis-
cussed. In § 5 we prove the convergence and optimality property of our
AMG and we briefly present generalizations and extensions, where the no-
tion of spectral symbol is of paramount importance. Section § 6 is devoted to
discuss the image restoration problem, by the viewpoints of the multigrid
and of the spectral symbol. Finally, § 7 contains concluding remarks.

2. — Multilevel algebra and Toeplitz matrices

We will consider a multigrid method to solve linear systems whose matrices
belong to multilevel circulant, tau and Hartley algebras. We will provide a uni-
form approach that in fact can be extended to other matrix algebras (for DCTIII
see [12]).

Let d,ne N\ {0}, Fg={f: R - R} and let Diag(z) be the diagonal
matrix with principal diagonal equal to z € R". With any unitary matrix
Q. Ge. Q' =QH), we can associate the Hermitian algebra G(Q,) = {Q,"
Diag(z) - Q7 | z € R"} and hence the map A, defined by

An: fl — g(Qn)
f — Q- Diag fw™)- QY

is an algebra homomorphism where w!™ is a fixed vector of R" and f(w!")
denotes the vector with components f (wgﬂ/]). As a consequence uE"] = Qe; is a
unitary eigenvector of A4, (f) related to the eigenvalue f (wE”]). The circulant
matrix C,(f), the tau matrix 7,(f) and the Hartley matrix H, (f) with f € F;
can be written as A,(f), A €{C,t,’H}, by means of the objects @, and w!™
defined in Table 1.

TABLE 1. — Basics of trigonometric algebras: index range, sampling points, eigenvectors.

A In w“” Q'n,
211 1 - I
Circulants C 0,....n—1 wi" = % Fy = 7= [emwﬁ JL_jezﬂ
] 2mi -~
Hartley Ho|o.. n-1 uf == H, = Re(F,) + Im(F,)
Tau T 1,...,m wi™ __m Sy = \/—2— [sin (jui)],
5 » i n+1 n+1 i L,JE€ELy
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In [2] we proposed an AMG (improving the one studied in [23]) to solve the
linear system .4,(f)x = b with total arithmetic cost linear in % under the as-
sumption that f is a trigonometric polynomial that vanishes in zero and is positive
in the open interval (0, 27) (we required f even in the tau case): then it was shown
how to extend the result to the case where the unique root is not at zero and in the
case where f has more than one root. In [1] we extended this analysis to the
multilevel case improving the previous proposals and the theoretical results in
[24, 36, 40]. Here we review the main results directly in the multilevel case.

A d-level matrix A4,, of partial dimension n = (ny, %2, ...,149) € (N \{0})d can
be described (see [46]) as an n; X 77 block matrix whose elements are ns x s
block matrices and so on with d nesting levels; its true dimension is

d
N(n) = [] n,. We will refer to the elements of such matrix by using a pair (i,j) of

d-indiceg: 14,, = [a; j], and the selected element q; ; is the one in position (i,,j,) at
the r-th level, for every r=1,...,d.

Circulant, tau and Hartley d-level matrix algebras of partial dimension n can
be defined as the matrix algebra G(Q,) associated with the transform
Qn =Qn, ® -+ ® Qu,. All Qy, have to be selected in the same row of Table 1: it is
possible to deal with mixed structures and the corresponding multigrid analysis
is straightforward (see e.g. [40]), but we will not emphasize this point hereafter.
Of course we can associate multilevel matrices C,(f), t,(f) and H, (f) with each
multivariate function f € Fg, thus we extend the map A, to A, as follows

.A,,Z fd — g(Qn)
f — @u-Diag f@™)- @y,

with the sampling point multilevel vector w™ RY® defined as

[n]
w;

= (™! ...,w[-""]), P€Ty: =Ty X...x Iy,

1

It follows that u [1“ R u["‘l] is an eigenvector related to the sampling
at w; "l and A, is an algebra homomorphlsm as well, so that A, (f)An(9) = An(f9).

In this article we are interested in linear systems A,(f)x =b with
Ae{C,t,H,T}, f being a nonnegative multivariate trigonometric polynomial.
Once again, we require f to be even (with respect to each variable) in the tau
case. Here T,,(f) is the Toeplitz d-level matrix of partial dimension n defined as

_ [Jj1 _ [jal
TuH= Y @ly'= > - Y ag.dit e e
ljl<n—e 71l <m |al <ma

e=(1,...,1)e Nd) by means of the Fourier coefficients of f

(1) U = f fe iy, F=-1  ke7’

]’

@n )d
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Here JY1 € R™" is the matrix whose (s,t)-th entry equals 1if s —t =j and is 0
elsewhere.

We assume f € R, with z € (N \ {0})%, where R,, y € N, is the set of d-
variate real-valued trigonometric polynomials with degree up to #:

R,[x] = Z et ®) st a_p=ag e C}, (k|x) = Zklxl

k| <y

In this case it is known (see [46, 5, 6]) that all the matrices A,(f) are
Hermitian, banded (in the way induced from the considered structure) and
semipositive definite if f>0. Moreover A,(f) is ill-conditioned whenever f
takes the zero value; it is singular if A € {C,7,H} and f vanishes in a grid
point wE"].

If £ >0 vanishes in the grid point wg”] then it is usually replaced by a positive
function that leads to a rank-1 correction of A, (f) [45]. Such correction should be
taken into account also in the definition of the projector. However, for brevity, we
will not discuss further this case (refer to [2]).

3. — Algebraic MultiGrid and Ruge-Stiiben theory

Let A € CM*¥ be a Hermitian positive definite matrix, b € CV, m integer
with O0O<m<N. Fix integers No=N>N; >Nz >...>N, >0, take
R; € CN#Ni gyllrank matrices and consider two classes S;, 51 of iterative
methods for N;-dimensional linear systems, i = 0,...,m — 1. The related AMG
in the V-cycle version produces the sequence {x®},_ ¢ C¥ according to the
rule x*tD = AMG(0,x® b), with AMG recursively defined as follows (where
Ao = A, b() = b)

x = AMG(i,x™, b;)

(4

If (z=m) Then Solve(Aan(yul =bn)

Else 1 'm S"( )
2(r; :=b; — A f'm)
(2) 3 b,‘+1 = R,‘I‘,‘
4| A= RiA;(R:)"
5 ,0"{ = AMG(i+ 1,0N,.,,bi+1)
6| x™ .= x (%) | RHx(oW
7 (Oul) Sd ( ('nl))
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Step 1 performs some (v;) iterations of a “pre-smoother”; step 2 calculates the
residue of presmoother approximation; steps 3, 4, 5 and 6 define the recursive
coarse grid correction by restriction (3) of the residue, coarse grid correction
(4, 5) and interpolation (6), while step 7 performs some (J;) iterations of a “post-
smoother”.

The restrictors R; have to be full-rank, thus all A; are nonsingular, Hermitian

and positive definite. Most of the times smoothers are one-point methods:
Six) = Six+ Uy, —SHA;'b; v

3 ~ - - , xeCY i=0,...,m—1.
Six) = Six+ Iy, —SDA;'b;

Steps 2-6 allow us to define on each level 7 the exact coarse grid correction op-
erator :
(4) CGC; = Iy, - RHA; LR A;,  i=0,...,m—1.

i+1

Under these assumptions, it is possible to prove that the AMG is a one-point
method and its linear part AMG is recursively defined as

AMG,, = On,xn,

(5) AMG; = S} [Iy R (In,, ~AMGi)ATL R A - S},
t=m-—1,...,0.

This shows that, unless we are in the two-grid case, by swapping the order of
smoothers (or else by applying both before or after the recursive coarse grid
correction) we affect the spectra of AMG,.

In the following, whenever X is a Hermitian positive definite matrix we define
| - |lx = |IXY2 - |5, where we denote by || - ||, the usual Euclidean norm on C" and
also the induced matrix norm on C**", If X and Y are Hermitian matrices then
X <Y means that Y — X is positive.

To prove the Multigrid convergence we resorted to an approach proposed by
Ruge and Stiiben that is based on the following theorem.

THEOREM 1 ([34]). — Let m, N be integers satisfying 0<m <N and suppose
that A € CN*N is a positive definite Hermitian matriz and b € CV; given a
sequence of m + 1 positive integers N = Nog > Ny > ... > N, let R; € (CNis1xNi
be full-rank matrices foreach i =0, ..., m — 1. Define Ay = A, by = b and choose

two classes of iterative methods S;, S; as in (3). If there exist two real positive
nuUMbers dpre, Opost SAtISfying

Vi 2 2 Vi 2 UV
(6a) 187 %4, < lella, — Opee [CGCi S, VX € cN
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and
392 2 2 g
(6b) 1877 %|,y, <[4, — Opost ICGCix|[3,  Vx € Ci

both for every i = 0,...,m — 1, then it holds dpost <1 and

1-6
7 AMGy| 4 < post g,
(7) | oll4 T+ Oe

REMARK 2. — From Theorem 1 the sequence {x®},_.; converges to the so-
lution of Ax = b and if at least one between e and dpest is independent of N and
m, it converges with a constant error reduction not depending on N and .

We split (6a) and (6b), namely

ISl <l - 287,
(6.a-bis) ICGCxls, <yl

Opre = /7
for (6a) and

1855l <l — Bkl
(6.5-bis) |CGCixl3, <yl

5post =pB/y

and for (6b), see [2, 1]

The coefficients «, f and y can be different when 7 changes, since the step from
(6.a-bis) to (6a) and from (6.b-bis) to (6b) is purely algebraic and does not affect
the proof of Theorem 1. This means that we can use the inequalities

(8a) ISy |3 <[elh, — o 1SV %l (20), Ve M,

T 2 <N;
(8b) 157" 2y, <llelia, — B; llel2e (B;=0), VxeCV,
(8¢) ICGC;x|[3, <; %3 (> 0), vxeCM

which are not weaker than (6), provided that it holds
o Bi

(9) 5pre - Ogglm y_i7 5post - 0gl<nm y_l
for every i =0,...,m — 1.

We refer to (8a) as the presmoothing property, (8b) as the postsmoothing
property and (8c) as the approximation property (see [34]). The approximation

property depends exclusively on the choice of the projectors R; but not on
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smoothers, whereas the smoothing properties are not related to E;. The separate
study of these properties allows us to cope with the more difficult part of the
procedure, the verification of condition (8c), which involves the projectors but is
independent of the smoothers.

However, in order to fulfil conditions (6a) and (6b) with dpye, dpost independent
of n and m (which in turn imply the AMG optimal convergence by Theorem 1), we
will show (see § 5.2) that positive sequences {;}, {#;} and {y;} can be found such
that the two ratios «;/y;, f;/y; converge to two positive constants if 7 goes to
infinity. It follows that the optimality is characterized by satisfaction of at least
one of the two next inf — min conditions:

Bio

. . % . .
(10) inf  min = >0, inf  min =
t 0<i<Mpmax(t) Vi t 0<i<Mmax(®) Vi

4. — The AMG for matrix algebras

To reach convergence and optimality, and, more meaningfully, to write a good
algorithm, we have to answer three requests of different nature: algebraic,
computational, and convergence-optimality.

The algebraic requirement (§ 4.1) is the following: every matrix 4; generated
from step 4 of AMG algorithm (2) has to be in the same algebra G of Ay and hence

has to hold, f; being a suitable function (in the following f = fy,z = zp and n = ny
by choice) and n; a suitable multiindex. This means that the matrices A; gener-
ated from step 4 of algorithm (2) have all to be circulant, or all tau or all Hartley,
each one of the right partial order. It is obvious that the algebraic requirement
does not imply by itself convergence and optimality, but it is necessary to define a
recursive technique and also to obtain a good method: since the coarse grid matrix
has to approximate the fine grid matrix, if they are of the same matrix algebra
type (e.g. circulant) then the approximation would likely be better.

The computational requirement (§ 4.2) is related to optimality: the compu-
tational cost on each iteration has to be as low as possible, i.e.,

OWo) = O(N(no))

since we deal with banded matrices. This is reached if the following three con-
ditions are guaranteed:

1. {R;}!"," and {4;}"", can be (pre)computed with cost at most O(Ny);
2. the products 4;x, R;r and Ry (steps 2, 3 and 6) and smoothers (steps 1

and 7) have linear cost with respect to the dimension N(n;);
3. the cost of solving A,,x©% = b,, is at most O(Ny).

m
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The convergence-optimality requirement (§ 5) is the following: the error
reduction on each iteration has to be smaller than one (convergence) and also
uniformly bounded (optimality), with respect to the dimension of the problem, by
a constant smaller than one and independent of Ny and m. It follows that this
constant will depend only on the generating function:

PAMGo) < const(fp) <1,

p(M) being the spectral radius of M. It is possible to prove convergence and
optimality for AMG algorithm (2) if all inequalities (8a,b,c) and at least one of (10)
hold. Convergence and optimality will be proved in § 5.

TABLE 2. — Scalar case: dimensions, cutting operators and relations (M, = Diag,_,( — 1)").

Circulant & Hartley algebra 7 algebra
Ny 2t 201
N; N ;‘ =2 L*; g

10 010
{ Lo ] [ 01 0
Ky, o Lo
1 0Jy,, 0 1 O0ly, .y,

KN: Qi [QNHA ‘QNM] [QN/+1 ‘OAT/—] |MN1+1 QNH]
Ri Ky, A, (pi)

4.1 — Algebraic requirement

Here we describe how to satisfy the algebraic requirement (11). We simply give
the multilevel version of the arguments defined in the one-level case in [2] ac-
cording to Table 2. In [2] we fix N; =2/~ for circulants and Hartley and
N; =21 —1 for tau (t is an integer number) and we choose as projector (re-
strictor) R; the product between a cutting matrix Ky, (defined in Table 2) and a
matrix Ay, (p;) in the algebra G(Qy,), each p; € F; being a trigonometric poly-
nomial. By means of cutting relations we obtained A; = Ay, (f;), being { f;}7, C F1
defined by f;1 = P1(®?f;), with ¥ : F1 — F defined as follows [23]:

1 X x
#ilow)] =3lo(3) +o(5+7))
Now we deal with the d-level case, starting with Ay = A,,(fo) whose partial order is

no = 2e € N¢ for circulants and Hartley and ny = (2! — 1)e for tau, where
e=(1,...,1) € N?and ¢t is still a positive integer. We essentially halve each partial
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order on each level, by defining n; = 2!‘e for circulants and Hartley and
n; = (2= — 1)e for tau. As projector R; we choose again a product, between a d-
level cutting matrix Ky, = Ky, @ - - - ® K, and a matrix A,,(p;) in the d-level
algebra G(Qn,), p; € F4 (see Table 3).

TABLE 3. — Multilevel case (d > 1): dimensions and cutting operators (e = (1,...,1)).
Circulant & Hartley algebra 7 algebra
ng 2e @ —1e
ni M2t M@ - ve
Mmax t t—1
an K(n:)l X ® K('”l)tl
R; Ky, An,(pi)

These choices preserve a d-level structure in each A;, because of the inductive
step A; = Ay, () = Aip1 = A, (fiv1):

Ai+1 = Ri Ai RzH
= Ku Qu Ding (2 )w")) QIET
= Qu.., Diag([¥alp? )] ) QI

(see [24, 40] for details on last equality, where we assume all functions to be even
in the tau case). This leads to the following

ProrosITION 3. — With notations of Table 3, let t, m € N be such that
0<m<t and let fy, p; € Fq be 2n-periodic functions (even in tau case) for
1=0,...,m—1 Define also A;;1 = R;A; (Ri)H for i=0,....,m—1. Then it
holds A; = A, (f), i =0,...,m, {f;}, being defined as

=

(12) fir1 = YaWif)
and Vg : Fq— Fq defined as
1 X
(13) Valgw)] =55 > 9(5+7s).
se{0;1}¢

Moreover the projector R; is full-rank if Wq[p3x)] > 0 holds for every x.
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4.2 — Computational requirement

As we stated in § 1, we are interested in linear systems generated by a
polynomial f € R;,: this means that the first matrix of the sequence {4;}}", is
structured (i.e. Ay = Ay, (fo) € G(Qn,)) and sparse (fy € R,), while all A; are still
structured (4; = A,,(f) for § 4.1), even if they can be dense. We assert that
under the simple assumption that all the projector’s generators p; are poly-
nomials, then all the matrices A; have a number of non-zero diagonals lower than
a constant independent of n and m. As a consequence, it is possible to guarantee
that each iteration of the AMG (2) has a cost proportional to N(n).

To show this result we have to analyze in detail how ¥ acts on polynomials:

applying ¥, to a generic polynomial 3 aze!*® we obtain

ci<k<c:
, 1 . ik
Y’d( Z ake’<k|x>> - Z =3 Z emiikls) akel<§|x>
c1<k<e c1<k<e 2 se{0;1}¢

(14)

= Y ayel®®

IRt

with componentwise floor and ceiling. The second equality follows from an or-
thogonality result:

Z oritkls) _

{2d if k,=0mod 2 Vvre{l,...,d},
se{0;1}?

0 if3re{l,...,d}st k=1mod?2.

In particular we get

7
2

ProposITION 4 ([1]). — Under the same assumptions of Proposition 3, let p;
be polynomials such that p; € Ry, and assume fy € R;. Then the following
properties hold:

1. each f; is a polynomial;

. z;
2. fi € Ry, being z;,1<q; + {E’J,
3. z; < max{z, 2¢; : 0<j<i};

4. if q; = q for each i, then z; <2q for i large enough (it depends on zy — 2q).

Here multiindex inequalities and maximum hold componentwise as usual.

From Proposition 4, it follows that if p; € R, for all ¢ (we will show in § 5.2
that this happen in our case) then the number of nonzero diagonals of the
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d
coefficient matrix at each multigrid recursion level is lower than [] 2q, + 1.

r=1
Therefore, it is easy to prove that, with a suitable choice of the smoother, one
iteration of the algorithm AMG (2) is linear in Ny. This is done in the fol-
lowing lemma.

LeMMA 5 ([1]). — Under the same assumptions of Proposition 3 and if

1. pie Ry, fori=0,...,m—1, '
2. pre and post-smoother are Richardson with v; +%;<h - (2% — 1), where
h>=11is a constant,

then each iteration of the AMG in (2) has a computational cost linear in Ny.

The above lemma does not consider the cost Cpy,y» of calculating the
matrices {4;};";, i.e., of calculating the functions {f;};";. This can be done
before the first iteration with logarithmic cost in Njy. Indeed, from
Proposition 3 and from equation (14), it follows that we can get the coeffi-
cients of each f;,; by computing the product plz- fi, where p; € R, and the
relative f; € Rpax(z, 24} holds for each i. Since g and z¢ do not depend on nry but
only on fj, and we have to repeat this calculation m — 1 times, it follows that
there exists a constant c(fy) such that C{Ai};”il <c(fy) -m and m is less than
log(N(ny)).

Concluding, under the assumptions of § 4.1 (Table 3) and of Lemma 5
(pi € Rg and v; + 9 <h@d — l)i), we know that each iteration of AMG has
linear cost, but it still remains to show the convergence and to check that the
error reduction is constant with respect to the dimension ny. For this purpose
we use the Theorem 1 and we will show the validity of its hypotheses using
linear algebra and functional tools (this is done in § 5).

5. — Convergence and optimality

In this section we show how to ensure (8a,b,c) that imply the convergence
of our AMG (§ 5.1) and how to satisfy (10) that implies the optimality (§ 5.2).

5.1 — Convergence

In the following proposition we consider smoothers at a fixed recursion level
and therefore, in order to simplify the notation, we do not use the grid index 1.
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PrOPOSITION 6 ([1]). — Let A = A, (f) being [ € Fy nonnegative and not
identically zero and let w be a real number. If we define S = Inm) — wA, then

(16) 1S3 <[l — o S%]%,  @20),  vee RY

holds with v € N if one of the following two is satisfied:

1. 0<o<1/||flly and a<2wv;
2. Y| fll <o<2/|flls and

1 1
a< ming 2wy, 1
<mm{ ummhlcwfuﬂ ]}

Moveover if we define S = I Ny — OA, then

~g 2
(17) IS%x(y <|l*lf - Blxl%,  (B=0),  vee R
holds with 4 € N if 0<w<2/|f| ., and

1- 1-o|fl)*

P

are satisfied.
To prove the convergence it remains to prove the approximation property (8c).

DEFINITION 7. — Let x € R, the set of all corners is given by
Q@ = {y | @ € {w m i i=1,0d, = 1,20}
which has cardinality 2. The set of mirror points (see [24]) is denoted as

M(x) = Qx) \ {x},
e.g. ford =11t is M(x) = {n + x}.

Furthermore, we define

(18) gle]l = (g(y1), - . ., 9Ws0)), y € Q), j=1,...,2

zd
and its Euclidean norm is ||g[90]||§ =3 g(yj)2 = > g(y)z.
J=1 yeQ(x)

We denote by S the fundamental set, which is [0, 7]¢ for algebra and [0, 271
for circulant and Hartley algebra. To ensure the validity of the key assumptions
(8c) we define p;, the generating function of the projector, according to the
following conditions.
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PROJECTOR CONDITIONS. — Let xy be the unique zero of f; in S, Va € S we
choose p; such that

4

(19) lim sup 7;((;’)) <400, YyeEM@),i=0,...,m—1,
L—Lo 1
(20) 0< Y pi, i=0,...,m—1,
ye(x)

where 0 = 2 for TGM optimality and 0 = 1 for V-cycle optimality.

The TGM optimality was proved in [23] for d = 1, in [24] for d = 2 and in [36]
for all d > 1. The V-cycle optimality was proved in [2] for d =1 and in [1] for
d>1.

From (20) the projector R; is full rank. In the following proposition we prove
that with the conditions (19) and (20) the assumption (8c) is verified and therefore
the AMG defined in Section 4.1 is convergent.

PROPOSITION 8 ([2, 1]). — Let A = A,(f) with A€ {C,H,t} and f be a d-
variate nmonnegative trigonometric polynomial with a single zero in the
fundamental set. Let R =Ky, - A,(p) as in Table (3) and define CGC =
Ing — RHE(RAREY'RA as in (4). If p(x) fulfils (19) and (20) then there
exists a real and positive value y such that

(21) ICGC x4 <yllx|ffe,  x€CN®.

5.2 — Optimality

In order to prove (10), in Propositions 6 and 8 we showed that values «;, §; and
y; exist in (0, 4+o00) such that they ensure (8) and then (6) (i.e., the AMG (2) is
convergent); such values depend on the function f; (y; depends on p; too) but not
on the dimensions n; neither on the number of grids m used in algorithm (2).
Therefore, the (10) is ensured if { f;} converges uniformly to a function f. and the
constants o, £, and y, related to f. are positive. In this paragraph we will use the
symbol — to represent uniform function convergence (with respect to the usual
sup norm), e.g. f; Lf*.

In the following we will consider generating functions as

d

(22) F@) =t 50000 + > [1 = cos ()] -y (x)
r=1

being ¢ € N\ {0}, >0,y € F4 and f positive in [ — 7, »)? \ {0} and vanishing
with order 2¢ around 0, i.e., ¥(0) > 0,7 =1, ...,d. We take a particular choice
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for polynomials p;:
d

(23) Pi) = & ggra@) + ¢ [ [1+ cos@]? (e R).
r=1

We emphasize that this choice (23) implies that all the functions f; share the
structure (22).

LEMMA 9. — Assume that fy takes the form (22):

d
(24) Jo@o) = g« Hpys @)+ [1 = cos @)]” -y (x),
r=1
with uy € R and t//(’") € Faforr=1,....d, and let p; and { f;};c be defined as in
(23) and (12) respectively (fi1 = a2 1))
Then 1t holds that also f; takes the form (22) for all i, in detail

d
(25) Fi®) =ty + Jpa @) + > [1— cos @] - yx),  ieN

with {1} i and (W} o v =1,...,d, defined as

Hit1 =276+ quC)zﬂ
(26) ieN,
V@ =V Guu®] & b [y )]

where

1 NE
(27) Gyn(X) = [—i—%s(m)} H [1+ cos ()] %

J#r

and q = 2ge — qe, 1s the degree of ¢qm, where e, is the r-th vector of the ca-
nownical basis of RY and e = a,...,nHed N,

REMARK 10. — Choice (23) for p; is fundamental to get uniform convergence of
{f;} since 1t shows that the structure (22) is kept at each level, it is then enough to
show z//(” — w". Moreover, choice (23) satisfies (19) and (20) (refer to the fol-
lowing Lemma 11) and therefore the Proposition 8. Of course a different choice
for p; could still satisfy (19) and (20) (see e.g. [24, 40]) but no longer to preserve the
structure (25) for {f;}.

LEMMA 11. — Let f be defined as in (22) and p; as in (23) fori =10,...,m — 1.
Then (19) and (20) hold true.
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Therefore, under the same assumptions of Lemma 11, by Proposition 8 it
exists y; > 0 such that (8c) holds true.

From Lemma 9 and Remark 10 we obtain the main tools in order to show that
fi =% f.r it simply follows from y{” % y®, but we still have to prove that the
latter is true. The key is equation (26), which defines the d sequences {t//%’")}iE N
r=1,...,d.

The proof will act as follows: from Proposition 4 we have that {6y/§’")}i is
bounded by ¢! definitely, and by equations (26) and (13) we have that each
step y/g.’") — yx?_?l is linear. Convergence z//gr) N w™ can be shown in the finite
dimension vector space R,»[x] by using linear algebra tools (mainly resorting
to the Perron-Frobenius theorem [47] applied to the matrix of the trans-
formation having dominant eigenvalue equal to 1), and then f; — £, holds
true with

d

Jo@0) = 1, - 1o,r0(x) + Z [1— cos (acr)]q " (x)
r=1

whenever y; — p, holds in R.

From a technical point of view, it is easier to work with Cg[x] than with
Rgimlx], being C,[x] the vector space of d-variate trigonometric polynomials with
complex coefficients and degree up to € N?

Cylx] = { Z et * st o € P}

k| <n

since it is possible to use its canonical basis B,[x] = |J {¢/**}. Of course we
k| <n

need (see (26)) the Fourier coefficients of gqu (x) to get the entries of the matrix

> M(® ) that represent the transform y{” — y{)| = 2@, (") with respect to

By [x].

LemMA 12 ([2, 1]). - For d = 1 the Fourier coefficients by’ of ¢, = ¢, are
given by

7 1/ 2¢q .
@ 1 14 cos(@)]?_y. 4_q( k) i kl<q
28) b ng {T}e R dop = q+ .

- 0 if |kl >q

For d > 1 the Fourier coefficients b;cqm) of ¢ (given by (27)) are

d
@ _ o2qd-1) @
bl =2 [0 €

s=1

0;+00) if |k|<q",
kec7¢

{0} otherwise,
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thus
By (X) = Z bzqm) i kl)

[k <g"

holds true.
The linear dependence of V/£1+11 on l/lgu is exploited by the following

PROPOSITION 13 ([2, 1]). — Assumed € N\ {0}, r € {1,...,d} and let M(Pym)
be the matrix velated to the linear function @y : Cymlx] — Cymlx] with respect

d
to the basis Byn[x] = X By, [xs]. The following three properties hold:
s=1
1. [M((Dq[r])]i,j >0 and

d
(29) M(@yn) =220 QM (D),  re{l,....d}

s=1
2. the dominant eigenvalue of M(Pyn) is 229D and it is simple;
a ,
3. there exists a dominant eigenvector a4 € & R2@™ 1 (to which we refer

s=1
with the usual d-index notation, assuming the s-th index to range in
{—@", ..., (@"}) velated to the dominant eigenvalue such that

@ @ =01if |j,| = @), alleastforanse{1,...,d};
(b) a;.q[ VS04 |jl<g™;
© ¥ d'=1
|j]<q"
Moreover the polynomial Bynlx] - a(q[ ) e C gn[x], whose components with re-

spect to qu[x] are a1, is equal to H (B(q [2s]- a@” )b), and it is real and
positive in [ — =, n)

REMARK 14. — In the following we fix the restrictor parameter in (23) as
¢ = 2¢790-d)_Therefore from Proposition 13 the maximum eigenvalue of the re-
striction of czqﬁ to Cymlx]is 1, and it is simple. Furthermore, a related eigen-
vector is By [x] a(" ) and

oy =y 0 Byalx] - 97,
since ¢ <1§ m does not change the value at the origin (0245 w1(9(0)) = g(0) for each

g€ Fq) and Byinlx] - a4 is the only eigenvector of ¢ f.qu (apart rescaling) re-
lated to the eigenvalue 1 that is dominant and simple.
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Finally, summarizing all the proposed results we obtain the following prop-
erty of optimality for the algorithm AMG in (2).

THEOREM 15 (AMG optimality, [2, 1]). — Lett,m,q € N\ {0} witht > m and
assume z € (N '\ {0})d and f € R, as i (22):

d
F@) =t 500000 + > [1 = cos ()] -y (x)

r=1

such that f is positive valued in [— m,m)" \ {0} and vanishes around 0 with
order 2q.

To solve the linear system A (f)x=5b, A€ {C,7,H} (u=01if A=1) con-
sider the algorithm AMG (2) with the assumptions of Table 3 and with the
Sfollowing choices for 1 =0,...,m — 1:

1. the projectors p; are as in (23):

d
Pi) =G fompa@) o [[ [T+ cos@p)]?, ¢ =280,

r=1
G=0ifA=1);

2. the smoothers S;, 51 are the Richardson method with v; +9; = 1 and the
relaxation parameter chosen according to Proposition 6.

Then at least one in (10) is satisfied and thanks to Theorem 1 there exists a
constant const(f) <1 such that

|AMGy|| 4 <const(f) <1,

with AMGyq defined in (5). In particular const(f) depends only on f (i.e. on g,
wond {y,},) but not on n. Moreover each step of AMG has linear computa-
tional cost (i.e. O(N(n))) and therefore the algorithm AMG is optimal in the
sense of [3].

5.3 — Generalizations

In this short subsection we mention some issues that could be considered,
together with useful generalizations of the previous results obtained for circu-
lant, tau, and Hartley linear systems.

e With regard to the convergence theory, it is worth observing that Theorem
15 ensures AMG optimality if just one smoother iteration is performed: if
we choose v; + J; larger on each grid ¢, we improve the convergence factor
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and optimality holds whenever v; + ; < const(2% — 1)! according to Lemma
5. Furthermore, the optimality results of Theorem 15 can be extended to
the linear system A,(f)x = b generated from a function f with a zero
shifted in X € R?.

e In the Toeplitz setting a careful modification of the cutting matrix allows to
preserve the (multilevel) Toeplitz structure, with an associated reduction of
the computational cost.

e So far multigrid convergence and optimality have been completely in-
vestigated in the matrix algebra case. The Toeplitz case is of higher in-
terest and challenging, both for the definition of a practical multigrid
technique and for the theoretical convergence analysis. Many different
projector strategies are proposed in literature for design multigrid meth-
ods for Toeplitz matrices [23, 24, 36, 30, 9, 2]. Nevertheless, the optimality is
proved only for the TGM case in [36], while in [9] a level independency
property is proved for multiple zeros of order up to two. In [36] the op-
timality of TGM for matrix algebra is extended also to finite difference
discretizations of elliptic partial differential equations (PDE).

e The use of order relationships in the space of Hermitian matrices, which
can be proved using the symbol, are of paramount importance for ex-
tending the proof of convergence from the pure shift invariant case
(Toeplitz and matrix algebra multilevel structures) to locally variant
structures as those appearing in the approximation of partial differential
equations (PDEs) via local methods, i.e., Finite Differences and Finite
Element techniques. In that setting the symbol is available for very large
classes of hidden structures involving virtually all approximations by local
methods of integro-differential operators and the associated algebra [43,
37, 39, 4].

e With regard to the relations with the PDE setting, it is interesting to re-
mind the link between our matrix algebra approach and the Local Fourier
Analysis approach (see [17]). In particular, in [17] it is shown that when f
comes from an elliptic PDE, conditions (19) and (20) on the projector are
equivalent to the classical ’order’ conditions in [27, 50]. More in general, the
simple message is that our approach is more abstract and can be considered
a matrix theoretic extension of the Local Fourier analysis; as a specific
case, we can also deal with integral equations, as those appearing in the
image restoration setting [16].

e The results of the previous section can be easily adapted to the structures
belonging to the multilevel discrete cosine algebra (DCT), by employing a
proper cutting matrix for preserving the structure; see [11, 12, 42]. Also in
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this case, the interest is related to the use of the cosine algebra in imaging
when dealing with Neuman or reflecting boundary conditions and sym-
metric operators: it is useful to remind that the more accurate anti-re-
flective boundary conditions [38] are strongly related with the same sine
transform associated with the multilevel Tau algebra.

e The size-reduction strategy in the recursive multigrid process can be
generalized, allowing a very general approach as shown in [21] for d = 1.
The general case of d > 1 is not difficult to extend, with potential appli-
cation to aggregation methods and to special signal restoration problems.

e The approach based on the knowledge of the symbol is very powerful be-
cause it allows to select the subspaces in which the convergence is en-
hanced: this property is very welcome in the image restoration setting,
where the convergence has to be avoided in the high frequency space where
the noise lives, see [19]. Some details on this specific application, taken from
[19, 20], are reported in the next § 6.

6. — Multigrid regularization

In this section we consider the classical de-blurring problem of noisy and
blurred signals or images, which is usually modeled by a first kind integral
equation. By using a proper approximation scheme and by imposing suitable
boundary conditions (BCs), a linear system of the form

(30) Ax+é=b

is obtained, where the vector x represents the unknown true object, & the noise, b
the observed object (the blurred noisy version of x) and A models the blurring
phenomena, via the point spread function (PSF) that we assume spatially in-
variant. Moreover, for the sake of notational simplicity, we suppose that every
involved object has the same size in each direction, and hence x, b, & € RY , While
A € RYN_ The matrix A has a special d-level structure depending on the im-
posed BCs (see [26]), e.g., for zero Dirichlet BCs it is a d-level Toeplitz matrix,
where in the case of standard two-dimensional images we have d = 2.

In the first part of the paper, multigrid methods have been defined in order to
obtain a fast convergence and these strategies have been adapted in [8, 30, 15,
16], in order to deal with the regularized linear system arising from Tikhonov or
Total Variation regularization techniques. In this section we discuss the reg-
ularizing multigrid introduced in [19] which combines numerical linear algebra
requests (low complexity, exploitation of the structured matrices ete.) and reg-
ularization issues (a good precision at the optimal iteration). A theoretical ana-
lysis of the regularizing feature of such multigrid is provided in [20], while a
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recent improvement by a wavelet soft-thresholding is proposed in [18]. After the
seminal work [19], other researchers have investigate regularizing multigrid
methods in cascadic or wavelets frameworks (see e.g. [22, 33]).

6.1 — Low frequencies projection

We give some arguments to explain the reasons why a multigrid approach can
improve the regularization property of iterative methods like conjugate gradient
(CG), Richardson, CG for normal equations (CGNE), or Landweber. When the
PSF is space invariant and we impose BCs the coefficient matrix is generated by
a function that is zero or close to zero in a (possibly large) neighborhood of {n}d
and reaches the maximum value (which is 1 thanks to the normalization condi-
tion) at the origin. Therefore, since the ill-conditioned subspace is associated
with small eigenvalues, this degenerating subspace has very large dimension
(this characterizes the discretized ill-posed problems) and it essentially contains
the high frequencies subspace where usually the noise lives (all these crucial
spectral features are deduced from the study of the associated spectral symbol).
As a consequence, the restoration error has the usual semi-convergence prop-
erty: it decreases while we are working in the low frequencies subspace (at the
beginning iterations), reaches a minimum, and then it increases, i.e, the ap-
proximations change to the worse, when for large values of the iteration we
arrive to work in the (unfortunately large) ill-conditioned subspace, corre-
sponding to the high frequencies in the context of blurring models.

In this section we do not use post-smoothing (step 7 in (2)) and so the pre-
smoother is simply called smoother, that is chosen to be an iterative regularization
method (CG, Landweber, ete.). In order to obtain an effective and fast method ac-
cording to the conditions (19) and (20), we have to project the system into the high
frequencies subspace because the latter is the space where the smoother is in-
effective and where we would like to obtain a better approximation. Unfortunately,
the high frequencies not only contain fundamental parts of the image (e.g. the non
negligible high frequency portion of the edges) but also a substantial part of the
noise. Therefore, as shown in [16], we obtain the noise amplification already after a
few iterations and, consequently, we must resort to the Tikhonov regularization and
to apply the algebraic multigrid to the regularized system. The approach proposed in
[19], that we discuss here, employs a specialized multigrid directly as a regularizer.
Instead of projecting into the high frequencies subspace, the idea is to project into a
subspace where we can discriminate between the noise contribution and the details
of the image. The latter important feature can be obtained via projection techniques
employed in the geometric multigrid, i.e., we use low past filters, as proved in [20].
Therefore, the projection into the low frequencies subspace can be obtained as
R; = Ky, Ay, (p;) withp;(x) = 1 + cos (x) where A depends on the BCs. In this way
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we force the smoother to solve better the problem in the subspace where there isless
noise. We remark that by projecting into the low frequencies subspace we lose the
optimality property of the algebraic multigrid, but now the method is used as a
regularizer and not as a fast solver for algebraic systems. Therefore, the algorithm
(2) is a regularizing multigrid taking

R; = Ky, An,(p;) with p;(x) = 1+ cos (x),
=0andv;=1fori=1,...,m—1,

e §,=0,foralli=0, —1,

m = logy ( rrlun (n,))

Wedenote by MGM(S, 4) one multigrid iteration with smoother S and A recursive
calls: A = 1is the V-cycle in (2), while A > 1 means that the step 5 of algorithm (2) is
applied 2 times. Let W(n) be the computational cost of one smootheriteration S, then
the computational cost of one multigrid iteration is estimated as follows

%W(N), L=1,
(31) CMGM@E. D)~ 3 oy
SWQ), /=3

See [19] for details.

Original airplane 256 x 256 -2+ Observed image (128 x 128)

Fig. 1. — Images of the airplane and of the PSF with SNR = 100.

6.2 — A numerical example

We assume that the true image x is known so that, at each iteration j, we can
evaluate and plot the relative error norm ¢; = ||x — x%||,/||x||, for every iterative
regularization method. The algorithms are implemented in Fortran 90 using double
precision, while the images and the graphs are made using Matlab. The PSF is

created as a uniform sampling of 51 points of e~ Ve in [ — 20, 20] x [ — 20, 20],
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while for the noise we add a random vector & with uniform distribution and signal-
noise-ratio (SNR) equal to 100. Figure 1 shows the original airplane image and its
blurred and noisy version (the original picture is a portion of a larger image from
which the blurred oneis obtained). We apply periodic BCs and hence the matrix A in
(30)is block circulant with circulant blocks. The smallest eigenvalue of the coefficient
matrixis of the order of 1073 and the matrix is positive definite. As a matter of fact, it
is not strictly necessary to apply CG or Richardson to the normal equations, but it is
recommended in order to obtain a good quality of the de-blurred image. It is in-
teresting to observe that the proposed multigrid, with the simple Richardson (Rich)
method as smoother, leads to a restoration error lower than the one obtained by
CGNE or Landweber (see Table 4 and Figure 2). The two-level method (TL) cor-
responds to set m = 1. In this example the regularizing multigrid with a smoother
for normal equations does not improve the quality of the restored image, because the
value 0.112 is about the minimum error norm from a modelistic point of view for a
least square regularization method.

TABLE 4. — Minimum error and the corresponding iteration number.

Method ;rilli?. (e)) arg ]_Elli’r“l.(ej)
CG 0.1215 4
Rich 0.1218 8
TL(CG) 0.1132 8
TL(Rich) 0.1134 16
MGM(Rich,1) 0.1127 12
MGM(Rich,2) 0.1129 5
CGNE 0.1135 178
RichNE 0.1135 352

CG ‘

Rich e
TL(CG) s b é
TL(Rich) 7
MGM(Rich,1)| /«’
MGM(Rich,2)| / y,

At

5 10 15 20 25 30

Fig. 2. — Relative error norm vs number of iterations.
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7. — Conclusion

In this paper we have reviewed the V-cycle optimality of the proposed
AMG for coefficient matrices generated by a real and nonnegative multi-
variate polynomial f and belonging to multilevel matrix algebras like circu-
lant, tau or Hartley. The AMG considered here, which was introduced in [1,
2], is an extension of that proposed in [24]: now the projector has to satisfy
the stricter conditions (19) and (20). Concerning the future work, the main
point to investigate is the extension of this proof to multidimensional Toeplitz
matrices. Preliminary results in this direction can be found in [9, 13] for the
level independency in the case of generating function with zeros of order at
most 2, and in [36] for the TGM algorithm and implicitly for the level in-
dependency.

In the second part we have presented a class of regularizing multigrid
algorithms proposed in [19] whose features are the following: if it is com-
pared with other regularizing procedures (CG, Richardson, Riley) applied
directly to the system Af =g, then the curve of relative errors is much
flatter, the quality of the reconstruction is higher, and the total arithmetic
costs are similar; if it is compared with the best regularizing methods for the
normal equations ATAf = ATg (CGNE, Landweber, Tikhonov), then the ac-
curacy of the restored image is similar (at most slightly better), the structure
of the error curve is essentially the same, but the cost is greatly reduced. In
every case, our multigrid can use normal equation methods only for the
smoother, while the projection to a coarser grid is done always on the ori-
ginal coefficient matrix; this usually allows us to obtain a slightly better
reconstruction and a reduced computational time compared with the best
regularizing methods for the normal equations. For a theoretical proof of the
regularizing feature of our method see [20]. Furthermore, we stress that the
presented approach can be looked at as a general framework which has the
potential of leading to several extensions and improvements. For instance,
the parameter A (the number of recursive calls) can be interpreted as a
regularization parameter in order to obtain a direct (one-step!) multigrid
regularization (see [19]).

Finally, in future we would like to investigate how our multigrid proposal
can be used in connection with not least square methods such as total var-
iation and Bayesian methods (see, e.g., [48]). Indeed, the nonconvex optimi-
zation (which characterizes all these quite expensive techniques) should be
solved by some kind of iterative method which uses linearization, and our
multigrid procedure can be applied at this level (instead of using pre-
conditioning), not only for accelerating the procedures, but also for reg-
ularizing purposes.
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