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Analysis and Numerics of
Some Fractal Boundary Value Problems (*)

UMBERTO Mo0Sco

In Memory of Enrico Magenes

Abstract. — We describe some recent results for boundary value problems with fractal
boundaries. Our aim is to show that the numerical approach to boundary value
problems, so much cherished and in many ways pioneering developed by Enrico
Magenes, takes on a special relevance in the theory of boundary value problems in
fractal domains and with fractal operators. In this theory, in fact, the discrete nu-
merical analysis of the problem precedes the, and indeed give vise to, the asymptotic
continuous problem, reverting in a sense the process consisting in deriving discrete
approximations from the PDE itself by finite differences or finite elements. As an
lustration of this point, in this note we describe some recent results on: the ap-
proximation of a fractal Laplacian by singular elliptic partial differential operators,
by Vivaldi and the author; the asymptotic of degenerate Laplace equations in do-
mains with a fractal boundary, by Capitanelli-Vivaldi; the fast heat conduction on a
Koch interface, by Lancia-Vernole and co-authors.

We point out that this paper has an illustrative purpose only and does not aim at
providing a survey on the subject.
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Introduction

Very simple fractals, as the Koch curve or the Sierpinski gasket, are non-
differentiable sets, therefore they do not allow the explicit writing of an intrinsic
differential operator. Moreover, if the fractal is the (compact) boundary of an
open domain of the plane, the boundary trace spaces may be difficult to char-
acterize. Merging classical boundary value problems — even of the simple kind as

(*) Following an agreement between Springer and Unione Matematica Italiana this
article has also been published in the volume “Analysis and Numerics of Partial
Differential Equations”, F. Brezzi, P. Colli Franzone, U.P. Gianazza, G. Gilardi (eds.),
Springer Indam Series, vol. 4, Springer, 2013.
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those related to the Laplace equation or the heat equation — with the theory of
fractal sets and fractal operators is a challenging task. In fact, fractal sets and
operators are the result of an asymptotic process, the one induced by the infinite
iterations of a family of contractive similarities. Such an asymptotic feature of
fractals introduces an additional approximation level to those already inherent in
the numerical approximation of the classical PDE at hand.

The construction of fractal sets goes back to the early years of the twentieth
century. The construction of the Laplace and heat equations on a large class of
fractals was achieved in the late 1980’s, first by probabilistic methods, then
analytically. We refer to [24] for a brief description of this early work.

A problem related to heat conduction in a planar domain relies on the idea
that the insertion in the domain of a highly conductive material path connecting
two point of the boundary can efficiently act as a preferential fast absorbing trail
for the heat stream. An early model of the kind, with an infinitely conductive
layer, was produced by Cannon and Meyer in 1971, [5], in connection with so
called fractured oil wells. A related singular homogenization problem was later
considered by Pam Huy-Sanchez Palencia in 1974, [31], see also [2], [24].

In the simplest version of this model, the domain is a rectangle, the infinitely
conductive pattern is the segment connecting the middle points A and B of two
opposite sides of of the rectangle, and the segment is approximated by thin
highly conductive rectangles of transversal size ¢. In the two regions above and
below this thin layer, the two-dimensional heat equation, with a normalized
conductivity coefficient and with a prescribed source term, is assumed to govern
the slow diffusion of heat. At the same time, the fast diffusion of heat within the
e—layer is described by the two-dimensional heat equation, this time with a
conductivity coefficient of the order 1/¢. The boundary condition for the tem-
perature is zero on the boundary of the rectangle. In the limit as ¢ — 0, the thin
layer shrinks to the transversal segment. In this process, the temperature
converges to a limit temperature, given by the two-dimensional heat equation
in each one of the open domains separated by the segment and by the one-
dimensional heat equation along the segment itself. These two equations — both
of second order — are coupled by a transmission condition across the segment.
This condition stipulates that the jump of the external normal derivatives from
each side of the segment acts as a source term for the one-dimensional tan-
gential heat equation within the segment; moreover, the tangential diffusion has
boundary values zero at the end points A and B.

We note, incidentally, that the natural Sobolev space taking into account this
homogeneous boundary condition for the tangential equation is the so-called
Lions-Magenes space H(l)/o2 A fractal analogue of the Lions-Magenes space oc-
curs in the problems that we now describe.

A big innovation into the transmission model was indeed carried out in 2002
by M.R.Lancia, [16]. The segment connecting the points A and B of the boundary
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of the domain was replaced by a fractal Koch curve, connecting again A with B.
The rationale for this new model is clear. By increasing the length of the pre-
ferential pattern that conveys the heat stream towards the two selected points A
and B, and actually making the length of this path infinite in the limit, we expect
that the cooling effect of the layer will be increased.

As mentioned previously, in Lancia’s fractal model the transmission problem
with the fractal Koch curve is obtained in the limit of a sequence of transmission
problems for the approximating pre-fractal polygonal curves as the number of
iteration increases to infinity. This model opens two related orders of problems.
One is the rigorous analytic formulation of the second order transmission con-
dition, in suitable fractional Besov spaces. This study was first carried out by
Lancia in [16] and we refer to this paper and to [18] for the technical details. The
second problem is the analytical and numerical study of the approximating pre-
fractal equations. We report on this study in Section 3.

We also report on some recent results of a joint research by Vivaldi and the
author, [29], [30], that is indeed related to the second order transmission pro-
blems discussed so far. The object of this study is a sequence of second order
elliptic operators

(0.1) Al u = —div (aﬁl (a, y)Vu)

in divergence form in a bounded domain @ of R?, with discontinuous coefficients
a). The coefficients a! develop an increasing number of singularities on an array
of thin fibers 27 obtained by the iterated action of a given family of contractive
similarities. The geometry and the singularity of the conductivity coefficients are
initially prescribed on an array of thin hexagonal fibers connecting the essential
fixed points of the similarities. The parameter n = 1,2, ... indicates the level of
iteration of the similarities, the parameters ¢, refer to the transversal thickness
of the fiber at each nth—iteration. The detailed geometry of the fibers and the
expression of the singular coefficients o} are described in Section 1. One of the
main objective of this study is to prove the convergence of the spectral measures
for the elliptic operators to the spectral measure of a limit self-adjoint operator.
The limit operator is the intrinsic Laplace operator of the fractal set defined by
the given family of similarities. We outline our main results in Section 1.

A related topic has been the object of a recent paper by Capitanelli and
Vivaldi, [7]. They consider the domain bounded by a square snowflake type do-
main, bounded by four Koch curves, and the approximated domains obtained by
replacing each side of the pre-fractal Koch curves by a quadrilateral thin fiber of
the kind mentioned before. Differently than in the previous case, the con-
ductivity of the fiber is now assumed to vanish with the iterations. On such in-
creasingly insulating boundary layers, a homogeneous Dirichlet condition is
imposed to the solution of a Laplace equation. A characterization of the limit
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boundary value problem in the snow-flake domain is then given, that depends on
the relative size of the thickness and the conductivity of the boundary layer.
These results are outlined in Section 2.

There is no space in this note to report on some other aspects of the numeries
of fractals. However, we wish to mention a new kind of interesting problems that
deserve further research. The objective of this study is to approximate the two
dimensional Laplace operator (and related PDEs) in an open domain of the
plane, with a sequence of curvilinear one-dimensional Laplacians (and related
ODEs), taken along a sequence of fractal curves homeomorphic to the segment
[0, 1], that asymptotically fill the whole open domain. Such a dynamical dimen-
sional blow up is of theoretical interest in itself. It seems to be also interesting
from the numerical point of view and, in the applications, as a model for the study
of invasive interfaces that infiltrate the whole space.

In conclusion, we may observe that introducing fractal constructions into the
classic theory of PDEs opens a wide new field of study, both theoretically and
numerically. With the very simple examples which are the object of this note, and
with other recent contributions — in particular, the works by Vacca [32],
Bagnerini-Buffa-Vacea [3], Wasyk [33], Evans [10], Liang [23], [9], and the work
by Achdou-Sabot-Tchou, [1] that explores different but related problems — this
new field has been only scratched.

Enough however to unveil promising new directions in applied analysis and
PDEsS, and to point out how fundamental is to keep analysis and numerics in tight
contact one each other. A point of view this one to which the author was already
exposed in early years of his scientific life in Rome by his advisor Gaetano
Fichera, and that he is happy to take now also as one of the most illuminating
aspects of the scientific legacy of Enrico Magenes.

1. — Elliptic operators with fractal singularities

In this section we describe the recent work carried out by Vivaldi and the
author in [29], [30]. In these papers, a singular elliptic operator is submitted to
the iterated action of a family of similarities and the convergence of the spectrum
is investigated.

We begin by introducing the similarities. We consider a family ¥ =
{v1,...,wy} of N > 2 contractive similarities in R?, with distinct fixed-points,
with a common contractive factor o1, o > 1; a similarity, or similitude, in a
Euclidean space is a map obtained by composition of translations, orthogonal
transformations, and homotheties. The set of essential fixed-points of these
maps will be denoted by I'; a point b, € R? is an essential fixed-point for the
family ¥ if b, = w;(b,) = y;(bs) for some i € {1,...,N},j#¢,j€{1,...,N} and
bs a fixed-point of a map of ¥.
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Here, for simplicity, we assume that ¥ is the so-called Koch family of simi-
larities, that is, the family ¥ = {4, ...,y } of the following N = 4 similitudes,
each one contractive with a factor o1, o = 3:

? 2 in 1

V/l(z)zéa Wz(z)zg e /3+§»
_ % _ims 1 isinm/3 242
1//3(2)—36 —|—2—|— 3 R AR 3

where z = x + iy € C. The set of the essential fixed-points of this family is
I = {A,B}, where A = (0,0) and B = (1,0). The third vertex of the equilateral
triangle based on the side 4, B is the point C = (1/2, V3 /2).

We now define a reference fiber in the Cartesian plane RZ. This fiber is a thin
hexagon which has the segment connecting the points A = (0,0) and B = (1,0) as
its longitudinal axis. The middle point of the segment AB is denoted by AB/2.
The fiber is symmetric with respect to the x — axis and the vertical line x = 1/2,
therefore, it suffices to describe the geometry of the fiber in the region y > 0,
x < 1/2. We consider the right triangle with vertices A, AB/2, @y which makes
the angle 7/12 at A. Thus, Qy = (1/2, &), where g = hy/2, hy = tan (n/12). For
every 0<e < g, we consider the two points Q1(e) = (¢/ho, &) and Qo(e) = (1/2,¢)
and the quadrilateral A, AB/2, Q(¢), Q1(¢) . We then define the set X 828 to be the
thin hexagon obtained by reflection of this quadrilateral across the x — awis,
followed by a symmetry across the vertical axis « = 1/2. The vertices of 2828,
listed clockwise, are the points A, Q1(¢), Q2(¢), B, Q3(e), Q4(e), where now Qa(e) =
1 —¢e/hg,e), Qs(e) =1 —e/hg,—¢), Qu(e) = (e/ho,—&). The perimeter of the
hexagon X, gives the external profile of our fiber. Inside the hexagon X0 ,,, we
now insert a smaller hexagon X 8,3- The construction of this hexagon is similar to
that of 2 82;;’ by replacing the triangle A, AB/2, Q) with the smaller right triangle
with vertices A,AB/2 Py, where Py = (1/2, & /2). The angle of this triangle at A
is arctan (hy/2). The vertices of the hexagon X 873’ again listed clockwise, are now
the points A, P1(¢), Pa(e), B, P3(e), P4(e), where now Pj(e) = (¢/ho,&/2), Pa(e) =
(1 —¢/ho,e/2), P3(e) = (1 — ¢/ho, —&/2), Py = (¢/ho, —&/2).

With the notation set before, the reference fiber is given by the two co-axial
thin hexagons X3, C XJ,,, of largest transversal size ¢ and 2¢, respectively. The
two hexagons meet at the common vertices A and B, and Zg,s \ {4, B} is con-
tained in the interior of X{,.

In the case at hand, the Koch family of similarities, the single reference fiber
X0, of our construction connects the two essential fixed-points I" = {A, B},
which, in this special case, are the only essential fixed points of the family ¥ (the
pair-wise connection of all essential fixed points of the family by means of a fiber
is a requirement of this theory).

Our next step is to submit the fiber to the iterated action of the family ¥. We
first set a useful notation. For each integer n > 0, we consider arbitrary n—tuples
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of indices i[n = (i1, 2, ...,4%,) € {1,...,N}" and define y;,, = y; oy, o---oy;
if » > 0, with y;, the identity map if n = 0; for every set O C R?, we define
o = ¥, (O). With this notation at hand, for every n > 0, we construct the array
of fibers obtained by defining

(L.1) o=y, I =),
in
(1.2) =zl st =y, = | Z0nb,
iln by #bsel’

where 20 = X0, X = 50,

The space R? — actually, a bounded open domain @ ¢ R? with Q containing the
fibers 28728 and 2%, for every ¢ and every » and which will be specified later on — is
now converted into a physical composite body. This is done by defining a dis-
continuous conductivity matrix a (&, n)Id, (&, n) € Q, again by the iterated action of
the similarity family. The whole iteration process is externally governed by two
sequences of constants, {,, > 0and y,, > 0. The limit values assigned to {,, and y,, as
n — + oo affect the nature and the properties of the asymptotic effective medium.

In order to observe boundary effects, we choose 2 in a way that I
belongs to the boundary 0Q of Q, namely Q is now the triangle with vertices
D=(1/2,-v3/2), E=3/2,v/3/2), F=(-1/2,/3/2). The domain Q con-
tains the interior of the triangle of vertices A, B, C, and the vertices A, B, C
belong to 0.

The matrix a}/Id — for given ¢ > 0 and n > 0 —is defined at every (&, n) € Qby

Culo\xy (&mId + 1y o0 (& mId +
(1.3) ay (&, mld = 126, > wi& mlsp, (& mid.

by#byel’

In this expression, Id is the 2—dimensional identity matrix and 1g the in-
dicatrix function of a set 8 C R, that is, 15(Z, ) = 1if (&, 5) € S, 15(&, ) = 0 if
EmésS.

The constants g, which will be specified later on, are scaling factors asso-
ciated with ¥. At each iteration », {,, > 0 is a material constant that takes into
account how the conductivity of the surrounding medium evolves with 7. Since in
(1.3) the conductivity of the coating region 27, \ 27 has been normalized to 1, the
constant {,, can be interpreted as a viscosity coefficient, that expresses the re-
lative strength of the conductivity of the space that surrounds the fiber 273, with
respect to the conductivity of the fiber 27 itself. For every » > 0 and i|n, the
conductivity of the fiber Xi"(b,, b,) is given by

(14) w:b(év 77)12:2\7'(1),'1)8)(57 7/) = Vn“nwg o t//;‘yll(év 77)12?(11“1)5)(5» 7]) .

This expression is obtained from the conductivity wg(ac, y) of the reference fiber
Zf(by, bs) by applying the map (¢, ) = vy, (, ). The function w2(x, y) is defined
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on the inner fiber X}, as follows:

2+ hi :
0 m lf (90, y) c T
(1.5) w, (@, y) = 1

where R is the central rectangle in 28‘.9 with vertices Py, P2, P3, Py, and 7 is the
union of the two isosceles trianglés A ,P,Py and Pe,B,P3;. For every
(x,y) € 0 0. We consider the point P+ = (x, 0) on the longitudinal axis of 2 0 . and
we define P = (x,yp) to be the intersection of the vertical line through

L = (x,0) with the boundary 927 , of X)), in the half plane y > 0. This boundary
is the polygonal line connecting the vertices A, P1(¢), Ps(e), B. Then |P — P*| is
the (Euclidean) distance between P and Pt in R2.

At this stage, we are confronted with two asymptotic limits. For fixed n, the
limit as ¢ — 0 gives vanishing thickness to the fibered neighborhood of the pre-
fractal polygonal curve. The limit as # — + oo leads to the fractal set included in
Q. We proceed diagonally, by suitably choosing for each » a value ¢, > 0, such
that ¢, — 0 as n — + oo. Then, we take the single limit as n — + co.

We consider the sequence of operators A4, = A,,, where A, are the opera-
tors given in (0.1). The operators A,, are defined as self-adjoint operators in the
space L?(Q) (with Neumann boundary condition on Q). Our main goal is to
show the convergence of the spectral measures P,(dA) of the operators A, to
the spectral measure of a suitable self-adjoint asymptotic operator, as
n — + oo. We rely on variational and convergence tools from [24]. In particular,
by a general result in [24], we obtain the convergence of the spectral measures
of the operators A, to the spectral measure of a limit operator A as a con-
sequence of the M-convergence of the (extended-valued) energy forms asso-
ciated with these operators.

For every n, and for the specified value of ¢, > 0, the energy form of the
operator A, in L?(Q) is the functional

faf);(ac, y)|Vu|2dacdy if weD[F}]
Fn[u] :Fﬁl[u] - Q ' '

+00 it uelXQ)\DF!]

where a; Id is the coefficient matrix defined in (1.3) for ¢ = ¢,, and the domain
DIF}]cC Lz(.Q) is the completion of C'(Q) in the norm

—

(1.6) Joullgrg = { [ ufPaudy + f Ve dxdy} .

ol
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As explained before, we let, simultaneously, the iteration parameter n go to
+ oo and the transversal size ¢ of the fibers go to 0, by choosing ¢ = ¢, to be
infinitesimal as n — + oo. We must also choose the scaling constants o,,. These
scaling laws can be expressed in terms of a single parameter ¢ > 0. The value of &
is given by the ratio

5:—@

of the Hausdorff dimension dy of G and the spectral dimension dg of G. The
constant 0 is an effective metric parameter that depends on the fractal G.
For the Koch curve, N =4,0 =3,0 = In4/In3. For the Sierpinski gasket,
N =3,0=2,0 = In5/Ind. Note that in both cases J > 1. We then define

520
PN
and take

A7) e = (%)wn (with @, -0 as n — +o0), oy = (g)
We also assume that the material constants (,, y, remain finite and non-
vanishing through the iteration process:
(1.8) lim¢, =" € (0, +0), limy, =y € (0,4 00)
as n — + oo. In [30] the following result is obtained, which extend previous re-

sults from [27] and [28] :

THEOREM 1.1. — With the value of 0 > 0 specified before, under the assump-
tions (1.7) and (1.8) the sequence of functionals F,, M-converges in L*(Q) to the
Sfunctional

* 2 * . 1
(19)  Flu]l= gngu' dedy + y* Eglulgl  if ue H(Q),ulg € DIE]

+oo if weL*)\{u: uecH(Q),uls € D}

where Eglulg] is the energy functional on the fractal G.

In this statement, H'(Q) C L*(Q) is the Sobolev space obtained as the com-
pletion of C1(Q) in the norm

all 10 = { f (P daedy + j |Vu|2docdy}
Q

Q
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and u|g is the trace of u € H'(Q) on G, defined, e.g, as in [13], [14]. The energy
functional £g[u] is obtained as the increasing limit

(1.10) Eglul = nginoc Eglu]
of the discrete energy forms
1 062"5 9
(1.11) dul =5 < > b zbj W1, (br)) — ulyy, ()
iln by#bsel’

on the domain

Dl&g]l = {u € C(9)| suxo)fg[u|w]< + 00},

Here for every n > 0 the set V" is obtained by iteration as

(1.12) V' =D,

in

+00
The fractal G is the closure in R* of the set V> = [J V". We note that the

n=0
functional (1.9) is non trivial, because it is finite on the domain D[F'] =

{u: u e H(Q), ul; € DIE]} which is dense in L*(Q) (see, e.g., [13]). The func-
tional F' defines a densely defined self-adjoint operator A = —Ag in the Hilbert
space L*(G, ug), which takes the role of intrinsic Laplace operator in G with
Neumann condition on I". The measure yg is the (normalized) Hausdorff mea-
sure on G.

The case of Dirichlet conditions, on both 92 and I, is covered by the next
result. The functional F,[u] of the previous theorem is now replaced by the
functional

(113)  Fulul = F"[u] f ap @, )| Vul'dedy it we DolF}]
. nll =Ly Ul =70

o it weLXQ)\ DlF"]

where the domain DO[F;;] C L*(Q) is now the completion of Cé () in the norm
[luel| DIFY ] given in (1.6). The limit functional is defined on L?(Q2) by

(114)  Flu] = ¢ f \VulPdody + v Elulg] i w € HyQ),ul; € Dol€]
' - Q

too if weLA@)\ {u: uec HNQ), ul; € DIET}.

The functional (1.14) is finite on the domain Do[F] = {u: u € H(l)(Q), ulg €
D[€]}, where Dy[€£] is the subspace of all functions in D[£] that vanish on I
Again, this functional is non trivial, because Do[F] is dense in L?*(Q). The self-
adjoint operator A = — 4g, defined now in the Hilbert space L*(G, ig) by the
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functional F, is the Laplace operator —Ag in the fractal G with Dirichlet boundary
condition on 7.
The result in [30] is

THEOREM 1.2. — Under the same scaling assumptions as in Theorem 1.1, the
sequence of functionals F,, defined in (1.13) M-converges in L2(Q) to the func-
tional F defined in (1.14) as n — + .

The special scaling laws for the parameters imply in particular that the
thickness of the fibers tends to zero while their conductivity diverges to + oo, the
product of them remaining bounded, as 7 — + co. In the same paper some cases
where this condition is not satisfied are also studied.

We point out that in both Theorems the asymptotic energy has two inter-
acting components, the standard Dirichlet integral extended to the two dimen-
sional domain Q, and a lower-dimensional fractal energy term. Globally, the limit
functional F defines a self-adjoint operator A in the space L?(Q). Formally, such
operator A is given by the two-dimension Laplace operator 4 in the open set
Q\ G —with Neumann or Dirichlet boundary condition on 02 — together with the
fractal-Laplacian 4g on G — with Neumann or Dirichlet condition on I" = G N 0Q.
The two operators are coupled by a second order transmission condition on G.
The condition states that the jump of the normal derivative of the function « from
Q across G, taken on G, equals the Laplacian 4g acting on the trace of # on G. In
the case of Dirichlet condition on I, a fractal analogue of the Lions-Magenes
trace space, mentioned earlier, comes into play. For a rigorous definition of the
transmission problems when G is the von Koch curve we refer to [16] and [18].

As mentioned in the introduction, the convergence of the energy functionals
implies the convergence of the spectral measures and of the spectral subspaces.

THEOREM 1.3. — In the same assumptions of Theorem 1.1 and Theorem 1.2,
for every A< uwhich are not in the point spectrum of the operator A in L*(Q), the
projection operator P"((A, ul) of the spectral resolution P" of the operator A" in
L2(Q) converges strongly in L*(Q) to the projection operator P((2,u]) of the
spectral resolution P of the operator A in L*(Q).

This result follows from the convergence of the functionals, by applying
Theorem 2.4.1 and its Corollary 2.7.1 from [24].

In the problems considered so far in this Section the parameter {* is positive.
This is the case when the medium in which the fibers are imbedded keeps finite
viscosity up to the limit. Then, as seen before, the energy is only partially absorbed
into the lower dimensional fractal inclusion. The vanishing viscosity case, when

Km¢, = ¢ =0.
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has been considered in [29]. In this case the limit functional is composed only by
the fractal energy term.

Such a collapse of geometry and energy on a lower dimensional fractal set is
an interesting feature, both in fractal and PDEs theories. It shows, in particular,
that fractal Laplacians can be obtained as the (spectral) limit of singular second
order elliptic operators in divergence form.

In the vanishing viscosity case, however, there is a loss of coercivity as
n — + oo. In fact, the uniform H' estimate that plays a basic role in the previous
theorems, that is

¢[|Vul|Fz) < Fr u]

&n

with ¢ > 0 independent of %, now fails, due to the vanishing of the coefficient {, as
n — -+ o0o. The domains D[F,] of the functionals F,, and the domain D[F'] of the
limit functional F' are no more contained in the single Hilbert space H = L?(Q),
which is the space where the convergence of the previous theorems takes place.

This difficulty has been overcome in [29], by relying on the generalization of
M —convergence of functionals to variable Hilbert spaces, developed by Kuwae -
Shioya in [15]. Generally speaking, the convergence of the functionals takes now

place in a larger Hilbert space, @ H".
0
In [29], for every n > 0 the following Hilbert space is considered:
H" — LZ(QHun )’

&n

where the Borel measure 1 =y, is defined in Q by
tn = Calanzy, £+ 1ry oy LATat0; 1o L

Here L is the 2—dimensional Lebesgue measure, 0<{, < 1 are the viscosity
parameters and 7, are scaling constants, depending on the fractal, that will be
specified later on. The functional F',, is now defined for each » in the spaces H" s
follows:

fa:fl(ac,y)\vmzdacdy if weD[F,]
o
+ 00 if weL?Q,u,)\ DIF,]

Folu] = F? [u] =

where af};ld is again the coefficient matrix defined in (1.3) for ¢ = ¢,, but now
the domain D[F,] — D[F,] C LA(Q,u,) = H" — is the space of all functions
u e LA(Q, 1) with distribution week gradient in L2(Q, u,). The functional F),
defines a regular, closed Dirichlet form in H”. The generator of such a form is a
self-adjoint operator —A” densely defined in the space H". The operator A" is
the positive-definite self-adjoint realization in the space L*(Q, u,,) of the second
order elliptic operator in divergence form ( 0.1), with natural Neumann con-
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ditions on 0Q. The spectrum of the operator A" + Idy, is a point spectrum, with
eigenvalues J; — 400 as k — + oo.

The measures y,, are the so-called speed measures of the Markov processes
generated by —A". They replace, in the choice of the Hilbert space, the two
dimensional Lebesgue measure of the non-vanishing viscosity case. The trans-
mission condition at the interface of G and Q is affected by this change.

We now summarize the assumptions in the present case. The coefficients a;
are defined as previously in (1.3), and they depend on the two sequences of
constants {,, and y,,. The constants N, o, 6 and p — that depend on the fractal — are
the same as specified before. As before, we also take

(1.15) &y = (%)na)n, (with w, - 0 as n — +00), Op = (g)n.

In addition, for the Sierpinski case considered in [29], we assume that

e

(for other fractals, the numerical coefficient 3 may be replaced by another nu-
merical constant depending on the cardinality of I"). With this choice of the
constants 7, it is proved in [29] that the measures u, weak® converge to the
measure /g as n — + oo, that is

[ e, — [ dug
Q Q

as n — + oo, for every ¢ € C(Q).
The result of [29] for the Sierpinski fractal is:

THEOREM 1.4. — With the scaling constants ,, o, and 1, specified before, let
the constants 0<(, <1 and y, be such that lim{,, = 0 and limy, = y* € (0, +o0)
as n — +oco. Then the sequence of functionals F,, in H" M-converges (in the
sense of Kuwae-Shioya) to the functional

{y*sg[u] if e D[F]
Flu] =

(1.16) .
too  if we LG, ug) \ DIF]

where DIF] = {u € L*, Ug) = u € DIEG]} and Eglu] is the energy functional on
the fractal G, with domain D[Eg] C LA(G, ug).

We note that, in the present context, the M-convergence of the functionals F,
to the functional F, in the sense of Kuwae-Shioya, is defined as the usual M-
convergence of functionals, provided strong and weak convergence of sequences
of vectors are defined in the following way: a sequence of vectors u,, € H" con-
verges strongly to a vector u € H if there exists a sequence ¢,, € C(Q), such that
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H¢m - u”H — 0asm — + o0, and

limlimsup||¢,, — wn|lgn — 0, as n— +oo and m — +oo.
m n

The sequence u,, € H" converges weakly tou € H, if the inner product (v, v),)g»
converge to the inner product (u,v)y for every v, converging strongly to v as
n — + oo.

Similarly as before, from the convergence of the functionals we get the con-
vergence of the spectral measures, see Theorem 3.4 in [15]:

THEOREM 1.5. — In the same assumptions of Theorem 1.4, for every A< pnot
in the point spectrum of the self-adjoint operator A = —Agin LA(G, ug), defined by
F, the projection operator P"((4,u]) of the spectral vesolution P" of the self-ad-
Jjoint operators A™ in L*(Q, ), defined by F,, converges strongly to the projec-
tion operator P((A, it]) of the spectral resolution P of the operator A, in the Kuwae-
Shioya sense.

In this statement, the strong convergence of the spectral projectors has to be
intended according to the following general definition: a sequence of bounded
operators B, in H" converges strongly to a bounded operator B in H if for every
u, € H" converging strongly to u € H the sequence B,u, € H" converges
strongly to Bu € H, with the strong convergence of vectors defined as before.

2. — Elliptic operators with fractal degeneracy

In this section we report on the recent papers by Capitanelli and Vivaldi, [6], [7].
The problem studied in these papers is the boundary approximation with suitable
msulating fibers of Laplace equations in a domains bounded by four Koch curves.

The domain Q is now the square {(x,y) : 0<x<1,—1<y <0}, with vertices
A=(0,0,B=(1,0),C=(0,-1)and D = (0, —1). On each one of the four sides of
the square a Koch curve Kj,j = 1,. .., 4, is constructed, moving outward from the
square. At the iteration n, the domain bounded by the four pre-fractal Koch
curves K is denoted by Q". For each n, and for every 0<e < g <1/2, the open
set Q" is enlarged to become the open set

Qr=0Q"uxt,,

where for each j the set 27, is the open fibered neighborhood of K’ constructed
by similarity from the initial reference fiber 2 .. However, since now the pre-
fractal is on the boundary, we cut the reference fiber in half, by keeping only the
(open) half fiber that lays above the x — axis. The fibered set Z}’F lies then
externally to the domain Q" and is disjoint from Q".
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The conductivity coefficients of the fibered set X7, are defined, as in the
previous section, in terms of the constants y, and 7, and of the functions w?.
However, in the definition of w!, a substantial change is performed: in the de-
finition of the conductivity of the reference fiber Xy,, the factor |P — Pi|_1 is
replaced by the factor |P — P*| (and the numerical coefficients are modified
conveniently). With this change, the fibers present vanishing conductivity as ¢
tends to 0. The conductivity a!’(x,y) of the enlarged domain €' is then defined to
be equal to w"(x,y) if (x,y) € X, and equal to 1 if (x,y) € Q".

The spaces H'(Q!, w!) and H}(Q", w") are defined to be the completion of
CY(Q!) and CY(Q)), respectively, in the norm

[T

lellen g om = { J tudady + [ 17ufdady

i n
Qx Q €

By Q" we denote the unit disc with center at Py = (1/2,1/2), We then con-
sider the following functionals:

[ @ ypivultdedy i we L3@) and ulg, € HY@! w!)
Fulul=F![ul={ &

+ 00 if u € LA(Q") and ulg ¢ Hy(Q, wl)

By pyo we denote the measure on 0€2 such that the restriction of y,, to each
fractal component K; of 0 coincides with the Hausdorff measure ux, of Kj,
j=1,...,4.

Then the following result is given in [6]:

THEOREM 2.1. — Let us assume that y,, > 0, y* > 0 and y, — y* as n — + oo
Let &, be an arbitrary sequence such that ¢, — 0 as n — + oco. Then the func-
tional F,, M—converge to the functional

f|Vu|2dxdy + y*f lulPduy, i u e L3(Q*) and ul, € H(Q)
Q o0
+ 00 if we LA(Q) and u|, ¢ HY(Q) .

Flul =

We point out that the boundary value problem for the Laplace operator in Q
associated with the limit functional ¥ implies a Robin type condition on Q.

In [6], the case when y,, — 0 — leading to Neumann boundary condition on 02
— and the case y, — + oo, with an additional assumption on the rate of con-
vergence of ¢, — 0 — leading to a Dirichlet condition on 9Q — are also studied, as
well as the generalization to boundaries obtained from irregularly scaled Koch
curves, or Koch mixtures, in the sense of [4] and [26].
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3. — Interfacial heat transmission

Two-dimensional second order transmission problems across a highly con-
ductive layer of Koch type have been studied by Lancia, Vernole and co-authors
in a series of recent papers, [19], [20], [21], [22] and [8].

In reporting on this work in the context of this note, we confine ourselves
mainly to the papers [19], [20] and [8]. In [19] the authors obtain their first results
on the heat transmission problem that we already mentioned in the Introduction.
In particular, they show the existence and uniqueness of the strict solution for
both the fractal and the pre-fractal problem; moreover they study the regularity
and the convergence of the solutions of the pre-fractal problems as the pre-
fractal layer converges to the fractal set. In [8], the authors provide the finite
element approximation for this kind of problems.

The pre-fractal transmission problems studied in [20] can be formally stated
as follows:

% — Auy(t, P) =f(t, P) in [0,T1xQ), i=1,2 )
% — Ak, un(t, P) = [W] +f on [0,T] x K,, )
(Pu) § wy(t, P) =0 on [0,7T] x 99, i)
ul(t, P) = u3(t, P) on [0,7] x K,, )
uy(t,P) =0 on [0,7] x 0K, v)
1, (0,P) =0 on Q )

In this problem Q is a rectangular domain, for example the open rectangle with
vertices A = (0, —v/3/2), B = (1,-v/3/2), C = (1,+/3/2) and D = (0,/3/2). The
source term f(t, P) is a given function in C°([0, T']; L?(Q, m,,)) with 6 € (0,1). For a
fixed n, K, is the pre-fractal Koch curve with endpoints (0,0) and (1,0) . The
curve K, separates Q into two open subsets, 2} and Q2. The restriction of u,, to
Q! is denoted by %, i = 1,2. The piecewise-tangential Laplacian defined on the
polygonal curve K,, is denoted by Ak, . The jump of the normal derivatives across
K, is given by
ow,]  oul  ou?
oot
where v; is the inward normal vector to the boundary of .

Let us introduce the Hilbert space space L*(Q,m,), where
(3.1) dm,, = dxdy + ds,

with inner product (.-}, and norm |ul,, = ( ffududy + f u*ds)* and

n n
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the forms

(3.2) E™(u,, ) :f|Vun,\2dmdy +f|nyoun|2ds,
Q K,

defined on the domain

(3.3) V(2,K,) = {uy, € Hy(Q) : pyu, € Hy(K,)} .

In 3.3), H, (1)(.(2) denotes the usual Sobolev space in 2, H},(Kn ) the trace space on
K, and yyu,, is the trace of u,, on K,, (denoted simply by u,, below). Moreover, the
second integral at the right-hand side of (3.2) is defined piece-wise by

f|V1y0u,Z|2ds: Z f|VrVoun|2dS,

K, MeK, p

where the sum is taken over the segments M that compose K,,, V, is the tan-
gential derivative along M. The measure ds is the one—dimensional arc length
measure on K,,. This integral expresses the energy Ex (-, ) of the curve K,,. The
space V(Q, K,,) given by (3.3) is a Hilbert space under the norm

(3.4) 2ally ok, = {E™ (tn, un)}77.

Moreover for each n € N, E®(., .), with domain V(Q, K,,), is a regular, strongly
local Dirichlet form in L?(Q) and in L*(Q, m,,), respectively.

In [20], Problem (P,,) is dealt with by semigroup methods. More precisely, for
every fixed n the following abstract Cauchy problem is studied

duy, (2)
:An n t t ) 0 < t < T
(35) ) 3t un (@) + f()
u,(0) =0

where A, : D(A,) C L*(Q,m,) — L*(Q,m,) is the generator associated with the
energy form E™,

E(m(umv) = _fA’)Zu%/U dmy,, u, € DA, veVEK,),
Q

The following existence and uniqueness result is then obtained

THEOREM 3.1. — Let 0<d<1, f € C([0, T1, L2(2, my,)), and let

t
(3.6) Uy, (t) :f T, —s)f(s)ds for every m € N,
0
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where Ty (t) is the analytic semigroup generated by A,. Then u, is the unique
“strict” solution of (P,). Moreover,

(8.7) ||%n||Cl([0.,T],L2(Q,m,,>) + H“n||00<[o,T],D(A,,,)) < C|V||Cf’([0,T],L2(Q,m,7))'

where c is a constant independent of n.

The solution of the abstract Cauchy problem (P,) is the “strong” solution of
Problem (P,), as described by this result in [8]:

THEOREM 3.2. — Let u, be the solution of Problem (P,). For every fixed
t € [0, T] we have

%—Aun(mP):f(t,P), forPe@ i=1.2
P ¢ 12k, i=12,
(3.8) v
du,, ~ [ouy N
Wﬁ AK”’I/Ln|Kn = |: av:| +fa wm L (Kn)a
u,(t, P) =0, for P € 0Q.
aujz 2 -
Moreover, B e C(0,T], L~(K,)), » =1,2.
i

In [19] and [20] the following regularity result is also obtained

, : 2
THEOREM 3.3. — For every fized t€[0,T], ul € H>(QL) with o > =
w2 € H?*2(Q%) with oy > 1 @l € COD), walyg, € HAK,) .

The definition of the weighted Sobolev spaces H2* (") is rather delicate. If D
is a non-convex polygonal domain in R? and o > 0, the space H2%(D) is defined to
be the space

H?**(D) = {v € H(D) : v*-DPv € LAD), f = (By, ) € N x Nsit. || =2},
equipped with the norm
1/2
10 lsi={ 10 By + 3 17 DFo [y |
=

The delicate point in this definition is the construction of the weight function
r: D — Ry, that we now describe. Let {P;,1 <j < N} be the set of vertices of



70 UMBERTO MOSCO

D.Forj=1,...,N,let 0; be the interior angle of D at P;. Let R be the set of the
indices {j =1,....N: 6—72 < 1} and let Q = {P;}, . be the subset of the vertices
with reentrant angles 0; (these are the points where the solutions are singular).

1 . . . o
We set 7 := {Z -min |P; — Pyl; j,k € R,j # k} and arbitrarily choose 0<e<n.
Forjin R, we define 7;(P) := |P — Pj| for all Pin B,(P;) = {P € D : |P — Pj|<&}.
We then define the function »:D — R, by putting »(P) := r;(P), for all
P € B,(P)j) and j in R, and r(P) := 1 for all P € D\ |J Bz.(P)).

JER

We conclude this section with some remarks on the numerical approximation
of these problems, reporting mainly on the paper [8] and [9].

The pre-fractal curve K,, induces a natural triangulation 7, , of the domain £,
in which the vertices of K,, belongs to the set of nodes of 7, ;,. Starting with this
triangulation, a mesh refinement process is given, that generates a regular and
conformal family of finer triangulations {7, }.

The need for such refined triangulations comes from the presence of reen-
trant angles in the boundaries of the domains Q,IZ and Q,zz, which were previously
described. As already mentioned, the solution u, is singular at these angles,
indeed u,, is not in the Sobolev space HZ(.Q;), as it is the case in a smoothly
bounded domain. Instead, as seen with Theorem 3.3, u}l € H?*(Q!), 1= 1,2, with

2 1 . . e .
oy > 5 and op > 1 In view of these singularities, in order to get optimal rate of

convergence for the finite element approximations the triangulation of the do-
mains QﬁL must be refined, according to the conditions introduced in this regard
by Grisvard in [11].

The authors are able to implement Grisvard’s conditions by satisfying at the
same time an additional important property for their refinements. The refined
meshes are constructed as a “nested” sequence of meshes, i.e., all the nodes of
Ty, belong also to 741 ,. This property is of course of great help when the
numerical approximation is carried out at various levels of the fractal iteration.
We refer to [8] and [9] for more details. We also point out that in [9] more
complicated boundaries, made by suitable mixtures of Koch curves, are also
considered.

With the appropriate triangulations at hand, the numerical approximation of
the problem (P,,) is carried out in two steps. In the first step the semi-discrete
problem, obtained by discretizing with a Galerkin method only the space vari-
able, is considered. The following a priori error estimates of the order of con-
vergence is then obtained

THEOREM 3.4. — Let u,(t) be the solution of (P,,), u’,(t) be the restriction to Q!
of un(@®), for i =1,2, and wu, ;) be the semi-discrete solution. Then for every
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t € [0, T] we have
¢

2
|| u’l’b(t) - /M/n"h(t) ||%2(Q7”/L71,) +f H ’U/n(T) - u’ﬂ,h(r) ||V(Q,Kn) dT
0

t
< ch? (f | f() H%Z(Q,mn) d‘C)
0

where c 1s a suitable constant independent of h.

In the second step the fully discretized problem is considered. By applying a
finite difference scheme on the time variable, the so-called 6 method, an error
estimate between the semi-discrete solution u,, ;(¢;) and the fully discrete solu-
tion u! , is obtained.

From this estimate and from Theorem 3.4, they finally get

of

THEOREM 3.5. — Assume that f e C°(0,T];L*(Q,m,) and 5 €

L2(0,T] x Q,dt x dm,,). Let n be fixed and let u,(t) be the solution of
problem (P,), ufqh be the fully discretized solution, as given by the 0—
method with % <0<1 Then,

T
12 2
2 @) — s, 117200, < Ch2< f If@72@m,) df)‘*'
0

T
f
N <|f<0>||iz<g,m,» +0f F=

2
dr |.
L*(Q,my)

A final remark about future research. In all the problems discussed in
this paper an important question remains to be investigated, namely, to
obtain some quantitative estimate for the asymptotic fractal limit. Such
estimates should reflect the stability properties of the problem at hand in
presence of the wild changes in the geometry. The very nature of the
estimates — whether they can be stated in suitable function spaces or they
are just of scalar energy kind — must be better understood, in each one of
the special cases described before.
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