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Compactness of Hardy Operators Involving Suprema

Eva PERNECKA - LuBoS PIck

Abstract. — We study compactness properties of Hardy operators involving suprema on
weighted Banach function spaces. We first characterize the compactness of abstract
operators assumed to have their range in the class of non-negative monotone func-
tions. We then define a category of pairs of weighted Banach function spaces for which
a suitable Muckenhoupt-type condition implies the boundedness of Hardy operators
mvolving suprema, and prove a criterion for the compactness of these operators be-
tween such a couple of spaces. Finally, we characterize the compactness of these
operators on weighted Lebesgue spaces including those which do not belong to the
above-mentioned category.

1. — Introduction

The Hardy operator
t
Hf @) = [ £ ds,
0

together with its many various modifications, where ¢ € (0,00) and f is a non-
negative locally-integrable function on (0,00), plays a central role in several
branches of analysis and its applications. It becomes of a particular interest when
functional-analytic methods are applied to finding solutions of partial differential
equations. Important intrinsic properties of this operator, such as boundedness
and compactness, on various function spaces, have been intensively studied over
almost a century. Certain special attention has been paid to weighted spaces.

In particular, many authors studied the question, for which non-negative
measurable functions on (0, 00) w and v and for which parameters p, q € (0, oc]
there exists a positive constant, C, possibly dependent on w, v, p, g, but not on f,
such that

1
00 t q q 00 P

(1.1) f f fs)ds | wydt | <c f Pyt |

0 0 0

with the usual modification when p = oo and/or ¢ = oo. Inequalities of this type
have been called the weighted Hardy inequalities. It turns out that in the case
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when 1<p < g<oo, (1.1) holds if and only if (see for example [2])
00 /g / ¢ e’
(1.2) sup f w(s)ds fv(s)lfp’ ds <00,
O<t<oo ; 0

1 while, in the case when 1 <g<p<oo, (1.1) holds if and only if

(see [12, pp. 72-76] and [13, pp. 45-48])

p
where p' = ——
D p—

1/r

) oo r/q x r/q
f( w(t)dt) ( f o) dt) W) P de | <oo,

0 0

1 1 1
where o 5 — 5 The estimate (1.2) is called the Muckenhoupt condition, since it

was first obtained (for the case p = ¢) in [14]. It is of interest to notice that the
Muckenhoupt condition is necessary for (1.1) for any values of p, q € (1, o0), but
it is not sufficient when q<p.

Aside from the boundedness, the most important property of the Hardy
operator from the point of view of applications, is its compactness on various
function spaces, which, again, has been widely studied. For example, when
1<p < g<oo, v and w are non-negative measurable functions on (0, co), and

LP(v) denotes the class of measurable functions f on (0, 0o) such that [ |f[Pv<oo
0

(analogously for L%(w)), then the operator H is compact from LP(v) into L4(w) on
(0, o0) if and only if

) g [ « 1
mlir& ( f w(s)ds) ( f v(s) P ds) =0

0

and

0 g [/ = 1/p'
th <f w(s)ds) (f v(s) ds) =0,

0

while, for 1 <qg<p< oo, it is compact from LP(v) into L?(w) on (0, co) if and only
if it is bounded.

When the action of the Hardy operator is considered in a more general set-
ting of the so-called weighted Banach function spaces (whose precise definition
will be given in Section 2), the Muckenhoupt condition, appropriate for these
spaces, is still necessary for the boundedness of the operator. Indeed, suppose
that the Hardy operator H is bounded from one weighted Banach function space,
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X = X(v), into another one, Y = Y (w), that is, there exists a constant C such that
|Hf ||y < C||fllx for every f > 0 and f € X. Then, necessarily,

Z0,2)
v

)

(1.3) sup HX(.%@O)”YH
0<x<oco X’

where X' = X'(v) is the associate space to X (see Section 2). Thus, naturally,
as first observed in [6], the collection of all pairs of weighted Banach function
spaces (X,Y) can be divided into two subclasses; one containing those pairs
for which (1.3) is sufficient for the boundedness of the Hardy operator, and
another one containing those pairs for which it is not. Following [6], we say
that a pair of weighted Banach function spaces (X,Y) belongs to the
Muckenhoupt category if the condition (1.3) implies the boundedness of H
from X to Y. In [6], the compactness of the Hardy operator from X into Y
was characterized for pairs of weighted Banach function spaces belonging to
the Muckenhoupt category.

One of our main goals in this paper is to characterize compactness of the so-
called Hardy operators involving suprema. These are operators which, aside
from integration, involve the operation of taking a pointwise supremum. More
precisely, we shall work with the operator T, ;, which is defined for a pair of
given weights u, 2 on (0, co) (that is, measurable, positive and finite a.e. locally
integrable functions on (0, c0)) at a measurable function f on (0, oc) by

B ()
Tur ) = sup 5

[1f6neds, te© 00,
0

¢
where H(t) := [ h(s)ds.
0

Operators of this type have proved to be useful in several applications. For
example, it was shown in [3] that a sharp estimate of the non-increasing re-
arrangement of the fractional maximal operator of a given function can be given
in terms of such operator. This information can be in turn used to study the
action of the fractional maximal operator on classical Lorentz spaces. Further,
Hardy-type operators involving suprema have been found useful in the search
for optimal pairs of rearrangement-invariant norms for which a Sobolev-type
inequality holds ([10]). They also constitute a handy tool for characterizing the
associate norm of an operator-induced norm (see, for example, [15] or [16]). An
important role of the Hardy operators involving suprema in limiting interpola-
tion theory can be observed for example in [5], [7], [4] or [17].

However, while the boundedness of such operators on various weighted
spaces has been thoroughly investigated and comprehensive results were ob-
tained (see e.g. [3] or [8]), almost no effort has been spent in order to char-
acterize their compactness. In this paper we intend to focus on this problem.
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We shall present three principal results. The first one, Theorem 3.1, is a char-
acterization of compactness on weighted Banach function spaces of general opera-
tors whose range lies in the class of monotone functions. This approach is relatively
new and it is motivated by the fact that the Hardy operators involving suprema
constitute an example of a class of such operators. The characterizing condition is
given in terms of the absolute continuity of norm. This is done in Section 3.

The second main result is Theorem 4.6 in which we establish a necessary and
sufficient condition on a pair of weights in order that Hardy operators involving
suprema are compact between the corresponding pair of weighted Banach
function spaces as long as this pair belongs to a Muckenhoupt-type category
suitable for such operators.

Finally, in Section 5, we prove a characterization of the compactness of Hardy
operators involving suprema on a pair of weighted Lebesgue spaces. The in-
novative part of this result consists of the case which is not covered by
Theorem 4.6. We use weighted inequalities obtained in [8] and the techniques of
discretization and antidiscretization from [9].

2. — Preliminaries

Throughout the paper, we use the symbol 4 to denote the one-dimensional
Lebesgue measure on R. Let (2, u) be a totally o-finite measure space, M(Q, 1)
the collection of all z-measurable functions on Q whose values lie in [ — oo, o]
and M™T(Q, 1) the cone of all functions from M (£, i) with their values in [0, cc].
The characteristic function of a y-measurable set £ is denoted by y . By a simple
function we understand a finite sum of functions, each of which is defined as a
finite real multiple of a characteristic function of a set having finite measure.

We shall summarize some background material from the theory of Banach
function spaces. The standard general reference is [1].

A mapping p : M (Q, 1) — [0, 0] is called a Banach function norm if, for all
f50,fn, m=1,2,3,...),in MT(Q, w), for all constants a > 0, and for all y-mea-
surable subsets £ of Q, the following properties hold:

(P1) p(f) =0<f =0 p-ae;
(P2) paf) = ap(f);

P3) p(f +9) < p(f)+ p(g);

(P4) g < f p-a.e. = p(g) < p(f);
P5) fu 1f p-ae. = p(fu) 1 p(f);
(P6) w(E)<oo = plyg) <oo;

P7) wE)<oo = Ef fdu < Cgp(f),

for some constant Cy € (0, c0) depending on £ and p but independent

of f.
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For a Banach function norm p : M (2, ;1) — [0, 0o], we call a Banach func-
tion space the collection of all functions (as usual, any two functions coinciding u-
a.e. are identified) f in M(€Q, 1) for which p(|f|) <oo. We denote it by (X, p), or
shortly X. For each f € X, we define || f||x = p(|f]).

A function f belonging to a Banach function space X has absolutely con-
tinuwous norm in X if nlgrolc | fxz,||lx =0 for every sequence {£,},”; of u-mea-

surable subsets of  such that y; — y, u-a.e. on Q. The set of all functions in X
with absolutely continuous norm is denoted by X,. Provided X, coincides with X,
the space X itself is said to have absolutely continuous norm.

In a Banach function space X a subset Y of X, is of uniformly absolutely
continuous norm if, for every sequence {E,}, ; of u-measurable subsets of Q,
such that y5 — yy u-a.e. on Q, and each ¢ > 0, there is ny € IN satisfying

feY,n>no = |frg llx<e

If f € X has absolutely continuous norm, then to each ¢ > 0 there corresponds
0 >0 such that for every u-measurable set £ C Q with u(E)<J we have
| fxzllx <& We further define X to be the closure of the set of simple functions
in X in the topology given by the norm || - ||x. Then, one always has X, C X, and
X, and X, coincide if and only if for every set £ of finite measure, the char-
acteristic function y; has absolutely continuous norm.

If p is a Banach function norm, we define its associate norm p' at
g € MY (Q, 1) by

P9 = sup{ffgdu;f e MHQ,w),p(f) < 1}.
Q

Then p’ is a Banach function norm as well, and the Banach function space
X' = (X', p') determined by p' is called the associate space of X.

The definitions of “associate notions” imply that for a function g belonging to
the associate space X',

lgllx = supq [ Ifgldss £ € X, 1flx <1+,
Q

where ||g||x, = p'(Jg]) by definition.
For any Banach function space X and every f € X and g € X', the Hélder
mequality asserts that the function fg is integrable and

[ lsgian < 171xlgl
Q

We say that a function v is a weight if it is measurable, positive and finite A-
a.e. and locally integrable on (0, o).
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Let v be a weight. In a special case when the underlying measure space is the
interval (0,00) endowed with a measure v given by w&) = [v(t)dt for every

Lebesgue-measurable subset £ of (0, c0), we denote a Banacthunction space X
built upon this setting by X (v) and call it a weighted Banach function space. Note
that from the definition of a weight it follows that compact sets have finite
measure and hence their characteristic functions are elements of X(v). In what
follows, we shall work solely with weighted Banach function spaces.

For p € [1, oc] and a weight v we define the weighted Lebesgue space LP(v) as
the set of all Lebesgue-measurable functions f on (0, oo), for which the inequality
| £1l,.» <oo holds, where

(f |f(t)|pv(t)dt) when 1 < p<oo,
1F1lp.0=

0

esssup | f@)] when p = oco.

0<t<oo

It is a routine matter to verify that every weighted Lebesgue space LP(v) is
a weighted Banach function space, whose associate space is L” (v), where the
conjugate number p’ is given by

pil when 1<p<oo,
(A
P=9 when p =1,

1 when p = oo,

and that it has absolutely continuous norm whenever 1 < p <oo.
Each function f € LP(v) is p-mean continuous, which means that for every
& > 0 there exists a 6 > 0 such that for each 7 € R with || <J we have

[ 17+ — oy <e,
0

where f is defined by 0 outside the interval (0, co).

The study of compactness of operators on Banach spaces goes hand in hand
with the theory of compact sets in corresponding Banach spaces. The well-known
Kolmogorov theorem asserts that, for 1 < p<oo, a compact set A C LP(v) is p-
mean equicontinuous, i.e.

Ve>030>0Yf €A : |h\<5=>f Ift+ ) — FOPvbdt <&,
0

where f is extended by 0 outside the interval (0, co).
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3. — Compactness of operators having range in non-negative monotone
functions on weighted Banach function spaces

In this section we shall establish our first main result in which we characterize
compact bounded operators whose range lies in the family of non-negative
monotone functions on weighted Banach function spaces in terms of uniform
absolute continuity of norm. This class contains many important operators in-
cluding those involving suprema. An analogous approach was presented by
Luxemburg and Zaanen in [11] for integral kernel operators.

THEOREM 3.1. — Let v, w be weights on (0, 00). Let X = X(w) and Y = Y(w) be
weighted Banach function spaces equipped with the norms || - ||y and || - ||y,
respectively. Assume that Y, =Y. For a bounded operator R from X to Y,
such that Rf is a mon-negative monotone function for each f € X and
{Rf; feX,||fllx <1} C Yy, the following two statements are equivalent:

(i) the operator R is compact from X to Y;
(i) the set {Rf;f e X,||fllx <1} is of uniformly absolutely continuous
norm i Y.

Proor. — Assume first that R is compact. Consider ¢ > 0 and a sequence
{E,} of i-measurable subsets of (0, o), such that yz — x, 4-a.e. on (0, c0) (this
is in fact equivalent to the pointwise convergence on a set A C (0, oo) for which

[ w@®dt = 0). Since {Rf; f € X, | fllx < 1} is compact, there exist k£ € N and

(0,00\A
aset {g1,...,9x} C{Rf; f € X,|fllx <1} with the following property:

. &
Vg RS f € X |fllx <1} Fed{l,....k}: llg—gilly <5

According to the assumption, all functions in {Rf; f € X, || f|x < 1} have abso-
lutely continuous norms. Therefore, there is an ny € NN satisfying that whenever
n > ny, the inequality ||gixg, ||, < § holds for every i =1,... k. Thus,

| Rz,

< | Rf — 9z, ||y +||9ixz, &

e ¢
y < § + é =
where ¢ € {1,...,k} is chosen to satisfy |Rf —gilly< % Hence the set
{Rf; f € X,||fllx <1} is of uniformly absolutely continuous norm in Y.
Conversely, suppose that the set {Rf; f € X, | f|lx <1} is of uniformly ab-
solutely continuous norm in Y. Then for any # > 0, there exist 0 <a <b < oo, such

that || (R0 ly < 3 and [|(RF 2y < 3 for each f € X with | f]ix < 1. Hence

u n.on
sup [|(RDx00llv+ sup | B xeolly<s+5=n
”foﬁlu (OVG)HY Hf”XSlH @, )HY 2 2
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Set (Tf)(#) = (B ) D)y q,5)(#) for any f € X and t € (0, 00). It is enough to show that
T is a compact operator in order to obtain the compactness of R. Take an arbi-
trary ¢ > 0. Due to the absolute continuity of the Lebesgue integral we can find
ad>0 for which H)([C,d]|}y<s for every a <c<d <b such that d—c<J.
Consider a partition a = aqp <oy < ... <a,_1 <o, = b of the interval [a, b] with
o; —o;_g<oforalli e {1,...,n}. Denote I; = [o;_1,0;) fori € {1,...,n — 1} and
I, = [oty—1, o). Define the mapping S by

SHO =D min{RN (@i 1), RO}, ®, feX, te©,00).
=1

By virtue of the boundedness of R, there exists a constant c(R) satisfying
|1Bf ||y < c(R)|| fl|x for all f € X. Since Rf is non-negative and non-increasing or
non-decreasing function for each f € X, for arbitrary x € (0,00), ¥ € (0,x),
2 € (x,00) and f € X we have

BO@ = |1gally | RO@ 0y
< |lxally 1B 2y
< lgaally 1RSIy
< lzgaally c®lf U

or

RO@ = (1o lly | RO@0 |y
< lxwally 1B 20y

Hiwolly 1RSIly

<oy e @ £lx

<

respectively. For both cases of monotonicity we can thus carry out a common
estimate

rl

EA) < (min] 2.0y oy }) eI

Application to & = «; for any 7 € {0,...,n} gives
-1
Azenlly }) e®Iflx
-1
¥ ||X[b,2b>Hy}) cB®IIf lx-

(R)) < (min{|

< (]
Moreover, y;. € Y because I; C [a,b]. It follows from the preceding estimates
that S is a bounded finite-rank, consequently compact, operator from X to Y. For

en

gl
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f e X we get

1Tf = Sflly=

Rf oy — Y min{(Rf)e_1), (RF@:)} 1y,
i=1

Y
n

Z [Rf — min{(Bf)(e; 1), (Bf)ei) }]xy,

i=1

< |[Rf — min{(R)(oi_1), (RF)e) s,
i=1

Y

v
31 <D |[max{(RNGe 1), RA@)} — min{(RAi1), RO ||y
1=1
=Y RN — ROl
i=1

<e Z |(Rf (o) — (Bf )ot—1)]
=1
— ¢|(R(@) — (RAD)|
-1
< s(®B(@ + RN®) < e2(min{llgally [zmanlly })  c®IFIx.

by using the fact that Rf is monotone and the estimate for (Rf)(a) and (Rf)(b)
derived above. This yields
Sup ||Tf - Sf”Y <C(a? b,R)E,

[l fllx<1

where c(a, b, R) is a constant depending only on a, b and c¢(R). Hence we arrive at
the compactness of the operator 7' and so finally at the compactness of the
operator R. O

REMARK 3.2. — Let us present an example showing that without the as-
sumption that B maps all functions from X to the class of monotone functions the
statement of Theorem 3.1 is no longer true in general.

Consider weights v, w, such that v(t) = 1 for all ¢ € (0,00) and [ w(t)dt < oo.
0

The spaces L>®(v) and L'(w) are thus Banach function spaces. In addition, L (w)
has absolutely continuous norm by virtue of the Lebesgue dominated con-
vergence theorem. For any f € L*>(v) we have

[ 1ropewar < [ wodtf..,.
0 0
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Set
Rf =1f], feL>).

Then R is a well-defined bounded operator from L>(v) to L!(w), which assigns a
non-negative but not necessarily monotone function from L!(w) to each function
from L>*(v). We claim that {Rf; f € L), | f]l.., <1} is of uniformly abso-
lutely continuous norm, however R is not compact. Indeed, take a sequence {£,,}
of /-measurable subsets of (0, 00), such that vz — x, 4-a.e. on (0,00) and & > 0.
Using the Lebesgue dominated convergence theorem, we find 7y € N such that
for all n > ng and all f € L*>°(v) with || f]|., < 1,

15, I = [ 25,17 OLott < [ 15 ooyt <e.
0 0

Hence, {Ef; f € L), f]l,, < 1} is of uniformly absolutely continuous norm.

By the Kolmogorov theorem, if {Rf; f € L>(v), || f]|,, < 1} was a compact set in
L'(w), then it would be mean equicontinuous, which means that it would satisfy

Ve> 030> 0V € (BF: 7 € Lo(0), [y < 11 ¢

hl<o= [ lgtt+h) - gttt <e,
0

considering g defined by 0 outside the interval (0,0c0). To show that the set
{Rf; f € L), || flloon < 1} is not mean equicontinuous, take ¢ :% wt)dt
’ 0

and for each ¢ > 0 put
Jo@) =y U (@k+ngk+2))] ®), te(0,00).

keNU{0}

Then f5 € {Rf; f € L), || fl., < 1}, and for h = g we get

[ 1t 1~ pioitore = [ oyt > e
0 0

Therefore, the set {Rf; f € L>(v),]f||.., < 1} and consequently the operator
are not compact.

4. — Compactness of operators involving suprema on weighted Banach
function spaces

From now on, we shall focus on the operators involving suprema. In this
section we shall present a result in the spirit of [6], where Hardy-type integral
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operators were treated. Given a mapping involving supremum, we will de-
termine a class of pairs of spaces, for which we can prove a general necessary
and sufficient condition for this mapping to be compact. Similarly to [6], the class
of couples of spaces is related to the boundedness of the operator under con-
sideration and the characterization of the compactness of the operator is ex-
pressed in terms of the norms of weights that occur in the definitions of the
spaces and the operator.

Before we will come to the principal theorem, we shall fix some notation,
recall certain definitions and state and prove some auxiliary assertions.

NOTATION 4.1. — In keeping with notation of Section 2, M((0, co), 1) denotes
the set of all Lebesgue-measurable functions on (0, c0).

For a weight & we put
t
(4.1) Hp) = f hs)ds, t e (0, 00).
0

Let u, k be weights, let H be given by (4.1) and let I C (0, c0) be an interval.
We define

_ u(t)y; (1)
—H ALY
ur(t) ® t gsru<poc Ho

It is obvious that %;(t) > u()y; () for every ¢ € (0, c0) and that the function % is
non-increasing. We abbreviate

t € (0,00).

u®) = H(t) sup U 0,000

, t€(0,00).
t<r<oo H(T) ( OO)

We use the symbol 77 to denote the mapping given at a function f by y, 77,
where T is some mapping defined at f and I C (0, c0) is an interval.

DEFINITION 4.2. — Let h be a weight, let H be given by (4.1), and assume that
H(t)< oo foreveryt € (0, 00). Given another weight u, we define the mapping T, ),
at f € M((0,00), 2) by

(4.2) (T f)E) = sup o

sw s f F)hs)ds, e (0, 00).
<r<oo 0

Let I C (0,00) be an interval. For f € M((0,00), A) we set

(4.3) (Tup 1)) = sup U0

g e f LFS)|s)z(s)ds, t e (0,00).
<r<00 s
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One can easily see that 7, f is a non-negative non-increasing function for
each f € M((0, ), A).

Let’s have a look at a consequence of the boundedness of an operator
Ti,h,l : X() — Y(w).

LEMMA 4.3. — Given a pair of weights v,w, let X = X() and Y = Y(w) be
weighted Banach function spaces equipped with the norms || - ||x and || - ||y,
respectively. For an interval I C (0,00) and another pair of weights u, h such
that the function H from (4.1) satisfies H(t) < oo for every t € (0, 0), we define
the operator T, 5,1 by (4.3). If the operator Tfm, ;X — Y is bounded, then

h
X(O,x)%[; < 0o0.

ur(e) U
44 H() H
(4.4) Smléllo 20,041 H(x) ool HHY|

X/
PROOF. — Since T{A nrls bounded, there exists a constant c(T{tﬁ 1) > Osuchthat

| 72.8] < et plfly. £ ex.

Take f € X with || f|lx <1 and « € I. Then for ¢ € (0,x) NI we have

(Tu,h.]f)(t) = sup M(T)XI(T)

< H(r) f | f©)N(s)x (s)ds
<Tt<o0 0

w(D)y (1)
= 2% TH@

f | f(s)|I(s)y (s)ds
0

- roran % Of | f()Nh(s)y (s)ds

_uy(x)

) f |f($)|h(8)y (s)ds,
0

while for ¢ € [x, o0) N I we have

(Tyupif)t) = sup u(@)y; ()

t< H(r) f|f(8)|h(8))(1(8)ds
<r<oo )

w(0)y; (1)
= o TH®@

[ 1@ sas
0

_uy(d)

=T f £ (), (s)ds.
0
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Hence,

C(TI D= C(Tlhl)”f”X > H hIfH = H/(O ) ,h,lf J’_X[%OO)TZILJL,IfHY

By the definition of the associate norm, passing to the supremum over all f € X
with | f]ly < 1 gives

In conclusion, we take the supremum over all x € I to obtain (4.4). O

20.2%1 Tund [+ Kooy Xr Tun 1 f
Y

X0,0X1 H((ac)) + X, OO)XIHH f |f(8)|){1(8)%v(8)d8

h
’ <c(T h,)

w@) o u
X(o,x))(lm +/{[ac,oc)/{1ﬁ ; X©,0)X1

Lemma 4.3 shows that (4.4) is always necessary for the boundedness of
T{W ; : X(v) — Y(w). It turns out that for some spaces it is also sufficient, while
for the other spaces it is not. This justifies our following definition.

DEFINITION 4.4. — Let v, w,u, h be weights such that the function H from (4.1)
satisfies H(t) < oo for every t € (0,00), and let the operators Ty and T, ;1 be
defined by (4.2) and (4.3), respectively. We say that a pair of weighted Banach
Sfunction spaces (X,Y) = (X(v), Y(w)) belongs to the category M(T, ;) and write
X,Y) € M(Typ), if for each interval I C (0,00) the condition (4.4) implies that
the mapping Tfhh, ; s a bounded operator from X to Y and

su  uy(r) h
erI) X©0,0)X1 —H( ) X(o,x)XI vy
(4.5) < sup{||T' hIf”Yaf € X, ||f||X <1}
ur(x) Ur h
< Ksup||y -t o (r —\

where K > 1 is a constant independent of v, w, u, h and I.

Next, we shall need an auxiliary lemma that will turn out to be of a crucial
importance in the proofs of the main results.

LEMMA 4.5. — Let v, w,u, h be weights such that the function H from (4.1)
satisfies H(t) < oo for every t € (0,00) and let X = X(), Y = Y(w) be weighted
Bamnach function spaces endowed with the norms || - ||x and || - ||y, respectively.
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On X', the associate space of X, consider the norm || - ||x. Suppose that

u(x) i h
4.6 li h 0
o a0 oot || H@) O +HX[% 9y 2% 0.2) v
and

() T L
4. li h o,
a0 g [ g fya] 0
Then

w(x) W n

4.8 sup || 2. I h, e
( ) 0<x£):>cHH(x)X(0’c) HX[%‘, )HYH ,U/(O‘gc) .

ProoF. — Conditions (4.6) and (4.7) give existence of & € (0, c0) and b € (0, c0),
such that a <b and

(4.9) oiﬂlﬁa Iz;((x))/(() ) +H/[xa) Y‘ %X(O,w) X/S 1
and
Denote
i h
HH( )£ 0.2) +HXx:>o) , 0. v
We note that

sup P(x) = max{ sup ¥(x), sup ¥(x), sup ?’(ac)},
0<xr<oo O<x<a a<x<b b<r<oo
and we shall estimate the supremum of the function ¥ over each of the intervals
0,a), [a, b] and (b, co) separately.

For a > 0 we have

h

sup P(x) = sup 2 X0.0)
b

O<x<a O<r<a

(x) W U U
%}ao,@ + g/ eo + g lab] + b ,

h

< sup —X0,2)
v X

O<x<a

u(x) U
%X(O,x) + Hl[x,a) v

h
5%(0,%)

h
+ sup 2 X0
X

O<x<a

+ sup

X O<x<a

n %
H}{[a,b] v HX(b,oc) v
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u(x) U
%X(o,m + PUED) ;

L +
v%®@>X

h

< su —
p 7))((o,ac)

O<x<a

X/

h
,UX(O,(L) ¥

77 Xlab] 7 X (b,o0)
H | H" 0|,

h

< sup 2400

O<x<a

u(x)
%X(o,x) + ﬁ%[m,a) v

X/

h
()

h
v X0,a) p

3 Nk

H/{[a,b] v HX(bA,oo) v o
Due to (4.9), the first summand is less than or equal to one, and due to (4.10)
evaluated at « = b, also the last summand is less than or equal to one. As % is non-

increasing, the middle term can be treated as

h
5}((0,@)

U
HX[a,b] v

u(a)
H (a

HX[a.,b]Hy

— <OO7
HX(O,G)HY

X(O a)

where the last but one estimate follows from (4.9) evaluated at x = a, while the
last one then stems from the properties of w, namely that w is locally integrable

and positive J-a.e. on (0, c0). Thus, sup ¥(x) is finite.
O<x<a
As for the interval [a, b], we write

h
;l((},m)

u(x) u(x)

u U
Sup T(x) - Sup H(x)X(Oa) +H(x)){[ax) +H}/’L’b ﬁ%(boo) y

a<x<b a<x<b

X

u(a)

u
< sup H(a)y(Oa)+HX[ab A0
Y

a<x<b

51(0’90)

X/

h
v vX(O,x)

h
,UX(O.x)

ula)

m% 0,a) v

U
< sup ﬁ){ [a,b]

a<x<b

+ sup

X a<x<b

X/

+ sup

a<x<b

5){(0,.@«)

. d

U
HX(b,oc) v

w(a)
m%(o,a) v

u(a)

H( X(o b)

h A,
” ){(O‘b)

Y
X’

U h )
HX(b,oo) ol X0,b)

where we again used that % is non-increasing. Thanks to (4.10), the last term is

less than or equal to one. Inequalities (4.9) and (4.10), respectively, yield
h

ia) _ -1

H(a) = HX(Oa)HY

X(O,a)
X
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d _
an L _ 1
EX(O,b) <
Hence, X Y
sup ¥(x)
a<x<b
@X«J,a) B %boo +HX<0a>HY h%«),a) ) _1+1-
v H*! x v

Because all the Weights are positive 1-a.e. on (0, co0) and locally integrable, the
expression on the right hand side of the above inequality is finite.
Concerning the interval (b, c0), we proceed as follows:

sup ¥(x) = sup ‘ ()/C<0b]+u(%)/(bw+ X[mc) h){(()x)
b<x<oo b<x<oo H(x) H(%) H “xr
sup ) X(M)
b<x<ooH(9C')
T Hmm))ﬂb v>+;l[x ) éX(M)
b || HG@) £00 T e |y 0]

The expression ||y ||, makes sense because (1 = %00 + X a0d 2 €Y
according to (4.9) and yp,;; € Y as [a, b] is compact. The latter term of the above
estimate is exactly the formula from the left hand side of (4.10), therefore it is
less than or equal to one. To deal with the first summand, pick an arbitrary
¢ € (b, 00). Since w is positive 1-a.e. on (0, 00) and locally integrable, there is a
constant 0 <L < oo, such that

xonlly<
Using this fact, we arrive at
sup @HX(M]H @Xw 0)
b<x<ooH(x) P |l o
=max<{ su U@ su @)
L «13 H@w) X“”) e Hw) o X
< max H;{ | hy L sup ww) é;{
= H(b) O [[p 2Ol S 2o H @) Y||p Oal|
h () h
SmaX{H(b) oanlly 2400 X/L WP Hex )||X<b olly X0 X{}
< max HX«Jb]H hX(O) L sup HX<b )| hX(o )
= H(b) Y|y “X, H() Dy ||y~ 02|
B u(c) -1
<max < [zl X(0a> ||/<0b]H H(C)X<bc>+HX[coo> Loy
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where the last inequality is derived from (4.10), the monotonicity of % and the

estimate for T (a) carried out above. Again, as we suppose that weights are po-

sitive J-a.e. on (0,00) and x4 € Y, the maximum, which we focus on, is finite.
Thus also sup %(x)<oo. This, finally, shows (4.8), as desired. O

b<x<oo

Now we are in a position to present a characterization of the compactness of
Ty from X = X(v) to Y = Y(w) for any couple (X, Y) in the category M(T, ;).

THEOREM 4.6. — Let v, w,u, h be weights such that the function H from (4.1)
satisfies H(t) < oo for every t € (0, 00), and let the operator T, ;, be defined by (4.2).
Let X =X) and Y = Y(w) be weighted Banach function spaces, such that
X,Y) e M(Typ) and Y = Y, and let them be equipped with the norms || - ||y and
| - ||y, respectively. Then T\, ts a compact operator from X into Y if and only if
both of the following conditions are satisfied:

() "

4.11 li =0
( ) al%‘{r Oigga H(.%') 7(0 ) HY[T a) X(O,x) v
and

(@) i h

412 lim su o) T 77 X200 — 0.2 0.

( ) b0 b<x£)oo H(x))((b) HX[ ,00) v ,U%(O,,) .

PROOF. — Necessity: For contradiction, suppose that T, is a compact op-
erator from X to Y, but (4.11) is not true. Then there exist ¢ > 0, a decreasing
sequence {a,} C (0,00) with lim a,, = 0 and points «,, € (0, a,), such that

n—o0

u(y)
H,) Xm0 +Hlm @)

i >
Alv*em| 7

From the definition of the associate norm and by the absolute continuity of the
Lebesgue integral, there exist a sequence {f,} C X with || f,,||y < 1 and numbers
B, € (0,x,) satisfying

f ful®) (s > = f fa@)(s)ds > 4 Hhmxn)
A, X

Define the functions F, = f.x 4 .- Clearly, the lattice property of X gives that
these functions lie in the closed unit ball of X. Since {a,} is decreasing, for
every n € N we can find mgy € N, such that for every m > my the inequalities

1 o
<P, and Ix g, Lundnlly < 3¢ hold. The latter inequality is guaranteed by

the absolute continuity of the norm of the function 7, ,F",, which follows from
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the assumptions that 7, : X — Y and Y = Y,,. Now, for m > my and ¢ > x,,
we get

(T i Fo)() = tgsipw e f i )ls, o (S(s)ds
B u(r)
B t<r< 00 H( )

f @ lhs)ds

u(t)

]—](t) f | fm(8)|R(s)ds.

m

Thus,
||Tu,th - Tu,th”Y
> HX(O,a,,,)(Tu,th - Tu,th)HY
2 HX(Ovam)Tuthm ‘ ’ Y_ HX(O,(M,,,) Tu,th H Y
> HX(O,xm)Tu,th(xm) + l[xwﬂm)TuJ'meHY

— |t 0amy TurFnl|y

x"b
() Z
= X(O,xm) H(m ) f |fm(s)|h($)ds + X[%'m ) H[;I‘ |fm($)|h($)d$
m Y
- ||X<03a'"7,) Tu‘th H Y
w(x,) u h 1
H(ﬂ'/' )X(O ) + HX Lo, Cl) Z@@'m) X - gé‘

Z
1
&> 0.
8 &>
We have used the fact that 7', , maps X into the class of non-increasing functions
and the definition of {F,}, a, and x,. So, we have found the sequence
{F,} c{f € X;||fllx <1} such that none of the subsequences of {7, ,F,} can
be Cauchy, thus neither convergent in Y. This is a contradiction with the com-
pactness of T .

The proof of the necessity of (4.12) is analogous.

Sufficiency: Given an interval I C (0, 00), set

B WDy (D) [
(T2 PO = sup T Of F@IEds, f€X.te 00



COMPACTNESS OF HARDY OPERATORS INVOLVING SUPREMA 2317
Observe that for 0<a<b<oo, f € X with || f||x <1 and ¢ € (0, 00) we have

(IO )0+ (TEF)) < (Tah)O) < (T, 0 + (T8 1))

Wja,00)»
b b,00
F TN + (T8 ).
So,
0< Tyuf =T f =T <TI0 F4+ T f

W(0.a) >
(a pointwise inequality). In order to establish the compactness of the operator
Ty 5, we shall prove that for an appropriate choice of ¢ and b, the function on the
right hand side of the inequality lies in Y and has small norm and that the
mapping T<0 a) Tq[fhb is, under our assumptions, a compact operator from X
toY.
Condition (4.11) guarantees for each ¢ > 0 the existence of a € (0, ) such

that

() % h
4.13 Sup || —x + = — <e.
(4.13) 0<x1;’a He) /00 + Fliza vam”” v
Hence,
U0,0) () U(0,0)
su . X +— ) <e,
vl H@) A0 T Ao [l Xo]|

sinece the function in the norm of Y is at each point less than or equal to
the function standing ibidem in (4.13). Because the pair (X(v), Y(w)) belongs
to the category M(T,,), the operator 7% T;Ohazo o X — Y is bounded

Uoalt

and sup{|| T\t flly: f € X, || flly <1} < Ke, where K >1 is a constant in-

dependent of v, w, u, k and a.
By (4.12), for a given ¢ > 0 we find b € (a, oc) such that

u(x)
4.14 sp 2@, LB

— . <¢
2 X0.2) o

where a is from the previous paragraph and corresponds to ¢. Then also

U(p,00) () U(b.00)
H(x) A(b,x) + H 7 Alx,00) X(b x)

<é.

X

(4.15) sup

b<r<oo

Therefore T;bﬁgoo) : X — Y is a bounded operator from X to Y and

sup{ | 7 vih oo fllys £ € X, [If x < 1} < K,

where K > 1 is a constant independent of v, w, u, h and b. For f € X with
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Ifllx <1andt e (0,c0), we estimate

b
T < 16O [ 1F@Nbs)s + X0, 0
0
u(t)

(b,00)
< Xo, oo)(t)H(t) H X0.) X/+(Tu b0y D).

With reference to (4.14) and (4.15), the function given at t € (0, 00) by the ex-
pression on the right hand side is an element of Y. In agreement with the lattice
property of Y, so is the function defined on the left and

| 78:21]| = @+ Koe.

w,h

To summarize our achievements so far, we have found a € (0,00) and
b € (0, 00) corresponding to a given ¢ > 0, such that a <b and, for any f € X with
IIflx <1, the function

u hf - (0 a)) hf Tiahb]f
falls into Y and

0 b
| Tunf =192 o f =T <Ce.

where C > 0 is a constant independent of v, w, u, h, a and b.
Now, we are left with the proof of the statement that the mapping

is a compact operator from X to Y.
The function X0.0) is in Y, because, according to (4.13),
any f € X and ¢ € (0,a), we can write

(Tu[a_oc),hf)(t) = TypHa) < ||){(0,a)’|;1 H X(o,a)(Tu,hf)(a)HY
< |xoally | Tunflly< lxonlly «Tunllflx

H(( )) Xo.a isinY. For

Here, ¢(T,;) >0 is a constant satisfying || T,,.f|,< c(Tup)lflly for every
f € X. This conclusion is based on the monotonicity of the function 7', ; f and the
boundedness of the operator 7, : X — Y following from the assumption that
X,Y) € M(T) and from Lemma 4.5 in combination with (4.11) and (4.12).
Clearly, the expression standing before || f||y at the end of the formula is, due to
the fact that w is positive -a.e., a positive and finite constant independent of f.
We obtained that the mapping T(O ) ok is a bounded finite rank, hence compact,
operator from X to Y.
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Since the interval [a, b] is compact, the function y, ;; belongs to Y. Further,
we use the boundedness of the operator 7, : X — Y again and the lattice
property of Y to arrive at the observation that T%’l is a bounded operator from X
to Y. Obviously, the image of each function f is non-negative on (0, o) and non-
increasing on [a, b]. Since the features of the operator Tq[f,’f’] meet the require-
ments imposed on operators in formulation of Theorem 3.1, to show the com-
pactness of this operator, we can apply the method which we used in the proof of
Theorem 3.1 after we had restricted the problem to an interval [a,b]. To be
concrete, thanks to the assumption that ¥ = Y, for an arbitrary » > 0 we find a
decomposition a =og<oy... <o, =b such that |y, ,,.lly<n for each
1€{1,...,n}.Set I; = [o;_1,0) for i € {1,...,m — 1} and I,, = [ot—1, o0, ]. Define

SHO = Tun Ny, feX, te©o00).

i=1

Then S : X — Y is a compact operator (for more details see the proof of Theorem
3.1) and via the same process as in (3.1), used for appropriate operators, we
obtain

sup
Iflx<1

TP f = Sf|| <T@ < nllzowly e,

where the constant ¢(T),;,) > 0 satisfies || T f||y < ¢(Twp)|| fllx for every f € X.
So, the operator Tl[:’,f] is compact from X to Y.
To conclude, note that we have shown that the mapping TSI“:C s T;’f;lb] is a

compact operator from X to Y, roughly speaking, close to the operator T, ;. This
gives the compactness of the operator T, as desired. O

REMARK 4.7. — The statement of Theorem 4.6 remains true if we replace the
condition Y = Y, with either one of the following assumptions:
@) Tu,h(X) C Yy ®
(b) the weight w satisfies [ w(s)ds<oc for each x € (0,<), Y, =Y, and
i | 7 70| y= 0 °

X—00

The proof can be carried out along the same lines as that of Theorem 4.6,
therefore it is omitted.

5. — Compactness of operators involving suprema on weighted Lebesgue
spaces

In this final section, we will consider weights u, & on (0, co) such that H(t) < oo
for every t € (0,00) and u is continuous on (0, c0), and the operators 7, and
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Ty 51 defined by (4.2) and (4.3), respectively. We shall characterize the weights v

and w for which 7, , is a compact operator from X(v) to Y (w) in the special case
X
when X and Y are Lebesgue spaces. We shall assume that fv(t)dt<oo and
X 0

f w(t)dt < oo for every x € (0, 00). Under such circumstances, the boundedness
0

of Ty from LP(v), 1 < p<oo, into LI(w), 0<q<oo, was studied in [8]. In [8,
Theorem 4.2], it was showed that for p < ¢, amapping 7', j, is a bounded operator
from LP(v) to LY(w) if and only if

sSu ’M +E E <00
vl H@ 00 T R0 =00
and that
su H@ _’_E E
O<ﬂc£)oc H(x)X(O"x) HX[&OO) qw ,UX(O‘W) P
< sup{|| Tusfl, :f € V@), |1 £],,< 1}
<cp,@ su HM +@" “
s cp,q 0<x£)oc H(x)/((O,x) H/([x.oo) o ,UX(O.x) o

The method of the proof however works equally well for the mapping Té i
where I C (0, 00) is any open interval. This is so since we have no requiremehts
on the integrability of weights over (0, co) and that a weight is surely positive and
finite 4-a.e. on I and integrable at the left endpoint of 1. If I C (0, c0) is such that
one or both of its endpoints belong to I, both the equivalence (4.4) to the
boundedness of T{L,M : LP(v) — LY(w) and the inequality (4.5) follow from the
continuity of the Lebesgue integral and the continuity of u. So, we have
(LP(), Li(w)) € M(Ty ) for 1 < p < g < oo. Hence, the case p < q in the main
theorem of this section is covered by Theorem 4.6. Nevertheless, Theorem 4.6
does not answer the question for g<p. We shall bring a complete character-
ization of the compactness of T, ;, from LP(v) to L9(w) for any 1 < p,q<oc. The
point of departure is the result about boundedness introduced in [8].

DEFINITION 5.1. — Let [ € 7 U{—o0} and J € 7, U {oo}, J > I. An increas-
mg sequence {xk}Zj C [0, 00] s called a covering sequence ifklim a =0 for

I=—o00,x;=0forlIe?7, klim X = oo for J = oo and xy = oo for J € 7.

Consider a € (0,00), I e NU{0} and J € NU{oo}, J > 1. We say that
{xk}ij C [0, a] is a sequence convenient for the interval [0, a] if it is a decreasing
sequence satisfying x; = a, ; = 0 for J € IN and lim x;, = 0 for J = co.

k—o0
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NoOTATION 5.2. — For 1 < p<oo, 0 < a<f < oo and weights £, v, we denote

B I
( f [(s)]" [h(s)]ﬂ’ds) when 1<p <oo,
) h(oC ﬁ) =

h(s)

esssup——

when p = 1.
a<s<p U () P

The symbol ¢, (o, f) does not reflect its dependence on v, but we shall use it only
in context with a fixed v, where no confusion should occur.
If not otherwise stated, we stick to definitions and notation from Section 4.

LEMMA 5.3. — Let 1 < p, q< 00, ¢<p, and let u, h, v, w be weights, such that

u 1s continuous on (0, 00) and f hb)dt < oo, f v(t)dt < o, f wt)dt < oo for every
0 0 0

) 1
x € (0, 00). Define r by — i 2_7 Suppose

o fae) a) 5 Al
(5.1) ?EI}) Zk:(x;[l mm{H(ack)’%} W(t)dt> [opn@r_1,2)] | <o,

where the supremum is taken over all covering sequences {xy}. Then for every
&> 0 there exist a € (0,00) and b € (0, 00), such that a<b and

r

. 1
7 m

Lk—1 _ _ q q
(5.2) ?uﬁ) Z(f mm{z(gci)),l%} @U(t)dt> [Gp,h(wkﬂ,xk)y” <e,
X k X

k+1

where the supremum s taken over all sequences {x;} convenient for the interval
[0, al, and

1
>

O (aw) am) ' \
(5.3) ?51;1[}) Zk:(f mm{H(xk)’H(t)} w(t)dt) [opn@r_1, 2] | <e,

r

Lr—1

where the supremum is taken over all increasing sequences {xy, }ﬁi T withxr = b for
Ie Zowklim a = bforl = —coanday = coford € N(wklim xp = ooford = oc.

Proor. — If (5.2) was not true, there would exist an ¢ > 0 such that, for each
O<x< oo,

1
v

Tp—1 _ _ q q
(G4 sup Z( i mm{gﬁ’g%} w(t)dt) o n@iin @] | =2,
X5 A

r

Lh+1
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where the supremum would be taken over all sequences {x;,} convenient for the
interval [0, ]. But then we would find a covering sequence {y;} for which

Yk+1

() ct) q ,
Xk:(yf mi {]@;(‘Zk) ;Ll(t)} (t)dt) (0001, Y1)] =

k-1

and that would lead to a contradiction with (5.1). Indeed, here we perform the
construction of such a covering sequence {y;}. Set x; = 1. According to (5.4),
there is a sequence {xk}k ~' convenient for the interval [0,a;] with the
property

xllc—l _ 1 — q ! ~\ T
Z f mm{qul((fﬁljlc))’l%} w(t)dt [apﬁh(oc,lﬁl,ac,lc)]rz (g) i

k

k+1

1
Take the smallest possible K; € IN such that ac}(l <3 and

r

q

K xllcq g B q -
1 . u(xk) u(t) ) o -
; lf mm{lrx}c)»m} w(t)dt [apﬁh(ackﬂ,ack)] > o

If Ky <Jq, put 22 = x}{l. In the situation when K; = Ji, thus m}{l = 0, there must

1
be some xz € (x}{l ,min { 5 x}{l_l}), for which the inequality

q

2 (el am)” v
f mm{ H(é),% w®dt | [opn@p.1,2p)]

k=2

r
1

K2 . 11(96}{171) a(t) q 1 . ET
+ f mlh{%’%} w(t)dt [ap,h(acmel_l)] > o

L2

holds. Define yy = co and y;, = x{k for k= —K; +1,...,—1. Assume that we
have already built a sequence {yk}zwizn k. and that we know a point
N j=1"

. 1 .
Tyl € (0 min { n—Jrl’x%fl})' Like in the case of » = 1, we find a sequence

k J, . .
{ 7+1 1""! convenient for the interval [0,,41], a natural number K, ,; and a

. 1 D o
point &, .2 € (0, mm{ T3 }‘{ﬁl 1}) satisfying
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r

Koa—z [ % = omtly ? !

(S . u('%.k ) u(t) n+l ,n+1\1"

kz:; n’[l mm{ Ha ' H(t)} wt)dt | [opny, 2]
X

k+1

r
n+1 q

“Kpi1-2 = n+1 _ q
e ) )
+ min $,7 w(t)dt
J o )

L2

r gr
n-+1
X |:0-p,h(xn+27 xK,Hl—l):I > W :
We continue our construction of the required covering sequence by setting

_ ntl _ -
y}ﬁ,n,ZLI K Xp for k = n+l 17 ey 1.

This way we obtain a sequence {yk}gz « C (0,00], which is increasing with

Yo = oo and klim Y = 0. Furthermore,

Yk+1 é
[y u@®)? .
;(wfl mm{H(yk)am} w(t)dt) (611, "= o0

So, the described sequence {y;} is a covering sequence implementing a con-
tradiction with (5.1). An analogous reasoning leads to (5.3).

THEOREM 5.4. — Let 1 < p, g <oo and assume that u, h, v, w are weights such

X x x
that w is continuous on (0,00) and [ ht)dt<oo, [v@d)dt<oo, [ w(t)dt<oo for
0 0 0
every x € (0, 00). We define the operator T,,;, by (4.2).

(i) Letp < q. Then T, ts a compact operator from LP(v) to Li(w) if and only
if both of the following conditions are satisfied:

B q x a , q %
(65 Jm sup ((%) f w(t)dt + f (%) w(t)dt) G,1(0,2) = 0
+ <r<a 0 %

and

1

. a@\? Eram\? !
(5.6) 17113310 . <s;1£)x<(%) ! wt)dt + xf (%) w(t)dt) ap(0,2) = 0.
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. 1 1 1 .
(i) Let g<p. Define r by — =——— Then T, is a compact operator from
LP() to LI(w) if and only if p

. 1
T b

Ch+1

_ N i
(6.7) ?up}) Z( f mm{z((ﬁi)),l%} w(t)dt) [op,h,(ﬂck_l,xk)y" <00,
R k L1

where the supremum s taken over all covering sequences {xy}.

ProOF. — Part (i) is a direct consequence of an application of Theorem 4.6 to
the couple (LP(v), LY(w)), as explained at the beginning of this section.
We shall show (ii). So, in the remainder consider only ¢ <p.

Necessity: Since T, 5, being a compact operator, is also bounded and formula
(5.7) coincides with the condition equivalent to the boundedness of the operator
Ty (see [8, Theorem 4.2]), the necessity of condition (5.7) for the compactness of
the operator T, is obvious.

Sufficiency: We divide the proof into three steps. In the first one we
consider a slightly modified operator and show, roughly speaking, that all
functions from the image of the unit ball of LP(v) are small near 0 in the sense
of norm in L%(w). The second step is devoted to an analogous situation in
which 0 is replaced by oco. In the third step we derive the conclusion using
Theorem 3.1.

STEP 1. — Let ¢ > 0. By virtue of condition (5.7) and Lemma 5.3, there must be
an a € (0, co) satisfying
1

» i

r

Lr-1 _ _ q q )
(5.8) ?ul? Z( f mm{g[((gj;;)),%} w(t)dt) [ap,h(ackﬂ,gck)]’ <e,
Xp &

Ck+1

where the supremum is taken over all sequences {x;} convenient for the interval
a
[0, a]. Because f w(t)dt <oo and the Lebesgue integral is continuous, there
0

exists a sequence {w;},-, convenient for the interval [0,a] such that
L

[ w®)dt =27% [ w(t)dt for each k € .
0

Lhet1
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Taking f € L”(v), we have

< q
‘ - f [K 17;(( )) f If(S)Ih(s)ds] w(t)dt
0 ‘L'<(l

q
=2 f by ;LI((T)) f |f (S)Ih(s)ds} w(t)dt

0,a)
Tu UR(R a)f

q
<3 f sup H( ) f | f(s)h(s)ds} w(t)dt

L xk+1<f<a

N (1) !
U\T

> m{ [p e f O } }

x 27k f wt)dt
0

Mg

q
k+1 w(@) . "
|ix <T<%? 1H( )f |f(8)\h(s)ds 2 !@U(t)dt

T
I
.

e )flf( )|(s)ds i 2- "fw(t)dt

9”<r<ﬁcz IH( ) = ]

|
.Mg

I
o

[ - 14
(1)

Ms{ D e f f)hs)ds| 272 f w(t)dt

|

IS
||
)

sup O
€<t <I9)0H H( )

Il
.gg

T
o

f |f (S)Ih(S)ds] f wt)dt

Liv1

q
u(z;)

HGz) f |f (S)Ih(S)ds] f wt)dt

Ziy2

IN
oo
‘M8

Il
o

<clg) i

H(z;)

Ziy2

q
e | If(s)h(s)ds} f witydt

Ziv2

q zi
u(2;)

H(z)f |f(3)h(3)d6‘] fw(t)dt

+clq) i
1=2

=: 87+ 83,

Ziv2
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where z; € [x;,2;_1) and

u(2;)
H®;)

for each ¢ > 2.
Hélder’s inequality yields

f | £($)|(s)ds > 2%<Sfli}; 1?[((?) I][ | f(s)|(s)ds,

1

f [f(®)|h(s)ds < Up,h(zi+2azi)( f |f(s)|pv(s)ds) .

Ziy2 i+2

In view of this, we have
179
P

S? < )Z H( )ap h(zl+2,zl)( f | f(s)|%(s)ds> f w(b)dt.

Rit+2 Rit2

Applying Holder’s inequality for sums with the exponents g and g, we obtain

1
p

< (u@)\ [ [ % "
St < e(q) ( ) wt)dt | (opn(zise,2i)
! 12:2: H(z;) (z£ ) (O eir2:20)

q

(Z f | f(s)|pv(s)ds)

=2 2it2

PNV |
- ) Z( [ (5) w(t)dt) (Gpadein, )

=2 \ziy

q
¥

q

x (f: [ f(s)|pv(s)ds) .

=2 Ziy2

We can rewrite the first sum on the right hand side as follows:

o) q 27
> ( f @1((2)) w(t)dt) (01 (2is2.2)"
=2 Rit2 Zi
(e ! o
_Z f H(zs;) w(t)dt (O-P-,h(ZZHZ,ZQl))

i= 22i42

r

00 22041 ‘ g L
+ Z ( f (%) W(t)dt) (Gp,h('z21+3, 22i+1))r.
1+

=1 \ 2113
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We set 29 = @ and z; = a. Then both the sequences {zz;};~, and {z;1};-, be-
come convenient for the interval [0, a]. In addition to this,

00 2i . q g |
Z( f <;LI((ZZ))> Mt)dt) (0022112, 22))"

=1 N\ zg.0

r

o0 22i-2 . i(z) it q q .
< Z( f MIH{Z(ZZI),%} @U(t)dt) (Jp,lz(z2i+2;z2i))

and

r

00 22i+1 . q L
Z( f (13((22; 11))) W(t)dt> (0pn(z2is,22i01)"
i i+

> (o Wagit1) w))? ' ' Y
= 121:(2'[ mm{H(zzwl)’%} W(t)dt) (ap'h(222+3’222+1)) '

where the inequalities are implied by the relation u(t) < %(t) for all £ € (0, 0o)
combined with the fact that function % is non-increasing. In view of the above, we
return to (5.9) and use (5.8). We arrive at

ST < e, Qe || f1I5 -
As for S§, observe that

S5 < e(q) i
=2

Ziy2 9 2
U(z;)
o) Of If(s)lh(s)ds] [ wivat

|

Ziy2

i

i | _ Zi2 q
=@ [ f]((zz)) Of |f(8)|h(s)ds} witydt

=2 zip

H()

=2 zip

o F[_ ¢ q
< [|Of |f(S)|h(s)ds] w(t)dt
0

a t q
u(t
< e(g) Of {Z((t)) Of | f(s)|h(s)ds} wit)dt.

Using [18, Theorem 3], (5.8) implies that there is a constant c(p, q) such that

q

S < clp, et ( i If(t)l’”v(t)dt) < cp, e[ f%,.
0

When we combine the estimates for S¢ and S¢%, we arrive at
1 2>

(0,a)
H Tu,lZ(O.a)quwg C(p7q)8‘|f||p,v'
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STEP 2. — Let’s start the study of the situation near oo provided that the
weight w satisfies f w(t)dt < oo. In this case, for an arbitrary ¢ > 0 we can find

0
be (ab, 00), where a is from Step 1 and corresponds to ¢, such that f wt)dt <&?
00 b
and [ w(t)dt > 271 [ w(t)dt. For f € LP(v), then,
0 0

(b,00) —
I, -
q.w

|

%o i/ b i/ b i
- ( I w(t)dt) ( i w(t)dt) ( [ir. f(b)}qw(t)dt)

b 0 0

00 _(ll b %
< 62 ( f w(t)dt) ( f [Tunf®) qw(t)dt)

0 0

1

@Sg

[ Tu,hf(t)} qw(t)dt>

1

[Tunf®)] qw(t)dt)

1

gz#( Il w(t)dt) | Tusf]l, .

0

Since the operator T, is bounded by (5.7), we have
| s, < . Tupel A1,

for some constant c(q,w, T,), which depends only on g, the L'-norm of w and
c(T,. 1), the latter being from

1T if |y eTuidf e f € LP).

o

Now, suppose that [ w(t)dt = oo for the weight w. Take an arbitrary ¢ > 0

0
and fix a corresponding a from Step 1. Due to (5.7) and Lemma 5.3 we can find
b € (a, c0) such that

. 1
r :
Lh+1

- T
(5.10) ?ul}) Z( f mln{z(gz)),%} w(t)dt) [opn@e1,20)] | <e,
i, T

L1
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where the supremum is taken over all increasing sequences {xy }Zj withay =0
for[e%orklim xk:bforlzooandacJ:ooforJeNorklimxk:oofor

—00
J = oo. There exists an increasing sequence {x;},-_., lying in the interval
T+1

(b, 00), such that hm X, = 00, hm x, = b and f w(t)dt = 2* for every k € 7.
Similarly to the 1nterval (0, a) for feLll(v) We obtain

00 T q
|7l = s g / If(s)lh(s)ds} wiydt
L1 q
i toc}f,(()) f If(s)lh(s)ds] Wbt

] T q
u(7)
<2 f xki‘i’mmoof f <S)|h<8>ds] w(t)dt

q
_ k

k=-00

q
S Z[ s ;’;((T)) f | f(s)h(s)ds} 2k

<
k=—o00 i=k
— Z.ZZ:OO xl<sr<x]+1 H(z )f | £ ()|h(s)ds k;mz
o) i ( ) 1q
- - i+1
1;)0 90,<ST<chl H() f |f(s)|h(s)ds | 2

:4§: Lif}i%“ H )f 1/ (S)Ws)dS] f w(t)d.

Again, take {z;};° for which z; € [x;,2;,1) and

i=—00"?

f | F(9)|h(s)ds > 5 xl<sr1i%+1 ;LI((t))f | f(®)|h(s)ds.

u(z;)
H(z;)
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Then,

sl <55

q

u(z;)
Hz) f lf (S)h(S)ds} f w(t)dt

Zi-2

SC(Q)_Z [Z[((zz) f |f (s)lh(s)ds} f w(t)dt

®i-2

u(z;)

q
Hez) f |f (s)Ih(s)ds] f w(t)dt =: 8¢ + Y.

+c(g) i

The estimate of S? and S} is analogous to that in STEP 1.

STEP 3. — Finally, we are in the position to verify the compactness of the
operator T, ,. Actually, we shall show that the set {1, ,.f; f € LP(), || f| oS 1}is
of uniformly absolutely continuous norm in L7(w) and apply Theorem 3.1. Note
that the operator T, and the spaces LP(v) and L%(w) fall into the setting of
Theorem 3.1, due to the properties of T, whose boundedness from L”(v) to
Li(w) was shown in [8, Theorem 4.2].

Let {E,},—; be a sequence of i-measurable subsets of (0,0c0) such that
XE, — X A-a.e. on (0, 0o). Consider an arbitrary ¢ > 0. By the previous two steps,
we are able to find 0 <a <b < oo satisfying

(Oa)
| Ttont]|, < 7171

and

|72 < 21

b
As [ w(t)dt< oo, there exists 1y € N such that for all n > ny we have
0

b i
. &
( 6[ XEn(t)W(t)dt) <minq 7, (Tuh) ( f w(t)dt) ,

where ¢(T, ;) denotes a constant from the inequality describing the boundedness
of T'u,,h,, ie.
1 Twsif NS eTut) | Flly s f € LP).

For n > ny and f € LP(v) with || |, ,< 1 we can write

0, 7
2, un o < 2, 2008 || 2w T || |2 8008

=: N1+ N +N3.
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Now,
(0,0)
Nl S H Tu (0 a)qu’w—i_H XEMX(O,O«)Tuvh’f(a)Hq,w

+ ( f [ Tounf (Cb)]qw(t)dt) ( w(t)dt) (
0 0
24- | Tunf || ( w(t)dt) ( ;(Enw(t)dt)
0 0

Z + c(T,, h)“f”p v (f w(t)dt> (0 XE‘,Lw(t)dt>

<8
3

Concerning N3, we use the monotonicity of the function T, ;f and the same
estimate for T, f(a) as we used while treating the second term of the previous
calculation and arrive at

: :
Ny = ( f [Tu.hf (t)}qXEn(t)W(t)dt>

a

b i
< ( f [Tunf (@) 2z, (t)w(t)dt)

1
q

XEnw(t)dt>

] ™
f=}

1

q

a

a 7% b <11
< (T ( [ w(t)dt) ( xE,,w(wdt)
0 a

< &
i
Obviously,

N3 < ||X(boo)Tuthqw*

Altogether,
H XE, T“’thq,w <e.

This finishes the proof of the fact that the set {T,,.f; f € L' (), || f]| po< 1}isof
uniformly absolutely continuous norm in L%(w) and thus completes the whole
proof of Theorem 5.4.
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