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The Shape of a Glacier

R. J. KNOPS - PIERO VILLAGGIO

Dedicated to Enrico Magenes who,
besides mathematics, loved mountains

Abstract. — During the last hundred years, several theories have been proposed aimed at
describing the shape adopted by glaciers and their rate of downhill flow. Geophysicists,
however, still cannot agree on the precise explanation of the phenomenon, and the
dominant cause controlling the sliding of glaciers. This might be due to pressure
arising during melting, or alternatively it might be due to stress concentration . We
here derive a simple mathematical model that combines both effects.

1. — Introduction

Glaciers may be regarded as vast rivers of ice slowly flowing downhill at a
speed dependent upon the inclination of the slope, the thickness of the ice, and
the nature of the rocky bed. In contrast to rivers, however, the ice gouges and
scours the ground over which it flows, eroding immense amounts of soil, dis-
lodging embedded boulders, and drastically fashioning the surrounding land-
scape. (c.p., Fiffe and Peter [2, p. 256]). Observation of these eroded regions
inspired the Swiss geologist Agassiz to propose that the earth’s climate experi-
ences interglacial interludes. (c.p. Burrough [1, p. 23]).

Among many problems related to the creation, propagation, and fracture
of glaciers, the most relevant for our study is that of explaining how the
thickness of the glacier varies from head to base, where the base has a typical
profile, called the “snout”. The variable height of the longitudinal section in
the direction of flow is accepted as the main effect that determines the glide
speed of the glacier, its stress rate, the shape and formation of crevasses, and
the onset of avalanches.

An early mathematical description of the evolving shape of a glacier, pro-
posed by Finsterwalder [3], involved a nonlinear first order partial differential
equation for the local height measured as a function both of the distance from the
top and of time. The model, however, was criticised by Nye [7] who claimed that
plasticity theory should be employed in the determination of the glacier’s
varying shape.
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Weertman [11] objected to both approaches because the boundary condition
in each assumes that the glacier’s speed vanishes at the bed, and ignores the
bed’s supposed irregularity. Sliding is mainly caused by pressure melting (re-
gelation) of the ice, and by stress concentrations in the vicinity of any pertur-
bances on the bed. See also Hutter [4] for a derivation of other models and
further references.

We here develop and analyse a simple one-dimensional mathematical model
that predicts the geometric shape of the glacier’s longitudinal cross-section due
to the combined effects of the ice’s mechanical resistance and the bed’s rough-
ness. The glacier’s flow rate is supposed sufficiently slow to justify neglect of
changes in the configuration with respect to time.

2. — Basic assumptions

Consider a large glacier occupying the valley between two summits (see
Fig. 1a), and let the vertical plane intersecting the upper and lower edges at
points Aj, Ag, respectively, cut the glacier longitudinally far from the banks.

The cross-section of the ice cut by the plane is depicted in Fig. 1b, where the
curve A1Ay corresponds to the upper free surface of the glacier, and the curve
B1Bs to that of the bed.

The aim is to determine the curve A;As given the mechanical properties of
the ice (specific weight, and resistance to tensile stress), and the slope and
roughness of the bed. The resistance of the ice and roughness of the bed, here
both included in the discussion, are usually treated separately; (c.p., Scheidigger
[8, §7.3.3]).

(a) Thefrontal picture (b) The longitudinal
of a glacier section of a glacier

Fig. 1.
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Fig. 2. — The section of a longitudinal slice.

We adopt the following assumptions:

a. The bed is taken to be a corrugated plane of constant slope o to the
horizontal (Fig. 2), where 0 <o <7x/2. The case o = 0 corresponds to an ice sheet
on a horizontal foundation that requires a different description not attempted
here.

b. The bed’s roughness, that opposes the sliding of the ice mass, is mathe-
matically described by a coefficient of resistance u(x) that may vary with respect
to distance « along the glacier.

c. The progressive melting of the ice from the head of the glacier, where the
ice is porous, to the base, where the ice is wet, is modelled by a corresponding
increase in the ice’s specific weight.

d. The ice flow is mainly one-dimensional and, consequently, the resistance
of the ice is completely defined by a limiting value of the tensile stress that
varies with respect to distance from the head. The limiting value also is as-
sumed to either steadily decrease or increase depending partly upon the gla-
cier’s length.

We consider a slice of the glacier of unit width taken along its entire length L.
The mean section is sketched in Fig. 1b. Assumption (b) implies that the lower
edge, or bed, B1B2 may be taken as rectilinear (Fig. 2), while the upper edge
A4, is assumed to have the equation

(2.1) y=y), y0)=HZ2>0,

with respect to the Cartesian system of x,y axes shown in Fig. 2. We seek to
determine the unknown curve y(x), subject to a positive specific weight y(x)( > 0)
and positive coefficient of resistance u(x)(> 0) being specified as bounded
functions of the coordinate .
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A volume element dV = y(x) dx of the slice, distance x from the origin, is
maintained in equilibrium by the weight dG and resistant force d7 acting on the
bed. The weight, given by

22) dG = @y (@),

acts vertically and may be decomposed into components of magnitude dP and d@
respectively along the positive x—axis and negative y—axis, where

(2.3) dP = y(x)y(x)sin o,
(24) dQ = y(x)y(x) cos a.

In consequence, the tangential force dT' retarding motion acts along the ne-
gative x— direction. Its magnitude is assumed proportional to the normal
force so that

(2.5) dT' = p(x) dQ,

where u(x) is the coefficient of resistance.

Consider a cross-section of the slice parallel to the y-axis at a distance x from
the origin. The resultant force acting over this cross-section has components
(— N(x),0) where

X

2.6) N@) = [ (T - dP)dé +N(©)

0
x

@7) = [ (& cos x— sina)y@y(©) dé + N(O)

(2.8) F(©Qy©)dé + N(0),

I
OS% o

where N(0) is the total force bonding the glacier to the upper rock face, and

(2.9) f(@) = p(e)(ulx) cos o — sina), 0<x<L,
(2.10) >0, ) >tana, 0<ax <L,
(2.11) < 0, 0<ux)y<tanoa, 0<x<L.

Equation (2.7) is dimensionally correct, since y(x) has dimension kg/m?.
Observe also that the sign of f(x) depends upon both the variable coefficient of
resistance u(x) and the constant slope a. According, however, to Assumption (d)
on the behaviour of N(x), the function f(x) must be either non-negative or ne-
gative throughout the interval [0, L]. We consider both possibilities in the fol-
lowing discussion.
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3. — Derivation of the governing equation

We regard the glacier to be in quasi-static equilibrium, which implies that the
normal force N(x) is tensile (N(x) > 0) for 0 <« < L, and consequently gen-
erates a tensile stress N(x)/y(x) in the transverse cross-section of the slice at a
distance « from the origin. The stress, which should not exceed a certain variable
critical positive value a(x)( > 0), can either increase or decreases with respect to
increasing .

In the slice of unit thickness, the stress o(x) has dimension kg/m, and for
limiting equilibrium, we have

N@)
and
(3.2) N(©) = o(O)H,

which, in principle, are the equation and initial condition for the determination of
y(@).

To solve this equation, we equate the derivatives with respect to x of N(x)
obtained from (2.8) and (3.1) which yields

/ / f ()

(3.3) N'(x) = (y@)o@) = f(x)y(x) = @o(x)y(x),
where a superposed prime denotes differentiation with respect to x. Integration
of the last expression between x; and x > x; leads to the required form of the
profile y(x):

a(x1)

(34) y(x) = o @)

y(an) exp ( [rore© dé>.

Verna and Keller [10] derive a similar expression for the optimum solution to the
problem of a heavy string. Properties of the solution (3.4) are discussed in the
next section.

We note that the above derivation permits f(x) to vanish on [0, L].

4. — General analysis

We explore in this section some general properties of the profile curve y(x)
subject to the conditions that the stress o(x) > 0 is either monotonically in-
creasing or decreasing with respect to x, and that the coefficient of resistance
u(x) either exceeds or is less than tan o for all x € [0, L]. Violation of these con-
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ditions for a particular model is discussed in Section 5. The coefficient of re-
sistance as defined here is similar to, but distinct from, the standard coefficient
of friction, a typical value of which for dry ice is 0.6, and for wet ice is 0.005. We
conjecture that the coefficient u(x) is determined from the pressure melting
(regelation) of the ice, which in turn is affected by the weight of ice, and con-
sequently, the slope. Furthermore, at high altitudes, the presumably lower
temperature, in the absence of geothermal warming, depresses regelation and
leads to an increased coefficient of resistance and reduced influence of the slope.
At lower altitudes, the slope and weight have a greater affect on the pressure
which increases the ice melt and leads to a lower coefficient of resistance. We
consider separately various possibilities.

4.1 — Decreasing stress

This condition, usually observed in long glaciers of comparatively small slope,
may be explained by the weakening of the cohesive stress due to progressive
melting of the ice. We suppose that

(41) o(x1) > o(xe) > 0, 0<x<we <L.

The subsequent analysis depends upon the sign of f(x).

4.1.1 — Decreasing stress. Large coefficient of resistance

We suppose that for 0 <x <L, the coefficient of resistance satisfies
w(x) > tana so that from (2.10) we have f(x) > 0. Consequently, together with
(4.1), we conclude that

X

(42) [ree@a=0,  0<m<e<L

X1

We therefore obtain from (3.4), the bound

43 v = T e exp ( J s dé)
(4.4) > 7@ e

' = o) 7!
(4.5) >y), 0<wx<L,

which demonstrates that under the stipulated conditions, y(x) is non-decreasing
with respect to 2 on 0 < & < L. In particular, when x; = 0, we may use the initial
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condition (2.1)2 to show that (3.4) reduces to

(46) y@) =22 Hexp ( [r@ye@ df) ,
0

C))

and inequality (4.5) becomes
(4.7) y(x) > H, 0<x<L.
Again, from (4.6), we have

0)H -
(48) @ =" ()x) [—0'(@) + ()] exp ( Of £&)/o® df) ,

and because y(x) is non-decreasing, so that %'(x) > 0,0 < x < L, we are led ne-
cessarily to the condition

(4.9) d'(x) < f(x), 0<ax<L,

which on integration gives
&Xr
(4.10) o < [fOdi+00),  0<w<L
0

We are now able to derive an improved lower bound for y(x). On using the
bound (4.10) in the exponential (4.6), we obtain

@iy exp ( / f(é)a‘l(é)dé> S P
0 0 (ff(n)dn+a(0))
0
[ F©dz + 0(0)
(4.12) =exp| In OT
[ f©dz + 0(0)
(4.13) S [

a(0)
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Substitution in (4.6) and appeal to (4.1) leads to the lower bound

o(0) [ f(&dé + a(0)
0
(4~14) ?/(90) ZmH —0'(0)
[ £&)dé + a(0)
0
(4.15) >H —o | 0<x<L,

in terms of measurable data.

An upper bound for y(x) follows from the boundedness conditions assumed
for the functions y and x and the tacit assumption that ¢(0) is also bounded.We
derive from (4.1) and (4.4) for 0 < x < L the estimate

_ a(0) -
(4.16) y(x) = Tx)HeXp (!f(f)/o(f) df)
0 _
(4.17) < %Hexp(Lf/o(L))7
where
(4.18) f =7(z coso — sina),
(4.19) 7= max (), n= r[rolgﬂ(ac).

The upper bound is strictly less than H only when f(x) is non-positive which
is the case next discussed.

4.1.2 — Decreasing stress. Small coefficient of resistance

We next suppose that the stress continues to satisfy (4.1), but that the coef-
ficient of resistance now satisfies 0 < u(x)<tana for 0 < < L. As already
stated, the condition implies f(x) <0, and consequently

(4:20) exp ( [reree© dé) <1
0
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For 0 < xy <x < L, we derive from (4.20) and (3.4) the relation

(421) o) =2y exp ( [ r@/e dé)
422) <I o),

which together with (4.1) implies that we cannot deduce that y(x) is monotonic on
[0, L]. Indeed, it follows from (4.1) that ¢/(x) <0 and accordingly the sign of the
expression

(4.23) w(x) = —ad'(x) + f(x)

depends upon the relative magnitudes of the terms involved. Upon recalling
(4.8), we conclude that the monotonicity of y(x) requires additional restrictions.
For example, on supposing that

(4.24) w(x) = —ad'(x) + f(x) <0, 0<x<L,
we have

f © ’(f) 6(96)
(4.25) o® %< f @ % =50y

which with (4.6) leads to
(4.26) yx) < H, 0<ax<L.

Alternatively, let us require that

a(0) _ .
(4.27) In m<x( y(i cos o — sin oc)/a(O)),

where now i <tan o, and

(4.28) )= m (@)

Condition (4.27) implies
0 x
(4.29) %exp ( [r@/0@ dé) <1,
0

and upon insertion into (4.6) we recover the bound (4.26).

REMARK 4.1. — It follows from the condition (4.20) that when the coefficient of
resistance is sufficiently small, the height y(x) — 0 as x — oc; that is, the snout
diminishes in height as the overall length of the glacier becomes very large.
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REMARK 4.2. — We infer from (4.8) that irrespective of the sign of f(x), the
function y(x) is increasing, constant, or decreasing on those sub- intervals of [0, L]
for which respectively ¢’(x) is less than, equal to, or greater than f(x). Equality
occurs only when f(x) is negative.

4.2 — Increasing stress

In short glaciers at high altitude, the stress may be monotonically increasing
with respect to length. In these circumstances we assume that

(4.30) 0<o(xr) <o(re) < m, 0<ui<we <L,

where m is a specified positive bounded constant. We again consider large and
small coefficients of resistance.

421 — Large coefficient of resistance

We suppose the coefficient of resistance is sufficiently large such that
w(x) > tana, 0 < x < L, and consequently f(x) > 0, 0 < x < L, from which we
conclude as before that

(431) exp ( [re/e© dé) =1, w20
0

First, we seek sufficient conditions under which y(x) > H. For this purpose,
we introduce the positive constant x defined by

(4.32) u(x) > p > tana, 0<x<L,
and let

(4.33) )= r[giLr]l (@),

(4.34) f :Z(ﬁ cos o — sin oc).

An argument similar to that employed in Section 4.1.2, shows that from (3.4)
by imposing the condition

o(x) af

(4.35) lnm<@7 Sv <L,

we are led to y(x) > H,0 < x < L.
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On the other hand, on restricting the stress to satisfy
(4.36) a(x) > a(0) exp(acf/a(O)), 0<x<L,

we conclude that y(x) < H,0 <a < L.

Note that both (4.35) and (4.36) are sufficient conditions only, and there may
be other conditions under which y(x) becomes larger or smaller than its initial
value y(0) = H.

4.2.2 — Small coefficient of resistance

We examine properties of y(x) subject to a sufficiently small coefficient of
resistance that satisfies 0 <u(x) <tano so that f(x) <0 and (4.20) holds.
In consequence, the assumption of increasing stress (¢/(x) > 0) implies that

(4.37) —a'(®) + f(x) <0, 0<x<L,

and we immediately conclude from (4.8) that y(x) is monotonically decreasing on
[0, L], and therefore

(4.38) yx) < H, 0<ax<L.

4.3 — Constant stress

When conditions are such that the stress o(x) is constant,we have that
w(x) = f(x), where w(x) is defined by (4.23). It follows easily from (4.8) that the
sign of 9'(x) is that of f(x), so that from (2.10) and (2.11) we have

y@) > H, wu(x) >tana, 0<wx <L,
=H, wx) =tana, 0<ax<L,

<H, wx) < tano, 0<ax<L.

5. — Particular analysis

The discussion of the previous section assumes that the coefficient of re-
sistance at each point « € [0, L] satisfies either u(x) < tano, or u(x) > tano.
We wish to explore consequences when these assumptions are relaxed, while
still retaining the assumption of a monotonically decreasing or increasing
stress. For this purpose, we investigate properties of the profile y(x) for
particular choices of the monotonic variables y(x), u(x) that are deemed phy-
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sically plausible. In principle, these variables may be represented by rational
functions for which the integral in (3.4) may be evaluated. Here, we simply
suppose the functions are linear. Since y(x) is increasing and w(x) is de-
creasing, we take

(5.1) @) = 7, (1 +ﬂ;,9c/L), 0<x <L,
(5.2) (@) = ﬂ0(1 - /)’ﬂoc/L)7 0<x<L,

where y, 1y, B,, B, are positive constants. For the case of decreasing or increasing
stress, we adopt the respective linear laws

(5.3) a(x) = oo(1 - p,x/L), 0<x<L,

(54) a(x) = ao(1 + p,x/L), 0<x<L,

where ¢y and f, are positive constants. In fact, we discuss only the case of de-
creasing stress, since results for increasing stress may be deduced by simply
reversing the sign of f,.

To ensure that y(x) remains bounded, the parameters f,, 8, 8, are chosen to
satisfy

(5.5) 0< BB, <1.

Further constraints are introduced below.
Note that for the choice (5.2), the condition u(x) > tan o is implied by

(5.6) Ho(1 = B,) > tanao,

while u(x) <tan o is implied by
(6.7) Uy <tano.

In order to negate these assumptions, it is sufficient to suppose that

(5.8) Uy > tana,
and
(5.9) " (1 - /fﬂ) <tano.

These conditions imply that there exists x, € [0, L] such that
L) _
(5.10) Lo (1 ~B, f) = tana.

Irrespective of further constraints on the parameters, we evaluate explicitly,
subject to assumptions (5.1), (5.2), and (5.3), the expression (4.6) in preparation
for later treatment.
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We suppose that f, # 0 and postpone consideration of the case f, = 0. We
have

f@ (1 —I—[)’},x/L) [ﬂo (1 - ﬂu%/L) cos o — sin cx}

(511) 0'(90) _O'O (1 _ ﬁax/L)
Yokto {a(l — B, /L)* + b(1 — /L) + c} COS o
= =/l
Yo ld+ed —B,x/L]sina
(5.12) - T 7
where
B,B
(5.13) .o ﬂf_ﬂ |
0'( 7 ,) 2 "
(514) b= [ﬁ ﬂ/ ﬂ}z + ﬁ)ﬁ/;} 7
Bs
_ a( - ) + b, .
(5.15) . /32, B, |
Bs
_ 3_ (7( - ,)— )
(5.16) - Be = BolBy : B)—p, /3”}
Bs
(5.17) _B, +ﬂo)(2ﬁa B
Bs
(5.18 . (8,+5,)
') R
(5.19) o Z |

Accordingly, we have for 0 < x < L,

(5.20)

X b -3
o o) (o) g (92 -2)
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where

(5.21) b1 =(upbcoso — esina),

(5.22) c1 =(upccos o — dsino)

By +5,) .
(5.23) = [ﬂo cosa(B, — B,) — B, sin a] .
Insertion of the expression (5.20) into (4.6) after some rearrangement leads to
V()L ( :8(790> :

5.24 x) = Hexp| ——=z(x/L 1--=2), 0<ax<L,
(5.24) y(x) p<ZUOﬁ3 (x/ )) 7
where

(5.25) A =B.B.Py,

(5.26) B =[B.B, — B.(Bs — By cos o+ B fsinc,
(5.27) /L) = |A cosa(f)erz_mB

. - /"0 L L I
c1ypls )
5.28 s=—|——+41).
( ) ( ﬂaUO

Subject to the constraints (5.8) and (5.9) on the coefficient of resistance, the
expression (5.24) admits various shapes for the profile y(x) determined by cor-
responding relations between the parameters £, f, and f8,. We illustrate pos-
sibilities when the stress is decreasing.

Al

5.1 — Decreasing stress

We consider the shape of y(x) when the stress is given by (5.3) and the
coefficient of resistance satisfies conditions (5.8) and (5.9). It follows that the
function f(x), explicitly given by

x x .
(5.29) f@) =7, <1 +8, Z) [,uo (1 - B, Z) coso — sin oc} ,
satisfies

(5.30) f(x) >0, 0 <x<uy,,

(5.31) =0, X =12y,

(5.32) <0, x,<x <L,

where x, is defined by (5.10).
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To determine the slope of y(x), we appeal to (4.8), and in this respect note that

(5.33) wx) = —o'(@) + f(x)
(5.34) - "(f” +f@)
(5.35) >0, 0<ax<uw,.

In consequence,
(5.36) y) > H, 0<ux<u,.

Whether or not y(x) increases throughout the interval [0, L], depends upon
the detailed behaviour of w(x) which we express as

(5.37) w(@) = B —EQ%—Eg(%)Z,
where

(5.38) By = "OLﬁ“ 1G>0,
(5.39) By = G(l - ﬁy) >0,
(5.40) Es = youoB, B > 0,

and

(5.41) G = yo(pcos o — siner) > 0.

The profile y(x) achieves its maximum at & where w(x) = 0, and

) (/&3 + 481 By) - B,)

X
(5.42) 7 ST, ,
so that ¥ <L when
(5.43) E\<E;+ Ej,
or explicitly,
o0py .
(5.44) Ol{)) <B,7 (ﬁﬂ,uo — [y cos o — sin oc]) .

When condition (5.44) is satisfied, then y(x) decreases on (&, L]. Conditions
under which y(L) may be less or greater than H may be easily extracted from
(5.24). Details are omitted. Violation of condition (5.44) implies y(x) increases for
x € [0, L] and, indeed, y(x) > H,x € [0, L].

It is of interest to investigate how the profile y(x) is additionally influenced by
the comparative magnitudes of the parameters f,, 8,, subject to the previous
assumptions (5.8)-(5.9), and (5.3).
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52-8,>p,
Let us first suppose that
(5.45) Bs > B
Then, after appeal to (5.9) we have

(546) B = |:ﬂaﬁ,u - ﬁy(ﬁa - ﬁ,u):| Hy COS O + ﬁ;zﬂo’ sina

> Bt cosa|B, + B, B,)]
(5.47) > 0.

On the other hand, we have from (5.23) that

(5.48) €1 = @, ;ﬁ”) {ﬂo cosa(ff, — ) — f,sin oc}
(5.49) < (ﬁ”Ttﬁ”) {ﬂo coso(l — f3,) — sin oc}
(5.50) <o,

where we have employed the inequality

(5.51) a-)> b, — 5 ")
Bs
Let us further suppose that
ﬁ 00
5.52
( ) VOL

which implies s < 0 where s is given by (5.28). We deduce from (5.24) that
(5.53) y() > H, 0<x<L.

Alternatively, suppose that

ﬂaao
7oL ’

(5.54)

which implies that s > 0. Now, from (5.24) we have

200/ >(1 b

(5.55) y(lL) = Hexp(
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where

(5.56) D =Apuycoso+2B

(5.57) = [B.8.8,+ 28,8, + 28,8, — B)| g cos 2 + 28,3, sin
(5.58) — 8,8, [3/5, + 2} g €08 o + 28 B, [sin o — 1y cos of
(5.59) >0,

by virtue of (5.8).
In consequence, whenever the parameters and the length L satisfy the con-
dition

s YoLD
(5.60) 1-p,Y<exp (— 2(;_0/)%) <1,
then
(5.61) yL)<H.
53 - B, <P,

We next examine the consequences of supposing that
(5:62) B, < B

It immediately follows from (5.46) that B > 0, while from (5.48) we conclude
that ¢; <0. Accordingly, the discussion proceeds as in the previous section. Note,
however, that the calculations do not require the coefficient of resistance to sa-
tisfy either assumption (5.8) or assumption (5.9). Indeed, the conclusions remain
valid when the coefficient of resistance is unrestricted.

54 -f,=0

Results when the stress o(x) is everywhere constant and equal to gy, may be
recovered as a special case of the conclusions established in Section 5.1. We need
set only i, = 0 to find that the main features are unaffected and are easily de-
rived from the previous calculations.
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5.5 — Further comment

The various expressions obtained for the profile y(x) in this Section and
Section 4 are derived under the assumption that each cross-section of the glacier
is subject to a tensile stress, o(x). The assumption, however, is invalidated
whenever a local temperature increase causes a reduction in the ice’s resistance.
Mutual detachment of the parts within the affected section may lead to the
formation of transverse fractures, which explains the onset of crevasses. In
general, detachment first occurs at the initial section & = 0, where the crevasse
thus formed is called the “bergschrund”.

6. — Conclusion

The surface of a glacier flowing over an inclined plane bed may have its shape
predicted on the basis of purely mechanical considerations. The glacier is re-
garded as a heavy slab resting on a rough inclined bed subject to a tensile stress
equal to the limiting resistance of the ice. The instantaneous equilibrium con-
figuration of the ice layer in one dimension is determined from the specific
weight of the ice, its resistance to the bed, and its limit stress. Broad features,
established under general monotonic constitutive functions and physically
plausible assumptions on the resistance, demonstrate that there are conditions
for which the glacier may either increase or decrease in height from its head. The
model may also be examined when the constitutive functions are linear and the
assumptions on the resistance are contravened. Apart from the height mono-
tonically increasing or decreasing, there are conditions for which the height
achieves a maximum value at a point intermediate between the top and bottom of
the glacier.

The belief is widespread that glaciers tend to sharpen towards the base to
form a typical protuberance known as the “snout” (cf., Scheidegger [8, pp. 377-
378]), but this is observed only in glaciers of relatively short length such as are
found, for example, in the Alps. A snout-shaped profile also occurs in the ice
sheet covering Greenland (cp., Nadai [6, pp. 309-310]). The phenomenon, how-
ever, is not seen in the long glaciers of the Himalayas and polar regions (cf.,
Isserman and Weaver [5]).

The present analysis investigates values of the constitutive functions for
which the glacier sharpens or thickens during the slow flow from the bergs-
chrund to its base. In addition, localised losses in the ice’s resistance can create
crevasses that interrupt the continuity of the ice slab and, consequently, its
shape (cp., Sturm and Zintl [9]).
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