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Multi-Scale Free-Discontinuity Problems with Soft Inclusions

ANDREA BRAIDES - MARGHERITA SOLCI

To the memory of Enrico Magenes

1. — Introduction

In this paper we study the asymptotic behaviour of free-discontinuity pro-
blems in a periodic geometry of R" with “soft inclusions” represented by a
periodic array of disjoint compact sets

Ey=J G+K).
e
Homogenization problems with such a geometry are widely studied by I'-con-
vergence methods in the framework of integral functionals on Sobolev spaces. In
that case, the prototypical energy functionals are of the form

G = [ \VuPde+er [ [VuPde+ [ g de,
Q

QnNek QnNeky

where Q is an open subset of R", E:=R"\ Ey, ¢, >0, >0, and g is a
suitable continuous function satisfying growth conditions. The limit case
¢, = 0 is the one of perforated domains with Newmann conditions (see e.g.
Acerbi et al. [1], Braides and Garroni [11, 9]) while « =2 corresponds to
double-porosity homogenization (see e.g. Braides, Chiado Piat and Piatnit-
ski [8]). In the latter a non trivial interaction between g and the “weak” term
takes place.

More recently, also homogenization problems for surface energies have been
studied in this geometry by Solci in [16], where functionals defined on sets of
finite perimeter modeled on the prototypical case

HP(A) = H" " 1(Q\ eEp) N DA) + cge’ H" 1(Q N eBy N DA) + f w(x) de
QNA

have been analyzed. Note that for these energies the double-porosity phenom-
enon takes place for f = 1.

Free-discontinuity energies possess interacting bulk and surface parts, and
their prototypical example is the Mumford-Shah functional (see e.g. Braides [5]).
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The corresponding “soft-inclusion” energies are then

Fj’ﬂ(u)zf |Vu|2dx+cas“f IVl di

Q\eEy Qnek
1 +HH (R )\ eEo) N SW)) + cpe H" QN eEy N S(w))
+ f g(w) du,
Q

where S(u) denotes the set of discontinuity points of » and ¢ is a continuous
function. Note that for u € H'(Q) energy (1) turns into the energy G%(u) and for
u =y, with A of finite perimeter we have F*#(u) = H*(A) with y(x) = g(1) — g(0)
(up to the additive constant g(0)|€2)).

Energies (1) can be interpreted in the framework of the variational Griffith
theory of fracture (see [4]) as describing a composite of brittle (linear) elastic
materials with weak inclusions, whose ‘weakness’ derives from small elastic
constants and/or from small fracture toughness. This approach may model the
effect of damaged zones in an undamaged material (for this kind of problems
there exists an enormous applied literature; see e.g. [3], [15], [14], etc.)

The case of Neumann boundary conditions ¢, = ¢ =0 and g = 0 has been
examined by Cagnetti and Scardia [12], who proved an equicoerciveness result
for the corresponding energies

FOu) = f IVl de + H" (@ \ eEo) N Sw))
Q\EJE()

with respect to the convergence u, — u defined by
2) UKo\, — CrU locally in L1(Q),

where Cp =1 — |K| and u € SBV(Q). Correspondingly, they proved a homo-
genization theorem showing that the /™-limit of F¥ can be written as

Fu) = f (AgVu, Vu) dx + f (oo(vu)dH"’l,
Q QnS(u)

where A is the matrix defined by the I'-limit of G with ¢, = 0 and g = 0 and ¢, is
the surface energy density defined by the I"-limit of H” with cp=0and y =0.
Their analysis provides a coerciveness result for all the families of functionals
(F*#), and a lower bound for the corresponding /-limit. Note that a common
upper bound for all energies is given by the case o = ff = 0, which is treated by
Braides, Defranceschi and Vitali [10], and for which the convergence in (2) re-
duces to ordinary strong L!-convergence.
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The description of the asymptotic behaviour of the energies F*/ is not a
simple superposition of the corresponding analysis for the functionals G* and H”,
but optimal sequences may depend on the interplay between the growth condi-
tions and favour alternatively the introduction of large gradients or dis-
continuities (or both) inside the perforations.

The simplest case is the one of “very soft” inclusions, when either one of the
two coefficients ¢, or cg vanishes, or we have o > 2 or f > 1. In all cases the /-
limit behaves as in the case of perforated domains, and is given by

F3@) = [(AVu, Yy i + [ p(v)d4 1 + C [ gu) dis + | K| min g.
Q S(u) Q

Note that in the case cg = 0 or f > 1 optimal sequences can be simply set equal to
a constant value %y, with g(iy;,) = min g on the perforation (this does not in-
fluence the convergence in (2)), while some smooth cut-off argument has to be
used when ¢, = 0 or o > 2.

In the other cases when o« < 2 and f < 1 the limit actually depends on o and
through a modification of the “lower-order term”, which indeed is not such for
convergence (2). Indeed, for o = 2 the gradient integral term has the same order
of g(u) on the perforation, while this holds for the surface part when = 1. In
general, the I'-limit has then the form

Fob(u) = f (AgVu, Vau) dic + f o )dH" ! + C f 7P ) d.
Q S(u) Q

If «<2 and <1 the I'-limit with respect to convergence (2) turns out to be
equivalent to the one with respect to the strong L! convergence, and the term in
g behaves as a continuous lower-order term, giving simply g*# = ¢. If x<2 and
f = 1then optimal sequences can be taken piecewise constant on the perforation,
and g*# is characterized by the problem on sets of finite perimeter

9*7(2) = g(z) + min{cyH"(DA) — |A|(g(z) — min g) : A C K},

where z has the role of a boundary datum. With this constant datum on the
boundary the optimal % on K takes only the value z and uy;,, from which we
deduce the minimum problem for g*#(z). Conversely, if « =2 and f<1 then
optimal sequences can be taken in H' of the perforation, and

7P(2) = Cpgz) + min{ f(ca\Vv|2 +9)de:v="zon BK}
K
Finally, when « = 2 and f = 1 both surface and bulk terms interact and give

¢ P(z)=Cyg g(z)+min{ f(ca|Vv|2+g(v))dac+cﬁH”’1(S(v) N K):v =z outside K}
X
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We have proved all our results for the simplest case of the Mumford-Shah
functional in order to highlight the role of the different energy terms on the
perforation without overburdening the notation, but general free-discontinuity
energies can also be treated. The case when R" \ E has more than one infinite
connected component (which is possible for n > 3) requires a more complex
treatment, both as the limit is defined on N functions (N being the number of
disjoint connected components), and as it is not possible to reduce the definition
of g*# to a single minimum problem. We refer to the works of Solci [17] and
Braides, Chiado Piat and Piatnitski [8] for the statements of the results and the
modifications of the proofs. The main new technical part of the present paper is
the possibility of reducing at “almost all” elements of the perforation to a single
minimization problem with a constant boundary datum and on the correct
function space (which varies with « and f in the cases mentioned above). Once
that is done, the proof follows from the papers mentioned.

2. — Notation and preliminaries

2.1 — Basic notation

The Lebesgue measure of a measurable set E C R” is denoted by |E|, and the
(n — 1)-dimensional Hausdorff measure is denoted by H" 1. For every x ¢ R”
and p > 0, B,(x) will be the open ball with centre x and radius p, and S"~1 will be
the boundary of the ball B;(0). We use standard notation for the Lebesgue spaces
LP(Q) and the Sobolev space H'(Q2), where Q is an open set.

2.2 — Functions of bounded variation

For the general theory on this topic we refer to [5]; here we recall some
definitions and properties used in the sequel. Let Q be a bounded open subset of
R"™ and u: 2 — R be a Borel function. We say that z € R is the approximate limit
of  in x (denoted by ap—;iir}( u(y)) if for every ¢ > 0

lim |{y € Bp(x) neo: ‘u(?/) - Z‘ > 8}| _
p—0+ pn,

0.

The subset S(u) of Q where the approximate limit of « does not exist turns out to
be a Borel set with |S(u)| = 0.

The function u is approximately differentiable in x if there exists L € R”
such that
w(y) —ulw) —L-(y —x)
y—u ly — 2|

0;
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if  is approximately differentiable in x, then the unique L satisfying the equality
is the approximate gradient of « in x, denoted by Vu(x). A function v € L1(Q) is
of bounded variation (u € BV (Q)) if its distributional derivatives D;u are Radon
measures with finite total variation in 2. We use Du to indicate the vector-valued
measure (D1u, ..., D,u). If u € BV(Q), then S(u) is countably (n — 1)-rectifiable,
ie.S(u) = |J K; UN,where H" 1(N) = 0 and each K; is a compact set contained

1eN
in a C'-manifold I"; of dimension % — 1. Moreover, there exist Borel functions
vu:S(w) — 8" 1 and wt,u: S(w) — R such that for H" !-a.e. x € S(u)

lirgl} p" f [u(y) — ut (x)|dy = 0, 11151‘ p" f lu(y) — u~(x)|dy = 0,
! B, (x)NQ g B, (x)nQ

where B[f(ac) = B/f(ac, (). The triple (u™(x),u (x),v,(x)) is uniquely de-
termined up to a change of sign of v,(x) and an interchange between " (x) and
%~ (x). The vector v, is normal to S(u) in the sense that, representing S(u) as
above, then v, (x) is normal to the hypersurface I'; for a.a. x € K;. The approx-
imate gradient Vu(x) exists for a.a. x € Q, and Vu is the density of the absolutely
continuous part of the measure Du with respect to the Lebesgue measure. We
say that a function u € BV(Q) is a special function of bounded variation if the
singular part (with respect to the Lebesgue measure) of Du is concentrated on
S(u); it is given by (™ — u ™ )v, H" 1L S(u), i.e.

Du = Vul" + (" —u ), K" 1L S).

The space of special functions of bounded variation is denoted by SBV(Q);
for the properties of SBV () we refer to [5]. For p > 1, we say that a function
u: Q — R belongs to the space SBV?(Q) if u € SBV(Q), Vu € LP(Q; R"), and
H"1(S(u)) < + oo.

2.3 — I'-convergence

We recall the notion of I'-convergence (we refer to [6, 7, 1§] for a complete
analysis of the subject). Let _(X ,d) be a metric space, F.: X — R (¢ > 0) a family
of functionals, and F: X — R. We say that {F,} I'-converges to F' at x € X as
e — 0 if:

1) for every infinitesimal sequence {¢;} and for every sequence {x;} conver-
ging to x in X, we have F(x) < liminf ng (x));
jooo

11) for every infinitesimal sequence {¢;} there exists a sequence {w;} con-
verging to « in X such that F'(x) = lim Fs/. (a)).
Jmoo
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The condition 77) can be replaced by the following

it)' for every n > 0 and for every infinitesimal sequence {¢;} there exists a
sequence {x;} converging to x such that F'(x) > lim sup F'g, () — 1.

j—o0
If i) and i7) (or 4)') hold for every x € X we say that {F,} I'-converges to F in
X,and F = F—lirr(}F,;.

3. — Setting of the problem and main result

Let @ = (—1/2,1/2)" and K C @ be a compact set of class C?. We define the
set K as

E=R"\JG@+K.

e7n

Let Q be an open bounded subset of R" such that |0Q2| = 0, and let g: R — R
be a continuous functions with the property that for any ¢ > 0 there exist 7+ > ¢
and 7~ < —t such that

(3) 9(T*) = min{g(s) :s > T} and ¢(T")= min{g(s):s < T }.
This clearly implies that g is bounded below; note that (3) holds e.g. if
tlir+n g(@) = tlim g(t) = +oo.

For ¢ > 0 we consider the funectional

F ) = f \Vul? da + H" NS w) N eE)
QnNeE
4)
Y f IVul? d + cp e HN(S(u) \ eB) + f ) dae
Q\eE Q
defined for u € SBV(Q) N LA(Q), where ¢, ¢g € [0, +00) and o, f € [0, +00).
We are interested in the description of the asymptotic behaviour of the se-
quence (F*#). To that end, we introduce the following notion of convergence in
SBVZ(Q) N LA(RQ); given (u,) C SBVX(Q)NLA(Q) and u € SBV(Q) N LA*(Q) we
say that u, — u if

(5) st — Cxu in L3(Q)

where Cx = 1 — |K|. Moreover, for u € SBV(Q) N L*(Q) we set

6) Fou) = f IVl dic + H*1(S@) N eE)
QnNek

which corresponds to F*# in the case ¢, = ¢y = 0 and g = 0.
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For the sequence (F?) the following I'-convergence result has been proven
in [12].

THEOREM 1 (Homogenization of Neumann problems [12, Th. 7.2]). — The fa-
mily (F?) defined in (6) I'-converges with respect to the strong topology of L*(Q) to
the functional

P = [0V, Yy do + [ gydre?
Q S(u)
with
(Aé, &) = min{ f |[Vu + £|2 d:u e H(Q) with periodic boundary values}
QNE

and

p() = lim min{H”‘l(S(u) NENTQ") : u < SBV(TQ"),

oo Tnfl

Vu=0,u=u"on 8TQV},

where Q" stands for any unit cube centered in 0 with two faces orthogonal to v,
and

(1 i @) >0
“(”){0 if (1) <0.

A key point in the proof of Theorem 1 ([12, Th. 7.2]) is the following extension

lemma, which we will use in the proof of the general case.

THEOREM 2 (Extension of SBV functions in perforated domains [12, Th. 1.3]). —
Let E be a. periodic, connected, open subset of R", with Lipschitz boundary. Let Q bea
bounded open subset of R". There exist an extension operator Ty: SBVZ(Q N eE)N
L>(Q N eE) — SBV2(Q) N L>(Q) and a constant k > 0, depending only on E and
n, such that

1. Tou =u a.e. n QNekE;
2. ITeull o) < ll L~ @remy
3. gf IVTul* de + H" 1 (S(T,u) N Q)
<k ( m{E (Vaul dac + H"1(S(w) N QN eE) + H’H(&Q))

for every w € SBV2(Q Nek) N L¥(Q N eE).

The main result of this paper is the following I'-convergence theorem.
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THEOREM 3. — Let F*# be the functional defined in SBV3(Q) N LA(Q) by (4).
The I'-limit of the sequence (F*F) as e — 0 with respect to convergence (5) is given
by the functional F*# defined in SBV*(Q) N L*(Q) as

F*Buw) :f<A0Vu, Vu) dx —|—f (po(vu)dH"’l +fg“7ﬁ(u) dx
Q S(u) Q

where Ay and ¢, are as in Theorem 1 and g** is given by the following formulae
depending on o, B, ¢, and cp:

1. ifc, =0o0rcg =0, orin the case ¢y, cp > 0 with o > 2 0r f > 1
9*P(z) = Ckg(z) + (1 — Cx)min g;
2. in the case c,,cp > 0 with o € (0,2) and f € (0,1)
9(2) = g(2);
3. i the case cy,cp > 0 with o € (0,2) and f =1
9*%(z) = g(2) + min{cyH" 1 (DA) — |A|(g(z) — min g) : A C K};
4. in the case c,,cp > 0 with o =2 and f € (0,1)

7P ) = Cxg(z) + min{f(Ca|Vv|2 + g(v)) de:v=zon @)\ K};
K

5. i the case cy,cp > 0 with . =2 and f =1

g"@) = Cg(@ +min{ [ (e Vol + ) da
K

4o S NK) v =2 0n Q \ K}

The compactness result for the sequence (FS) (see[12, Th. 7.1]) and the lower
boundedness of g imply the following theorem.

THEOREM 4 (Compactness). — Let (u;) C SBVZ(Q) N L>*(Q) such that (u;) is
equibounded in L>(Q) and

sup ng/‘(u,;) < 4 .

e>0

Then, there exists u € SBV2(Q) N L>(Q) such that u, — wu in the sense of (5).

REMARK 5. — We note that

(a) it is sufficient to prove Theorem 3 for u € SBV?(Q) N L>(Q);
(b) in the proof of Theorem 3 it suffices to prove the liminf inequality for
sequences (u,) equibounded in L>(Q).
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PRrOOF OF REMARK 5. — (a) Suppose that Theorem 3 holds for « € SBVZ(Q)N
L>(Q). To prove the lower bound in the general case u € SBVZ(Q) N L*(Q), re-
calling the properties of g we can choose sequences (4)) and (/) such that
2 — +ocask — +ooand g(A;)) < gt) forany ¢t > A, g(— 7;) < g(t) for any
t < —4; . Given a sequence (u,) such that v, — u in L2(Q), we set

wb = (= Vu) AL and uf = (= 2 V) AL

It follows that «* — u in L'(Q) as k — 4 oo; the properties of (1) and the lim inf
inequality in L* ensure that

lim iorlng=ﬁ(ue) > lim iglfFZ’ﬂ(uf) > F*Puk).

Since F*# is semicontinuous with respect to the L(Q) convergence we get

lim iOanZ’ﬂ(ug) > lim inf F*Puk) > F*Pu).
& ——+00

As for the upper bound, by density it is sufficient to prove the estimate for a
function u € L>®(Q).

(b) The hypothesis on g ensures the existence of 7" >2|u|, and
T- < —2|lu|, such that g(t) > g(T") for any ¢t > T, and g(t) > g(T") for any
t <T-.Wedefinev, =T Vu) AT and w, = (T~ Vv T.u.) A T™"; the sequence
(w,) converges to u in L'(Q), so that

*
WeX.p — CEU.

Since v, = w, in ¢k, it follows that v, — u in the sense of (5). Moreover, from the
hypothesis on g we deduce

f 9(u,) doc > f g(w,) dx,
Q Q

so that Fff‘ﬁ (ug) > Fj‘vﬁ (v,); this shows that we can assume (u,) uniformly bounded
in L>(Q). O

4. — Proof of Theorem 3
For any ¢ >0 and i € 7" we define Q' = ¢i + ¢Q and K! = ¢i + ¢K; since

09| = 0, setting 7, = {i € 7" : Q! C Q) it follows that ’Q\ Uq
Moreover, for p > 0 fixed small enough, we set i€z,

—0ase— 0.

K, ,={x € K] : dist(x,0K}) > ep}.
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REMARK 6. — Let (u,) be a sequence in SBVZ(Q)NL>(Q) such that
el ey < M and

f Vs 2 de + H' " (S(u,) N QN eB) < M.

QNel

For p > 0 sufficiently small, we define the set of indices
(7) T;(p)={i€ 2" : Tou, € H(K])};
from the proof of Theorem 2 (see [12, Th. 1.3]) we deduce that

(8) #(ZN\ ;) <

en—1

where ¢ depends only on 7, p, and the uniform bound M.

The following remark ensures that in the proof of the lower bound we can
apply the lim inf inequality for the sequence (F?), which is shown for sequences
converging with respect to the strong convergence in L?(Q).

REMARK 7. — Thanks to Remark 5, in the proof of the lower bound we can
restrict our attention to u € L>*(Q) and (u,) uniformly bounded in L>°(Q2). Now, if
we consider a sequence (u,) C SBV?(Q) N L>®(RQ) converging to u as in (5), with
(F(u,)) and |[tt,]| (o) uniformly bounded, then the sequence of the extensions
T.u, given by Theorem 2 converges strongly in L'(Q) to u. Indeed, (T;u,) is
equibounded in SBV(Q), and by compactness we can extract a subsequence
converging tow € SBV(Q) strongly in L'(). This implies y, g, 2 Crwin L(Q);
since y, g Z Cxuin L*°(Q), it follows that w = u and T,u, — u strongly in L'(Q).
Since in addition the sequence (u,) is equibounded in L>°(Q), the convergence of
T,u, is strong in L?(Q). Thus, we can use the lower bound inequality for the se-
quence (Tu;) in Theorem 1 to prove the lower bound inequality in our case.

Proor or THEOREM 3 IN THE CASE ¢, = 0 OR ¢z = 0. — The lower bound follows
from the liminf inequality in Theorem 1. Indeed, given % € SBV?(Q) N L>®(RQ)
and a sequence (u,) C SBV?(Q)NL>*(Q) such that u, — u as in (5) and (u,)
uniformly bounded in L>°(Q2) (see Remark 5), Remark 7 ensures that we can apply
Theorem 1 to the sequence (T';u.) which coincides with (u,) in Q N eF and obtain

lim inf VP dee + H* (S (u,) N ¢E)
7 oheE

9)
2f<A0Vu,Vu) dx —i—fgoo(vu) dH" 1.
Q S(u)

The continuity of g and the uniform bound on (u,) in L*(Q) allow to apply the
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Dominated Convergence Theorem, getting

hm f g(T.u,)dx = Ck f g(u) da,
TonE
so that

lim inf F/(u;) > f AoV, V) dee + f 0o(ve) M1
S(u)

+Cx f gy da + (1 — Cx)|Q| min g

—f AgVu, Vu) dx —|—f(00(vu)d7-(" 1+fg“ B dae
S(u)

since yg\.z — 1 — Cg in L¥(Q).
As for the upper bound, given u € SBVZ(Q) N L>(Q) let (u,) be a recovery
sequence for the functionals FO (from Theorem 1); that is,

(10) lim supFO(ug) <f AgVu, Vu) d +f(p0(vu) dH" L.
e—0
S(u)

The extension result Theorem 2 ensures that we can assume H" 1(S(u,) N Q)
uniformly bounded.
Now, we divide the proof in two cases.

e Case ¢, = 0. We modify u, inside each K! with i € Z, by setting
(11) () = ghu, + (1 — ¢,
where g(#) = min g and
. 1 .. +
p@) = (1- = dist(e,eh))
&p
With this definition
HNS,) \ eB) = Z H"1(S,) N KD + 0(1),_

i€,
S anl(S(u(:) N Q) + 0(1)8—>0'
Then, recalling (10), the properties of g and the uniform bound on
H"1(S(u,) N Q) imply

lim sup F7/(3,) <F°() +lim ¢ M1 (S(u) 01 Q) + Ci f g(u) dae
e—0 0
+ limo min gdx
. Q\eE

—f AogVu, Vu) dx —&—fgoo(vu) dH" ! +fg“ Blu) de.
S(u)
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o Case ¢y = 0. Let w € argmin(g). Setting

(12)

we get

&e—0

as desired.

Proor oF THEOREM 3 IN THE CASE ¢,, ¢g > 0 AND o > 2. — The lower estimate

() = ux) in QNek
G N7 in Q\ el

lim sup F*#(it,) <F*) + Cx f g(uw) de + lim f min g dz
J n

Q\eE

= [V, V) dao + [ gy a1 + [ g de
Q S(u) Q

follows immediately from the previous case ¢, = 0 or ¢z = 0. Indeed

Given u € SBV2(Q) N L>(R), let (u,) be a recovery sequence for Fg, that is
u, — u strongly in L?(Q) and the estimate (10) holds. The extension result
Theorem 2 allows to assume ||Vu,|| 10 and H"1(S(u,) N Q) uniformly bounded.
Moreover, we note that it is not restrictive to assume (u,) uniformly bounded in

F20) > Fou) + [ gu) dae.
Q

L>(£), by considering ( — 2||u|| ., V %) A 2||u|| .
We define u, as in (11), getting

i, < f (V|2 doe + H 1 (S(w,) N eE)

QNek

+egé f Vit dac + cp P H' (S Gry) \ eB) + f 9@,) du
O\eE Q

<[ (4vu, V) dio + [ gy(ounar!
Q S(u)

+ 20,6 f (# l, — 0 + |wg|2) da + ¢ P H" (S () N Q)
Q\¢E

+Cx f g@w) dae + j 9@@,) d
Q (Q\eE)N{dist(x,eE) <ep}

+ |2 N {dist (z,¢E) > ¢p}| min g + o(1),

< f (AgVau, Var) dee + f 0o (V@) dH" ! + f 7P ) de
Q S(u) Q

1
+ Cb‘aizﬁ + Cp + 0(1)£—>0
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where C does not depend on ¢ and p. Since o > 2 and p is arbitrary we have the
thesis. O

PRrROOF OF THEOREM 3 IN THE CASE ¢y, ¢z > 0 AND > 1. — As in the pre-
vious case, the lower estimate follows immediately from the case ¢, =0 or
C/g =0.

Given u € SBVZ(Q) N L>(Q), let (u,) be such that u, — u strongly in L?(Q),
the estimate (10) holds and ||u,|| gy | V(20 and H"1(S(u,) N Q) are uni-
formly bounded. We define #, as in (12). Since > 1 we have

lim cpe’ "1 S@,) \ eE) < lim cpe? #I, & "H"HOK) = 0.
Thus, we can conclude as in the case cg = 0. O

PROOF OF THEOREM 3 IN THE CASE O<oa < 2, 0<f < 1. — Lower bound. As
noticed in Remark 5, it is sufficient to prove the result with the hypothesis
u € L>(Q). Given u € SBV2A(Q) N L>(Q), let (u,) be a sequence in SBVZ(Q) N

L>°(Q) such that v, — « and suprf’ﬂ(ug)< + co. Remark 5 ensures that we
>0
can assume (u,) uniformly bounded in L>° (), so that as noticed in Remark 7

the sequence of extensions (T,u.) given by Theorem 2 converges to % in
L2(Q).

Now we modify the extensions T.u, to obtain a sequence of functions which
are constant in the holes, except for a small neighborhood of the boundary. Fixed
p >0, for any 1 € Z;(p) (see (7)) we define

; 1
(13) U, =— Teu, d
‘ |K§,p \KZ:‘Z/)| i i
Kg-ﬁ\Ka.Zp
and we modify T,u, by setting
ul in Kgi,zp for i€ Z;(p)

Tou, =  Tou, + (1 — pDul in K \ K, for icZ;(p)

T;:ux otherwise in Q

where with an abuse of notation we set in this case

: +
(14) o) = min{ <2 - dls“#@) , 1}.

For i € Z;(p) we get, applying Poincaré’s inequality to T.u, € H'(K; ,\ K},
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f|VTu;\ doc<f\VTu,| dze + 2 f VP (T, — ud)| dae

1 /‘\ 22/)

+2f|(p”VT | dee
K¢

&

2 .
§3f|VTguC|2dx+8— f T, — ul|* dac

<& [Tl o
P K¢

where C does not depend on ¢ and p.
Now, @r each 7 €Z;(p) we consider the function defined on Qi by
w! = u, — T,u, +u'. Note that the outer trace of w! on 9K! is equal to «, and that

i i
Wy = U, onKszp

We prove that we can estimate the functional by considering the terms de-
pending on w, instead of u,. Fixed 7 > 0, the estimate on f VT, us| dx gives

f|Vug\2 de > (1 - n)f |V, |* dac — p_g f|VTaug|2 dx.
Kt K: K

Moreover, we have
H"YKE N S(uy)) >H"HKE N Sw,) — H"1(KE N S(Tu,))
[ gy > [ gy - czp
K¢ K¢

where C depends only on H" }(0K) and ¢. As a consequence,

> (ea f Vot P dae + cpeP HLKE N Sw,) + f glu,) )
RO

>1 -7 e | |V, P dae + cpe’ H" UK N Sw,) + | gw,) dx
L ﬁ J o)

i

—C1Qlp — Cyesé® f IV T, dee — e H'1(S(Tu,) N ).
Q
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Note that the last two terms tend to 0 as ¢ — 0. This shows that we may estimate
only the term depending on w,. Setting

(15)  y’@) = min{c? f Vol de + cge! 1H UK N Sw)) + f gw)da}
K K

where the minimum is taken on all v with outer trace on 9K equal to z, we have

Cat” f Vo, ? dac + cge’ H'HKE N S(w,)) + f gaw,) dze > &'y ().
Kﬂ K:‘:

The sequence (1//3‘*/’7) is increasing as ¢ — 0, then, fixed ¢ > 0, for any 0<e<J we
have

S (cot [ 1V da -+ e 11 0 S + [ gl die)

i€Z;(p) K K:

(16)
> —-n f 203 @) de — C|Qlp + o(1),—g
Q

where %, is the piecewise constant function defined by

U=y 1

i€Z,

and , is the characteristic function of the set |J @'. Note that, recalling (8),
7. — 1in LYQ). L)

Now, we have to prove the strong convergence of the sequence (i) to the
function % in order to apply the Fatou Lemma and obtain an estimate of the
liminf. We denote the set K/ ,\ K ,, by D} = ¢i + ¢D, omitting the dependence
on p, and define the piecewise constant function

~ 1
Uy = ZXQZZ m j Tou, dx.

€L, Qi\ D}',

Since T.u, — u in L?(Q), then
(17) %, —u and %, —u weakly in L3(Q).
Now, we show that

lirgiglf ||ﬁs||L2(Q) = 1if£i§f ||7jé:||L2(Q) = ||u||L2(Q)§

the weak convergence and the convergence of the norm imply the required
strong convergence in L?(Q) of the sequences (%,) and (u,). The weak lower
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semicontinuity of the norm ensures that
2 L — 2 ~ 2
2[Jul|720) Shrglglf(llusllm@ + (|2l 72(0))

Slir;rliglf; ”( D] ngu,gdac> + & (WQ’\{; Tgugdx>

glirgigﬁ(Z('é' f|Tu(| da + _1|D| f|T€u,,|zdx>

QI\D;

2 2
- ZHT;:M;:”LZ(Q) + 2||Tf:ulr||L2(Q))

1 1 2
—llrglglf (Z f (ﬁ%l)g + W/‘(Q@\Dg - @XQ;@) |T£ua|2 dx

1€, Q
2
+ ZHTﬁua”LZ(Q))'

Since X\ J,pi = |D| and 2, @\0i = |Q \ D| weak-+ in L>*(Q) and T.u, — u in
LA(Q) it follows that

2 .. — 2 ~ 12 . 2 2
2||u||L2(Q) < llf;fllglf(||ue||]42(9) + H“sHLZ(Q)) < lngllgleHTSuSHLz(Q) = 2||u||L2(Q);

recalling (17), this implies the strong convergence u, — u and %, — u in L?(Q).

Since the funection y/f;‘ﬁ introduced in (15) is continuous (in particular lower
semicontinuous) and it is bounded from below thanks to the hypothesis on g, an
application of the Fatou Lemma gives

.. o, ff = .. o, ff uf
(18)  liminf Qf 2w, dee > Qf lim inf 7,y @) dar > Qf w2 ) d.

The lim inf inequality in Theorem 1 implies that
hm 1nf FOu,) > f AoV, Vu) di + f po(vu))dH" 1
Sw)
then we get from (16) the estimate

lim inf F7/(u,) > f AoV, V) die + f 0o (V@) dH" !
S(u)

+ Cng(u) de+ (1 — n)ft//fg’ﬂ(u)doc - Cp
o) o)

for any #5,p,0 > 0 small enough. Taking the limit for p,7 — 0 and the sup for
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0 > 0, we deduce

tim inf F21,) > [[(A0Vou, Vo do + [ poaandre?
Q S(w)

+ Cng(u) dx + Supf wg’ﬂ(u) dax
) 6>OQ

= [V, vy di + [ pyounar!
Q S(w)

+f<CK g(u) + sup wg'ﬂ(u)> dax.
2 s

The last equality follows from the dominated convergence theorem since the

sequence (g//f)f’ﬂ) is increasing as 6 — 0 and |t//§’/f(u)| < |K|max{|min g|, g(||u|.)}

a.e. in Q.
Since the sequence of functions (wg‘ﬁ ) is increasing as ¢ goes to 0, we have

sup wg’ﬂ(z) =min {sup (caé“*zf |Vv|2 dx + cﬂéﬂle"—l(K NS®))
P P
K

+fg(v)) :v:zonQ\K}
K

(see e.g. [6, Remark 1.40]). This allows to show that

(19) Ckg(a) + sup vy @) = g )

concluding the proof of the lower bound.

1. Case 0<2, f<1. Since 0" 2 and 6’71 go to +00 as 6 — 0, the minimum is
attained for v = z in K, then

Crg(2) + sup vyl (2) = Ck9(2) + |K| g(2) = 9(2) = ¢** ().

2. Case a<2, ff=1. In this case 52 — 400, so that we can consider the
minimum on piecewise constant functions, getting

Ck 9@) + supy’ (2) =¢(2) + min{cyH"(A) — |A|(g(z) — min g) : A C K}
o
:g“’ﬂ(z).

Note that this minimum problem is related with the theory of Cheeger sets
(see [16]).
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3. Case o =2, f<1. We can consider the minimum problem restricted to
HY(K); hence

Ck 9(2) + sup y/g’ﬂ(z) =Cxrg@) + min{ f(ca|Vv\2 + 9()) de :
0
K

v=2on Q\K} =P ).

4. Case oo =2, § = 1. In this case we get

Crxg() + Sl;p wg’ﬁ(z) =Crog(z)+ min{ f(ca|Vv\2 + g(v)) da
X

+oH N SWNK) v =z on Q\ K} = /).

This concludes the proof of the liminf inequality:

liminf F2/(u,) > f (AgVue, V) dc + f oV @)dH" L + f 7P w) de.
Q S(u) Q

Upper bound. Given u € SBV?(Q) N L>¥(RQ), let (u,) be a recovery sequence
for the functional F° (see Theorem 1), that is u, — % in L*(Q2) and the in-
equality (10) holds. We recall that the sequence (u.) can be chosen such that
| Vate|| 120y and H"1(S(u;) N Q) are uniformly bounded. Moreover, it is not
restrictive to assume (u,) uniformly bounded in L*(Q), by considering
(= 2llull,o v ) A2l .

1. Case a<2, f<1. The strong convergence u, — u in L?(Q) and the hy-
potheses on g imply the convergence

[o@de — [ gadz.
Q Q
Then, the lim sup inequality follows immediately from (10), recalling that o, f > 0
and that [|Vau,||;z ) and H"1(S(u,) N Q) are uniformly bounded.
2. Case a<2, f=1 We modify the sequence (u;) in Q\ el defining
U, = > ul Zqi» Where u! stands for the integral average of u, in Q. Now, let A(z)

1€,
be a solution of the minimum problem

min{csH" 1(9A) — |A|(9(2) — min g) : A C K}
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and define Al(z) = ¢i + eA(z). We pose
_ fuw.  inQ\UAi@)
Uy = i

min g otherwise.

Since f lg(u.) — g(,)| de — 0 and (|| V|| LZ(Q)) is equibounded, applying (10) it

Q
follows that

F2Pi,) <Fo) + 26| Vit + [ g da
Qnek

+ ) (epeH" N OAN@Y) + |AL@]) | min g) + ) f g(u,) dx
i TKNAI@)

—Fw)+ [ gado+ [ g de

QnNeE Q\eE

+ > (cpeH" M OAL@D) — |All(g(@) — min g)) + 0(1),_o-
i
Recalling the definition of A(z) and the strong convergence u, — u, we get

lim sup F*/(3,) < f (Ao, Vo) it + f o(v)dH" 1 + f 7B dee.
e=0 Q S(u) Q

3. Case o = 2, f<1. Note that for p > 0 small enough the sequence (u,) can
be assumed to be such that w, € H! (K};’p) for i€Z;. We recall that
#(Z\TI;) <cet™.

Let v, € H'(K) be a solution of the minimum problem

min{ f(ca\Vv|2 +9())de:v="zon Q\K}.
e

The hypotheses on g ensures that v, belongs to L>*°(K). We show that, up to a term
which is infinitesimal with p, this minimum is greater than the minimum of the
corresponding problem with K substituted by K(2p) = {x € K : dist(x,0K) > 2p}.
Since K is of class C? there exists ¢ > 0 such that, setting

K(o) = {z € K : dist(x,0K) > o},

the normal projection n: K \ K(¢) — 0K is well defined, and for any « € K \ K(o)
there exist unique y € 0K(o) and unique ¢ € (0, o] such that x = y + tv, v being
the inner normal to OK. Now, for p<ag/2 we define in the set K(2p) the function

V() = v,(¢ ()
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X in K(o)
) = { Y+ 02 tv  for y € 0K(o) and t € (0,0 — 2p].

where

Noting that |V¢’| < 1 + ¢p with ¢ depending only on K and o, we get

[ (99 + 900 de <@+ 26) [ (190 + 02))

K(2p) K(2p)

<1+ 2cp)f<|sz\2 +g(vz)) dx+cp
K
so that

min{ f (ca| VO] + g@)) dzx : v =2z on Q \ K(Zp)}

(20) K(2p)

< rnin{f(ca|Vv|2 +g())dx :v =2z on Q\K} + Cp}
K

where C depends only on K and g. Now, we modify the sequence (u.) in the holes.
Let v* be a solution of the minimum problem in K(2p), and set 'v',(.oc) =
V(2 /e — 1), where u] stands for the integral average of u, in K ,\ K., and

& Zp’
define

U inQ2\ U K

i€Z;

(21) Us =4 phu, + A — @l in Kl ,\ K., for eachieZ;

6
v in K/, for each i € T,
where ¢” is the function introduced in (14) and Z7 is as in (7). It follows that

Col 22 f |Vt | dac<2;;z Z f |u£—ui|2dac

’LEI, K‘ \K‘Z/y ’LEI, K:/)\KLZ/]

+ 2¢,6% Z f |Vt |? doe

€Tt
¢ Ki \K} e2p

032

Vu,|” dx
p2 |V, [

where we applied the Poincaré inequality in K \ +2,- Since [Vu,| is uniformly
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bounded in L?(Q), we get

cmszz f|Vﬁg|2dac+Z fg(vi)dac

i€} Kfz,) €T} Kf.z,,
—ee' Y [Ivoti@ide+e Y [ g0 de
iEI; Kgﬂ QEI: sz
= me{ f (ca| VO + g)) dw : v =} on Q \ K(zp)}
=3 [ Kepde

where u, is the piecewise constant function defined by u, = > ){qu}; and for any
z € R and V compact subset of @ i€T;

2z, V) = min{ f(ca|Vv|2 +gW)dx:v=2zo0nQ\ V}.
v

Recalling (20), we get

> [ kem < [ 1.5+ clap.

The uniform bounds on [|% | ), [| V%] 2. and H" ' (S(u,) N Q) allow to deduce
from the previous inequalities

e [ Vi o+ cpe 1S @) \ o) + [ g1, de
Q\eE Q

<Y [1@Kde+ [ gawde+ 120+ o),

i€z, @i QneE

Then, the strong convergence of u,, the continuity of y and the estimate (10) give

timsup F24i,) < [[(Agvu, V) de + [ gpndr
&0 2 S(w)

¥ f 7P dz + C2)p.
Q

Taking the limit for p — 0 we get the lim sup inequality.
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4. Case x =2, f =1. For any z € R and V compact subset of @, we set
V&, V)= min{ f(ca|Vv|2 +9W))da +cgH" ' S@)NV):v=20nQ\ V}.
v

The same construction of the previous case allows to deduce that for any z
(22) V' (2, K@2p) < (2, K) + Cp,

with C depending only on K and g. Indeed, if v, realizes the minimum in K then
the jump set of the function ¥ = v,(¢’) defined as above satisfies H*YS@) N
K©2p) <A+ cp)H" 1(S(@,) N K), with ¢ depending only on K and ¢. Thanks to
the estimate (22), defining % as in (21) the lim sup inequality follows as in the
previous case since for the jump set in the holes we have

Cpe ZHTZ?I(S(aa) N Kslp)

1€
<cpy HTHSWE)) NKEp) + eH" (S (w,)
1€Z;
=5 Yy H" (Sw(¢") N K @2p)) + 0(1),—o.
1€,
The proof is thus complete. O
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