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A Note on a Discrete Version of Borg’s Theorem via
Toeplitz-Laurent Operators with Matrix-Valued Symbols

L. GoLINSKII - K. KuMAR - M. N. N. NAMBOODIRI - S. SERRA-CAPIZZANO

Abstract. — Consider a one dimensional Schridinger operator A = —ii+ V - u with a
periodic potential V(- ), defined on a suitable subspace of L2(R). Its spectrum is the
union of closed intervals, and in general these intervals are separated by open in-
tervals (spectral gaps). The Borg theorem states that we have no gaps if and only if the
periodic potential V(-) is constant almost everywhere. In this paper we consider
Sfamilies of Finite Difference approximations of the operator A, which depend upon
two parameters n, 1i.e., the number of periodicity intervals possibly infinite, and p, i.e.,
the precision of the approximation in each interval. We show that the approach, with
fixed p, leads to families of sequences {An(p)}, where every matrix A,(p) can be in-
terpreted as a block Toeplitz matrix generated by a p x p matrix-valued symbol f. In
other words, every A,(p) with finite n is a finite section of the double infinite
Toeplitz—Laurent operator A..(p) = L(f). The specific feature of the symbol f, which
18 a trigonometric polynomial of 1st degree, allows to identify the distribution of the
collective spectra of the matrix-sequence {A,(p)}, and, in particular, provide a simple
way for proving a discrete version of Borg’s theorem: the discrete operator L(f) has no
gaps if and only if the corresponding “potential” is constant. The result partly
overlaps with known results by Flaschka from the operator theory. The main novelty
here is the purely linear algebra approach.

1. — Introduction and description of the problem

When considering self adjoint operators A coming from Chemistry or
Mathematical Physics [14], one is interested in the spectral gaps, because they
represent the region of instability of the associated eigenvalue problem Au = Ju.
An interval I is called a spectral gap if there exist real sets Ji, J2 such that
their union contains the spectrum of A, and supJ; <infl< sup/ < infJ,.
Historically, gap related problems have been studied with special attention for
Schrodinger operators (see e.g. [7, 9, 10, 14]). We are interested in the one di-
mensional Schrodinger operator A = —ii + V - u with the periodic potential,
defined on a suitable subspace of L2(R). It can be proved (see, e.g., [14, Theorem
XTI1.90] that the spectrum is the union of closed intervals. In some cases these
intervals may be separated by nonempty open intervals. By taking into account
the above definition, it is evident that all these nonempty open sets are spectral
gaps. For instance, for the Mathieu operator, which is defined by the potential
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V(x) = fcosx with a certain nonzero constant f, it is known that all the spectral
gaps are open; see [14, Example 1, p. 298]. A summary of general and elegant
classical results regarding the Schrodinger operator with periodic potentials is
reported below (see [14, Theorem XIII1.91]).

THEOREM 1.1. — Take the one dimensional Schrodinger operator
(1) A=—i+V-u
with the periodic potential V, defined on a switable subspace of L>(R).

e There are no gaps in the spectrum if and only if the potential function
reduces to a constant (Borg’s theorem; see [3], [11]).

o Ifthere exists exactly one gap, then the potential is an elliptic function.

o [If there are finitely many gaps, then the potential is a real analytic
Sfunction.

In this paper we state the Borg type theorems in the case of discrete
Schrodinger operator with a periodic potential. Moreover, we convert other
results as those regarding the spectral distribution, in the spirit of the Szego
theorems [13]. The main tools are the use of Finite Differences for identifying
the analogous discrete operators and a formulation of the discrete problem in
terms of block Toeplitz sequences with p x p matrix-valued symbols. We
consider families of Finite Difference approximations of the operator A, which
depend upon two parameters, n, the number of periodicity intervals, and p the
precision of the approximation in each interval. We show that the approach,
with fixed p, leads to families of sequences {A4,(p)}, where each matrix 4,(p)
can be interpreted as a block Toeplitz matrix generated by a p x p matrix-
valued symbol. Indeed, the parameter p is the periodicity index, which appears
on the diagonal of the approximating matrices, where the periodicity is in-
duced by that of the potential V. In fact, the entries on the diagonal are, up to a
proper scaling, related to the finesse discretization parameter 1/(p + 1), exact
samplings of the potential V(-) in equispaced points. The result partly over-
laps with known results by Flaschka [12] from the operator theory (see, e.g.,
[8, Theorem 1.3]). In contrast, our approach relies on basic tools from linear
algebra.

The paper is organized as follows. In Section 2 we describe the process of
approximation of the Schrodinger operator, that leads to the families of matrix-
sequences {A4,(p)} and to the Toeplitz—Laurent operator A . (p) = L(f). Section
3 deals with basic notions, definitions and preliminary results. Section 4 contains
the main results on the discrete Borg’s theorem via block Toeplitz—Laurent
operators. Section 5 is devoted to remarks, conclusions, and future lines of in-
vestigation.
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2. — From continuous to discrete

In this section we propose a simple (in fact the simplest) Finite Differences
approximation for the Schrédinger operator with a periodic potential V().
Without loss of generality, we assume that the periodicity width is 1, that is,
V(x4 1) = V(x) for every x € R. We approximate equation (1) in the interval
[ —n,n] with n € N U {co} by the standard difference

—uw(@i1,() + 20 () — wl@i1()
2

with b = h(p) = 1/p, x5(jy =5+ sh(p),j = —mn,...,n—1,5s=0,...,p by using p
equispaced points in each interval [j,j + 1] C [ —n,n]. In this way, letting
n = oo, we find a tridiagonal (Jacobi) matrix that, up to the scaling factor A2,
coincides with

2) Ay(p) = -1 24w, -1 o wy = kEV (s ),
j=0,...,p — 1. Given the periodicity this matrix can be re-written as
-1 2+4+wy -1
3)  Aup) = e
( ) P -1 2 + Wp—1 -1
-1 24+wy -1

When n is finite, the resulting matrix of the size np is just a truncation of the
double infinite matrix reported above.
Along the same lines, we may consider the variable coefficient one dimen-
~ d d
sional Schrodinger operator A(a) = — aa <a - @u> + V - u, with a positive and
periodic function a( - ), having the same period as that of V(- ). In that case, the
very same type of finite difference approximation will lead to a bi-infinite sym-
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metric matrix of the form

—0p-1 Yo — %

(4) An.a(p) = R K B ,
—0p-2  Vp-1 —Op-1

—Op-1 Y0 — 0o

with y, = ot + ots—1) mod p+ 1PV (@s (), ots = W@s11/2.), Tsi1/2.) = J + PN s+1/2).
We observe that resulting structure, up to the sign, represents the case of general
p-periodic Jacobi matrices.

3. — Preliminary results and notation

This section is divided into two parts. In the first one we briefly recall few
results concerning the spectra of Toeplitz—Laurent operators with matrix-va-
lued symbols, while in the second one we give a definition of the spectral dis-
tribution and provide the results regarding again the case of Toeplitz sequences
coming from sections of infinite Toeplitz operators.

The connections among these ingredients will become evident in Section 4,
since the approximation of the Schrédinger operator with periodic potential by
using Finite Differences as in Section 2 leads to matrix-sequences {A4,(p)},
where p is a parameter associated with the precision of the approximation. For
every p the sequence {4,(p)} can be interpreted as sections of a Toeplitz op-
erator with a p x p matrix-valued symbol of polymomial type. The results in
Section 3.1 allow us to prove the main results on the discrete version of Borg’s
theorem in Section 4, while the results in Section 3.2 are of interest for the
distributional analysis.

3.1 — Toeplitz operators and sequences

Given a p x p matrix-valued integrable function f on the unit circle T, the
p X p matrices f;, j € 7, represent the Fourier coefficients of f* defined as

1 ¢ . .
]g:%ff(ew)e"]()df), j=0,+1,42,....



A NOTE ON A DISCRETE VERSION OF BORG’S THEOREM ETC. 209

Then for n being a nonnegative integer number or oo we define T,,(f) the
Toeplitz matrix or operator of size n generated by f via the relations

T Nij=rfiy Lj=1,....n

When 7 = oo, the Toeplitz operator T',(f) is simply written as 7'(f). Similarly,
L(f) denotes the double infinite Toeplitz matrix with (L(f)); ; = fi-j, ©,J € Z.
Furthermore, by {7,,(f)} we indicate the Toeplitz matrix-sequence generated by
f, with T,,(f) of finite order. The function f is referred to as the symbol.

Given a Hermitian p x p matrix A, let 4;(4) > --- > ,(A) denote its eigen-
values labelled in the decreasing order. Let f be a continuous and Hermitian
symbol. It is well known that the essential spectra of both L(f) and T'(f) coincide
with the union of the ranges of the eigenvalues 4;(f(-)) > --- 4,(f(-)), that is,

p . .
() Gess(L(f)) = 0ess(T(N) = {i%f (i(f ), sup (4i(fEM)|.

j=1

For the latter result, which is crucial for our approach to the discrete version of
the Borg theorem, see [4, Proposition 2.29(a)].

3.2 — Spectral Distributions

Here we give the definition of spectral distribution concerning matrix-se-
quences of increasing size and report a distribution result for block Toeplitz
sequences in the spirit of Weyl.

DEFINITION 3.1. — Let Co(C) be the set of continuous functions with bounded
support defined over the complex plane, N a positive integer, and v a p X p
matriz-valued measurable function defined on a set G C RY of finite and po-
sitive Lebesgue measure u(G). A matriz-sequence {A,} is said to be distributed
(in the sense of the eigenvalues) as the pair (y, G), or to have the eigenvalue
distribution function y ({A,} ~; (v, @), if; VF' € Co(C), the following limit rela-
tion holds

(6) hmle 3(A) = (G) f ZF(is(l//(t)))dt t= Gt ty).

Nn—00

Concerning the spectral distribution of Toeplitz matrix-sequences, the main
result is the Theorem of Szegé (see [5]), that was reported in its most general
version due to Tilli [16].

THEOREM 3.2 (Szego-Tilli). — Let f be a p x p matriz-valued integrable
Sfunction defined on [, and let {T),(f)} be the block Toeplitz sequence generated
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by f. Assume that f is Hermitian almost everywhere on its definition set. Then
{10 ()} ~i (f, 1),

that is, for every function F' continuous with bounded support we have

iim LS PG = L [ 1SRG
n—oo N g S 2 p =1 y '

where J;(A) are the eigenvalues of a square matrix A.

4. — The discrete Borg Theorem

Our aim is to suggest a pure linear algebraic approach to the discrete version
of the celebrated Borg theorem.

4.1 — Periodic Jacobi matrices with all gaps closed

We begin with a double infinite, p-periodic, p > 2, real Jacobi matrix

J = s Opyp =@y >0, bn+p:bn-

We follow the standard convention a,, > 0, which differs by sign from (4): indeed
the bi-infinite matrix reported in (4) is easily converted into a Jacobi matrix
multiplying it by —1.

An important observation is that J = L(fy), where in the case p > 3 the
symbols are given by

—10
b1 Qg 0 e e g yp
Opy1 br2 Qg2 0
@ fity=1 0 @z bz .. . k=01,....p—1,
) : : : Qetp—1
a0 B bisp

(for the case p = 2 see Example 4.1 below).
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Denote by 4;(fi), 7=1,2,...,p the eigenvalues of f;, arranged in the de-
creasing order

21(fi(0) > A2(f1(0)) > ... > A (f1(0)),
and put
A = max 2i(f1(0)), dig = m(}n 2(f(0)).

The spectrum of the original matrix J is (see Section 3.1 above)
p
o) = U [/1;;67/1‘;:]6],
j=1

and the right hand side does not depend on k.

DEFINITION 4.1. — We say that J has no gaps in the spectrum (in other words,

all gaps are closed) if 4;), = )L;;Lk forallj=1,2,... p—1

If p = 1 (Jacobi matrices with constant entries) the spectrum is an interval, so
the gaps are automatically closed.
Consider the matrices of order p — 1

(D1 Gy O
1 ez Grye
Ji : 0  arz biz - k=0,1,....,p—1,

Afptp—2

Agrp—2 bk+p—1 ]
and put

o) = {pype > tog > - >ty 1}

The Cauchy interlacing properties for eigenvalues of Hermitian matrices lead to
the following inequalities

(o) = py g = 22(fi(0) > ... = Ap1(fie(0) = 1,1 = Ap(fi(0)),
M) = py 1 = 22(fi0) = ... = Ap1(fiel0) = gy 1 = 2p(fi(0)).

ProposiTION 4.2. — Suppose that J has no gaps. Then all J;, have the same
spectrum.

PRrOOF. — Assuming the contrary, we would have u;; > ., so by the
interlacing properties there is a gap in the spectrum. d
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REMARK 4.1. — Let b; =0, a1 =a3=..., ag=a4=..., but a; # az. Put
p =4. Then
A ay 0
det(Jo+ ) =det1+A)=|a1 4 az|=72>—(+ad,
0 ag A

so a(Jy) = a(J1), and the converse to Proposition 4.2 is false.
PROPOSITION 4.3. — Suppose that J has no gaps. Then by =by = ... =b

Proor. — By Proposition 4.2 tr(Jy) = tr(J1) = ... = tr(J,—1) and so

P
bj = be ij,
Jj=

-1

=

<.
Il
—

which implies by = by, by = bp1 = by, b3 = by12 = by ete. as claimed. O

With no loss of generality we put b; = 0. Assume also that the period p is an
even number (otherwise take 2p as the period, see also Remark 4.2 below).
We proceed with the simple case of p = 2.

ExamPLE 4.1. — Let p =2 and b; = 0. The symbol now is

10= | O TR a0 = o +e )

All gaps are closed if and only if ming |a; + e~?az| = 0, or equivalently, a; = as,
sop=1.

The following result is a version of the celebrated Borg theorem for Jacobi
matrices.

THEOREM 4.4. — Let p=2m +2 and J has all its gaps closed. Then
a1 =0 = ... = ap, S0 the actual period is p = 1.

Proor. — Denote

A ap 0
ay A a2
D()L;Cbl,ag,...,a”) = 0 e /'{ 7

~ 8

Qy,
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By expanding over the last row and induction we see that

n
DO a1, az, ..., a,) =" =77 a4

j=1
By Proposition 4.2
k+2m
det (T + ) = DU Gt - - Qpyz) = 2 =270 N " af +
Jj=k+1
does not depend on k so
k+2m k+2m+1
2 2
Z CL7 = Z a’; = Wp+1 = Qket-2m+1, k:0517"'7p_17
J=k+1 J=k+2
Hence a1 = a3 = ... = agpi1, G2 = Qg = ... = A2 12, S0 p = 2. By Example 4.1
a1 =02 = ... = qy, as claimed. O

REMARK 4.2. — For the odd period p = 2m + 1 the argument is simple. Since

0 X1 0

X1 0 X2 m

0 x O —(—1" H%Ej,l,

: : : ' L2m—1 i=1
Lom-1 0

m
then detJ, = (— 1) H1 az 121 But the left hand side is independent from £, so
)=

W1 = Q2m+1 = Qpyp = -

4.2 — A specific example: w-circulants

We consider fi(0) with all b; equal to zero and all a; equal to one,
7=0,...,p — 1. The related matrix structure is a w circulant, independent of ¥,
with @ = e, so that all the eigenvalues and all singular values of £(0) = £,.(0) are
known in closed form

—
()
=)

fO=10 1 o

Q
5
o -
—
o
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Now call Z the generator of circulants that is

o 0 ... 0 1
1 0 0 .0
Z=10 1 0 :
o 0
0 0 1 0
Then it is well known that
7 = F,DF %

where

Fy= L)
p J,k=0

is the celebrated Fourier matrix of size p and

D= diagj:o,”.‘pfl (61%> '

Now consider

0 w
1 0
Zy=10 :
S 0
0 . 0 1 0

Then a direct computation shows that

Zo=0D;'ZDs, Dy =diagy g, 1(#)

with 0” = w. Therefore, taking into account that f(0) = Z,-» + Z} iy, We have a
complete Jordan decomposition of our symbol as

f(H) = me/pr |:67i9/pD + em/pD*]F;Defm/p

. 21 — 0 y
=D, ., Fpdiag;_o , 4 <2 cos < ]p )) F.Dqy-ip.

With reference to the previous notations we observe that for fixed j and p
large we have

= i -2
A=Ay =y g =y gD
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while, for indices j in a fixed neighborhood of p/2, with size independent of p, we
have

I T
A =Ap ~p

Here the symbol «, ~ f8, for nonnegative sequences «,, f, is equivalent to say
that simultaneously we have o, = O(ﬁp) and ﬁp = O(op). Finally, for all indices j,
we obtain 4 — 4 = O(p™).

4.3 — A specific example: essential period p implies p disjoint spectral intervals

We say that J has essential period p if p is the minimal positive integer
for which a4y = @y > 0, byyp = by, for all integer n. Here we give a specific
example that support the general statement that J of essential period p
implies p disjoint spectral intervals, that is exactly p — 1 gaps. Consider fy(0)
with ¢y =---=a,=1and by =---=by,_1 =0, b, =1. The last relation im-
plies that the essential period is p. Now following the argument in the
previous section, we deduce that the eigenvalues of fy(0) are separated by
those of

0 0 0

1 0 1
Hy=10 1 0 0
0 0 1 0]

and those of

[0 0 0]

0 1
Hy=10 1 0
T (R
0 ... 0 1 1)

with ¢ =p —1and Hy, Hq being principal minors of fy(#). In order to prove that
there exist exactly ¢ =p —1 gaps, it is enough to prove that /lj(fl ¢) > 4i(H), for
everyj =1,...,q. The matrices H, and H 4 are the generators of sine-transform
algebras with different boundary conditions and their Jordan form can be ex-
plicitly computed.

In both case we observe that the matrices are real symmetric and irreducible
so that the use of the first and of the third Gershgorin theorem implies that the
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eigenvalues ]gelong to the open interval (— 2, 2). Let A(X) be a generic eigenvalue
of X € {H,,H,} and let v(X) the corresponding normalized eigenvector. Setting
MX)/2 = cos (y), we have

v;i1(X) +v;1(X) =2cos(pw;(X), 1=1,...,q

with boundary conditions given by wvo(H,) =v,(H,) =0 and ’U()(I:Iq) =0,
vy(H,) = v,(H,). The general solution of the latter linear difference equation is
then given in both cases by vj(X) = Axe'” + Bye™ so that the use of the
boundary conditions shows that

; nZ -\ _, 0] .
Ai(Hy) = 2 cos <m> > Ai(Hy) = 2cos <m>, j=1,...,q,

where the strict inequality

n2j—1) 7l
2q+1 g+1

is true simply because for everyj=1,...,q.

5. — Conclusions and Remarks

We start with some observations on the sequence {4,(p)}. Clearly each
A,(p) can be viewed as T, (f;) + Ry, where fi, k=0,...,p—1, are those
reported in (7), and where the correction term R, ; is Hermitian for every »
and k, and has rank bounded uniformly by p. Therefore in the light of general
perturbation results (see, e.g., [15, Proposition 2.3]), and by Theorem 3.2, we
have

(8) {A,(D)} ~) (fi, 1), k=0,...,p—1,
which clearly implies that, for every j, the range of 4;(gs) coincides with the range

of 4j(g), for s, =0,...,p — 1. Indeed, we know even more. By (8), for each
continuous function F' with a bounded support, we obtain that

1 4 1 & 0 B 1 ”1 p »
) - f p PO A0 =5 j p 2 FUAG N,

s,t =0,...,p — 1, which means that the eigenvalues of each f; induce the same
measure on the real line, s =0,...,p — 1.
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Concerning future work, there are some interesting issues that should be
addressed. These operators could be considered in multidimensional domains
and in the case of systems of equations (as in [11]). A further intriguing issue
could be the following: how to relate the number of gaps to the periodicity index p
of the diagonal periodic sequence, the latter question being supported by the fact
that no gaps is equivalent to have all equal diagonal entries and by the example
reported in Section 4.3.
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