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Weighted Inertia-Dissipation-Energy Functionals
for Semilinear Equations

MATTHIAS LIERO - ULISSE STEFANELLI

In memory of Professor E. Magenes

Abstract. — We address a global-in-time variational approach to semilinear PDEs of
either parabolic or hyperbolic type by means of the so-called Weighted Inertia-
Dissipation-Energy (WIDE) functional. In particular, minimizers of the WIDE
Sfunctional are proved to converge, up to subsequences, to weak solutions of the lim-
iting PDE. This entails the possibility of reformulating the limiting differential
problem in terms of convex minimization. The WIDE formalism can be used in order
to discuss parameters asymptotics via I'-convergence and is extended to some time-
discrete situation as well.

1. — Introduction

This paper is concerned with the classical semilinear PDE
(1.1) Py + vy — Au+f(u) =0 in Q x (0,7),

posed in a bounded smooth domain Q2 C RY up to some reference time 7' > 0.
Here, the density p and wviscosity v are nonnegative parameters such that
p+v>0,f=Fis of polynomial growth, and F is A-convex (see (2.2)). In par-
ticular, in the following we explicitly consider the case p > 0 and v > 0. Let us
however mention that the theory includes the limiting cases of the semilinear
wave equation (v =0) and the semilinear heat equation (p = 0) as well. We
complement equation (1.1) with homogeneous Dirichlet boundary conditions (for
simplicity) and initial conditions u(x, 0) = u%(x), pus(x, 0) = pul(x).

The aim of this paper is to discuss a global-in-time variational approach to
(1.1). In particular, for all ¢ > 0 we shall be concerned with the functional

W, (u) = ff ”6( e + 5 fuf” + 5 |Vu| +F(u)> dz dt.

The latter is called Weighted Inertia-Dissipation-Energy (WIDE) functional as
it features the weighted sum of the inertial term pluy|®/2, the dissipative term
v|ug|?/2, and the energetic term |Vul®/2 + F(u).
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The main result of the paper consists in showing that the WIDE functional
W, is uniformly convex for ¢ small, hence admitting a unique minimizer u* with
w(x,0) = u’(x), pus(x,0) = pul(x), and that, up to not relabeled subsequences,

(1.2) limu®*=w where u solves (1.1).

e—0

The interest of this perspective resides in the possibility of connecting the dif-
ficult semilinear PDE problem (1.1) with a comparably easier problem: the
constrained minimization of the uniformly convex functional W,. This possibility
provides a novel variational insight to the differential problem by opening the
way to the application of the tools of the calculus of variations to (1.1). For in-
stance, we recall that the functional W, admits a unique minimizer whereas no
uniqueness is known for (1.1) under general nonlinearities f. In this regard, the
WIDE functional approach can be expected to possibly serve as a variational
selection criterion in some nonuniqueness situation. This possibility has been
already checked for a specific ODE case in [11].

One has to mention that the WIDE variational program has already been
successfully developed in [23, 25] for the semilinear wave case v = 0 and in [17]
for the semilinear heat case p = 0. We aim here at combining the two techniques
in order to deal with the mixed case of equation (1.1), namely for p > 0 and v > 0.

For semilinear wave equations v = 0, the convergence (1.2) corresponds to a
conjecture by DE GIORGI [8] which is originally stated for 7' = oc. This conjecture
has been checked positively by SERRA & TILLI [23] and by the second author [25]
(for T'< o) following completely different approaches. Moreover, both for T fi-
nite and infinite, we have considered some ODE analogue of the De Giorgi
conjecture in [11].

As for the semilinear parabolic case p = 0 one has to mention that the pio-
neering paper by L1oNS [12] as well as the monograph by LioNs & MAGENES [13].
As for the nonlinear case, one has to recall the paper by ILMANEN [9] where the
WIDE approach is used in order to prove the existence and partial regularity of
the so-called Brakke mean curvature flow of varifolds. In this regard, the reader
is also referred to [24] for an application to mean curvature flow of cartesian
surfaces. The general case of abstract gradient flows of A-convex functionals is
discussed in [17] in the Hilbertian setting and then in [21, 22] for curves of
maximal slope in metric spaces. Results and applications to rate-independent
dissipative systems have been presented by MIELKE & ORTIZ [15] and then ex-
tended and coupled with time-discretization in [16]. Two relaxation and scaling
examples in Mechanics are provided by CoNTI & ORTIZ [6], and some application
to crack propagation is given by LARSEN, ORTIZ, & RICHARDSON [10]. Moreover,
the extension of the WIDE principle to doubly nonlinear parabolic equations is
discussed in [1, 2, 3]. Eventually, a similar functional approach (with ¢ fixed
though) has been considered by Lucia, MURATOV, & NOVAGA in connection with
traveling waves in reaction-diffusion-advection problems [14, 19, 20].
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The aim of this paper is the extension of the analysis of [25] in order to take
into account dissipative effects v > 0 as well. The outcome of this extension is a
theory which is indeed independent of the character of equation (1.1), provided
either p or v is positive. This is a quite remarkable feature of the WIDE form-
alism which in principle could make it of use in relation with a significant range of
evolution problems. We exploit this fact in Subsection 4.3 where the limits p — 0
and v — 0 are discussed by means of a I"-convergence analysis. In order to il-
lustrate the independence of the theory from the character of the equation we
resolved in keeping track of the parameters p and v throughout the analysis.

After having introduced the relevant notion of weak solution, in Section 2 we
state our main convergence result Theorem 2.1. Section 3 is focusing on the well-
posedness of the minimization problem for the WIDE functional W, (Theorem
3.1) as well as on the related Euler-Lagrange equation (Lemma 3.2). Combined
with initial and boundary conditions, the latter corresponds to some weak form of
the following

(1.3) & pugs — 2epunt + (p—ev)uy + vy — Au +f(u) =0 in Q x (0,7),
(14) u(,00=2") inQ, pw(-,0)=pul(-) inQ, u=0 ondQx(0,T)
(15) Epun(,T) =0, Epu(,T) = evur(-, T) in Q.

Clearly equation (1.1) is nothing but the formal limit in (1.3) for ¢ — 0. In par-
ticular, the minimization of W, corresponds to an elliptic regularization in time
of the original problem. Note that, as the above problem is of fourth order in
time, the two extra final conditions (1.5) arise and, at all levels ¢ > 0, causality is
lost. Owing to this fact, the convergence (1.2) is generally referred to as the
causal limit for it results in restoring causality.

The proof of our main result is presented in Section 4 and rests upon the
validity of an a priori estimate on the minimizers of the WIDE functional
(Lemma 4.1). The proof of this estimate requires the discussion of some time-
discrete version of the WIDE principle which might be also of independent in-
terest. We develop such a discretization in Section 5.

2. — Main result
We shall start by recalling some assumptions and introducing our weak so-
lution notion for problem (1.3)-(1.5). Let Q C R? be a non-empty, open, and

Lipschitz domain and f = F’ € C(R) be of polynomial growth. In particular, we
ask for some constant C > 0 such that, for all v € R,

2.1) %Ivl” <Fw)+C and [f@)| <CA+ P
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where p > 2 and 1/p + 1/p’ = 1. Moreover, we assume that F' is i-convex for
some given 4 € R, i.e.,

(2.2) v— F(u) — g v[? is convex.
Equivalently, F' is A-convex if and only if
FOu+1-0w) < 0F(w)+1-0)F(v) — gﬁ(l—ﬁ)|u—v|2 Vu,veR, 0<0<1.

Note that the growth assumptions in (2.1) imply that F" has at most p-growth.

We define H = LZ(Q), X=L"Q),and V = H(l)(.Q) so that V' C H compactly
and X C H continuously and assume %°, u! € V N X. Let (-,-) denote the dua-
lity pairing both on V' x V and X’ x X and by (-, -) the usual scalar product on
H. Moreover, |- | denotes the modulus as well as the norm on H and || - ||z
stands for the norm of the normed space B. We define the (energy) functional
E:VNnX —->Ras

E) :% Qf Vul? de + {[ Fu) de

and the operators A: V — V' and B: X — X' as
(Au,v) ::fVu-Vvdac, (B(u),v) ::ff(u)vdx
2 Q

so that (Au,u) = ||lu|> and B(u) = f(u) almost everywhere. We have that

DE=A+B:VnX -V +X
being bounded. Finally, we introduce the spaces
U:=HW0,T;H)NnL20,T;V)NLPO0,T:X), V:={uel : puecHX0,T;H)}
and assume that B is weakly continuous, i.e., we have that
(2.3) up —uind = Bu,) — B(uw) in /.

A choice for the function f fulfilling these assumptions is f(x) = [ul’%u + (u)
where ¢ € C*Y(R).

The above assumptions will be tacitly assumed throughout the remainder of
the paper. We are now in position to present the main result of this text which is
proved in Subsection 4.2.

THEOREM 2.1 (WIDE principle). — Let u* minimize the WIDE functional W,
on the nonempty and convex set K(u®, u') .= {u € V : w(0) = u®, pus(0) = pu'}.
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Then, for some not relabeled subsequence we have that u* — u in U, where u
solves

(2.4) P +viig + DEw) =0 a.ein (0,T), u(0) =u°, pus 0) = pu'.

Before moving on let us stress that the latter result can be adapted in order to
encompass more general situations. In particular, we can consider unbounded
domains (see [25]) as well as different boundary conditions or the presence of
additional source terms with no particular intricacy. Moreover, the WIDE ap-
proach can be applied to other classes of dissipative equations including. For
instance, one could recast the WIDE principle for the strongly damped wave
equation

pugy — vAuy — Au + f(u) = 0,

suitably combined with boundary and initial conditions.

3. — Well-posedness of the minimum problem

Let us start by checking that indeed W, admits a unique minimizer in the set
K@, ub). In the convex case

2~ :=max{0,—-1} =0
the existence of a (unique) minimizer is a direct consequence of the Direct

Method. As for the general nonconvex case 1~ > 0, existence and uniqueness of
minimizers follow by letting ¢ be small enough.

THEOREM 3.1 (Well-posedness of minimum problem). — For ¢ small the
WIDE functional W, is uniformly convex with respect to the metric of
HI(O, T;H)ﬂLz(O,T; V). In particular, W, admits a unique minimizer
ut € K@, ub).

ProoF. — As already mentioned the convex case 1~ = 0 is quite straightfor-

ward so let us assume from the very beginning that A~ > 0 and decompose W, into
the sum of a quadratic part @, and a convex remainder R, as follows

- T
Wo(u) = f eT(pg\utt|2+vs|ut|2+||u||%,—)f|u|2) dt + f f e~ " Gu) dt do
0 0 Q

=: Q:(u) + R:(u)

with G(u) = F(u) + /1*|u\2 /2 convex by (2.2). In order to handle the quadratic
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part Q,, we will exploit the auxiliary function v(t) := e ¥/®y(t) and readily
check that

1
e /@y (t) =u(t) +5-v®), e/ u(t) = vyu(t) + - vt(t)+ v(t)

Note that, by possibly letting ¢ be small, standard computations ensure that

o7
(3~1) /{HMHLZ(OTV) < ||2}||L2(0[V) < ”u”LZ(O['V)’

-T
(3.2) /FHu”H?(oTH) < ||v||H2(0 TH) HuHHZ(oTH)

Moreover, Q.(u) can be rewritten in terms of v as

T

_ p+ev, o pHdev—1621 5 1.
@m—!( o+ 2L o + EEZEE o )

T
+2
+f(p3(vttavt)+2(vttav)+p =, ))
0

T
_ p+2ev, o ptdev—1621" o 1. o
—!( ol + LB o A e Do) at

(D)= O)F) + 2 (0D, o(D) = (00, 0(0)) )

()P [pO)P) =: V,@) + S,(0)

where V, is the integral contribution whereas S, collects all boundary terms. By

letting
p v
£= max{ V167~ 42}

the quadratie form V, is convex. Moreover, an elementary yet tedious calculation
shows that for u € K(u°, u') we have

Sy >—— /ey (T)[? + P e e u ) =T fef? + e”“lu(T)l
3?/)' 1‘

vV
L el — TP,

which is convex in w(T), u(T) as well. Let now 6 € [0,1] and u, % € K@, u!) be
given. Moreover, define v(t) := e /@y(t) and ¥(t) := e ¥/@4(t). For all & small
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enough one deduces
Q:(0u + 1-0)it) = V, (v + 1-0)p) + S.(0v + 1-0)))
< OV.(v) + A=)V (D) + 0S:(v) + (1-0)S. (D)

lw—|® + Jo—0|} dt

T
01-0) . + ey . +4ev—1662)"
B) I)[ P82|vtt—vtt|2 + L D) |7)t—vt\2 + /)T

= 0Q.(u) + 1-0)Q.(w)

o= + [lo—B|[% d.

T
0(1-6) - + 2¢ev - +4ev—16621"
D) I)[ P32|Utt—vtt|2 + L |Ut—vt\2 IDT

By exploiting the first estimates in (3.1)-(3.2), we have proved that @, is uni-
formly convex in with respect to the metric of Hl(O, T:H)n L2(0, T:;V) (or even
H2(O, T;H)ifp > 0). As W, = Q. + R, and R, is convex, the uniform convexity of
W, and the existence of a unique minimizer u* € K(u°, u') ensues. O

3.1 — Euler-Lagrange equation

Our analysis, in particular the derivation of a priori estimates, relies on the
specific structure of the Euler-Lagrange equation for W,. Let «#* minimize W, in
K@, ub). By considering r— W (u* + rv) for v € K(0,0) we obtain that

T

(3.4) 0= f e/ (szp(ugt, vy) + ev(u, v) + (DE?),v)) dt Vv € K(0,0).
0

Hence, we have the following.

LEMMA 3.2 (Kuler-Lagrange equation). — Let u* be the unique minimizer of
the WIDE functional W, in K®, u). Then, u® solves

(3.5) Epuly, — 2epuly, + (p—evuf, + DE(W®) =0 a.e. in (0,7),
(3.6) uf(0) = u®, pu;(0) = pul,
(3.7) pui(T) = 0, &pus(T) — evui(T) = 0.

4. — Proof of the main result

The key step in the proof of Theorem 2.1 is to establish an integral energy
estimate on u* which is independent of ¢. Henceforth, the symbol C stands for
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any constant depending on data and independent of p, v, and ¢ (and, later, 7) and
possibly changing from line to line. We shall prove the following lemma.

LemMmA 4.1 (Estimate). — Let u* minimize the WIDE functional W, over
K@, ud). Then, we have

T T
4.1) (0 +w [ fdt+ [ Bayat<c.
0 0

Note that, owing to the growth conditions (2.1), the latter estimate entails
in particular that minimizers of W, on K, «!) are uniformly bounded in /.
This provides the necessary compactness in order to prove our main result
Theorem 2.1.

4.1 — A formal argument

Let us however provide here a formal argument toward Lemma 4.1. In
particular, let us assume that the minimizers u* of the WIDE functional W,
on the convex set K’ ,u') are actually strong solutions of the Euler-
Lagrange equation (3.5)-(3.7). Note that this smoothness assumption is pre-
sently not justified. In particular, the argument below will be made rigorous
by means of a time-discretization technique in Section 5. Although quite
technical, we believe this procedure to bear some interest in itself for
it provides the complete analysis of a time-discrete version of the WIDE
principle.

Let us focus on the (more difficult) case p > 0 only. Test (3.5) on the
function ¢t +— o) := (1 + Tft)(uf(t)ful) and take the integral on (0, 7). By re-
calling that

T T T t
Vg € L0, T), f 1+ T—t)g(t) dt — f g() dt + f (f g(s)ds) dt.
0 0 0 0

we easily compute that

T T T t
[ oy vrat = [ Eptayy, ui—utyat + f f sy, e —ul) ds dt
0 0

1+T
(42) M| e (O ——|utt<T>| + Ep(ut, (T, () —uud)

+82p(u§t(T),u§(T)—u1)—362/)[\ ug* at
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where we have used integration by parts several times. Analogously, we obtain
T T Tt
— [ 2eptaity, vt = 26p [ i dt + 26 [ [ i s at
0 0 00

— 2ep(ul(T), ui(T) — ut) — ep|ui(T) — u' |,

T T
[ e v at = -t P+ 22 [ -t
2 2
0 0
Finally, we have that

T T T t T
(43)  [vegvdt=v [ pufde+v [ [pPasat—v [ b
0 0 00 0

T ¢
— (ut, u)ds de
f ot
00
T

T T
(4.4) f (DE@),v) = B (T)) — (1 + TVE@®) + f E@u)dt — f (DE@), ul) dt
0 0 0

—ff(DE(us),M)dsdt.
00

Therefore, by summing up equations (4.2)-(4.4) and using the final conditions in
(3.7) we come to the following

T Tt
s, (0) + (’?—sp) i (T) —u P4 v f 2 dt + 26p f i 2 ds dt
0 00

1+T)p

(45) =

T T Tt T
& & . 382 &2 g2 p—ev £ 12
+ Eu“(T)) +fE(u)dt+p<2&—7>f|utt| at+of [luif? ds dt—i—Tﬁut—u 2 at
0 0 00 0
T Tt
— 1+ DE@") + f (DE), ub) dt + f f (DE),u) ds dt
0 00

T Tt
e .1 e ,,1
+v0f(ut,u )dt+vb[0f(ut,u )ds dt.

Hence, by using the growth conditions (2.1) and Young’s inequality we have
shown that for small ¢ estimate (4.1) holds.
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4.2 — Proof of Theorem 2.1

Let us now come to the proof of our main result. Let «* be the unique minimizer
of W,. Owing to Lemma 4.1 we can extract a not relabeled subsequence %* such
that u* — win Y. In order to check that u solves (2.4) let w € C;°([0, T); V N X) be
given and define v°(t) := e'/*w(t) — t(w;(0) +w(0) /&) — w(0) such that v* € K(0,0).
We have that

. 1, 1
Vi) = e/Pwy(t) + Eet/*‘w(t) — w(0) ——w(0) and
2 1
V5, (1) = elfwy(t) + E e'/“wy(t) + = e'/“u(t).

Since v* € C([0,7); V NX) C Ku®, ul), from the variational equality (3.4) one
obtains

0= | e *(pufy,vf) + ev(us,vf) + (DE@),v%)) dt

(ot 2w+ 26wy -+ 10) -+ v(af, a0y +20) — v, 1)

OS% og’%

+ (DEG), w-th,—e () ) dt

where we have used the short-hand notation 2¢(t) = e~/*(w,(0) + w(0) /¢). Hence,
by integration by parts we obtain

T
f (=pCut, 20p) + vt w) + (DE@?), w)) At + p(u(0), 1(0))

[

T

(u§,82Mttt + 2epwy + evw + evh,) At + f (DE?), th, + e~ "*w(0))) dt
0

(u(0), wy(0) + 2e00,(0)).

0
=P
We easily check that t — th,(t) + e /*w(0) converges strongly in L0, T;V N X)
to 0 for every q € [1,c0). In particular, letting ¢ — 0 we exploit the weak con-
tinuity (2.3) and u£(0) = u! to obtain
T

f (=plus, wy) + Vg, w) + (DE@), w)) dt + plu?, (0)) = 0.

0
Namely, u solves the equation in (2.4), where u; makes sense in LZ(O, TV +

L7(0, T; X"). The initial condition %(0) = u° follows from the precompactness of u*
in ¢/ while u;(0) = ! follows from the weak formulation of the limit equation.
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4.3 — I'-convergence

As already mentioned, a remarkable trait of the WIDE approach is its in-
dependence of the character of the equation (1.1) as long as p + v > 0. In parti-
cular, the WIDE formalism is well-suited in order to describe limiting behaviors
in the parameters. First of all, by inspecting the proof of Theorem 2.1 it is ap-
parent that minimizers of the WIDE functional pass to limits p — 0 and v — 0 as
well as to joint limits (p,&) — (0,0) and (v,&) — (0,0). On the other hand, by
keeping ¢ fixed we can argue from a variational viewpoint by addressing the
limits p — 0 and v — 0 within the frame of I"-convergence [7].

Let us momentarily modify the notation for the WIDE functionals W,, the
function space V, and the set K by highlighting the dependence on the para-
meters p and vas W2, V’, and K (u?, ul), respectively. Moreover, for the sake of
notational simplicity we incorporate the constraint u € KX”(u°, u') directly in the
functional by letting

W' =W on K?(u’,u') and W/ = oo elsewhere.
We have the following.

/}\ r

LEMMA 4.2 (I'-limit v — 0). — Wp w.r.t. both the strong and weak

topology of V'.

Proor. — The existence of a recovery sequence is immediate by pomt\mse
convergence. The I-liminf inequality follows from the fact that W/] "> Wp
pointwise and W is lower semicontinuous with respect to the weak topology
of V. O

As for the purely viscous limit we have the following.

LEMMA 4.3 (I'-limit p — 0). - W/ 5 Wgo\/ w.r.t. both the strong and weak
topology of U.

PROOF. — The I'-lim inf inequality is immediate as W' > W, pointwise and
the latter is lower semicontinuous with respect to the weak topology of U. As for
the recovery sequence, we shall resort here to some singular perturbation tech-
nique (in time). In particular, for any given u € K(u’, »') and almost every x € Q
we can find £ — v°(x,t) € H(l)(O, T) solving weakly

V() — o, ) = w@, ) — ut @),
Then it is a standard matter to prove that w’(x,t):=u’(x) + tul(x)+
f v (x,s)ds € K(u®, ul) is such that w” — w strongly in¢/ and ,/puj, — 0 strongly
in L%(0, T'; H). We hence have that W8 ‘W) — W "(w). O
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Note that the above results entail /"-convergence with respect to both strong
and weak topology. This circumstance is usually referred to as Mosco con-
vergence [18] and plays a prominent role in classical convex analysis [4].

Before closing this subsection let us stress that the above /'-limits are taken
for ¢ fixed and record that combined I'-convergence analyses for both para-
meters and ¢ — 0 are presently not available. Additional material on I'-con-
vergence for WIDE functionals in the parabolic case is however to be found in
[2, 15, 16].

5. — Time-discretization

The above proof of Theorem 2.1 rests upon the possibility of proving the key
estimate (4.1). We achieve this by investigating a time-discrete version of the
WIDE principle and, in particular, of the argument of Subsection 4.1. We replace
the functional W, by a time-discrete WIDE functional W,.. From here on we
directly focus on the situation p > 0, the case p = 0 being covered in [17]. We
start by recalling the notation for the constant time-step 7 := 7'/n (n € N) and
introduce the space

Ve = {(uo, ... ,un) € H"™™ : (ug, ... uy2) € (VN X)),

Moreover, we define the functional W, : V. — R by

62 n &y n—1 n—2
Weuo, ..., un) = ?p Z Tegr,j|52%j\2 t5 Z Ty ji1 |5%j|2 + Z T jr2 B (u)).
=2 =2 =2
Given the vector (wy, ..., w,), in the latter we have used the notation dw for its
discrete derivative dw; == (wj —w;_1)/7 for j =1,...,m and &*w = d(ow), F*w =
5(5214)) and so on. Moreover we have used the weights e 1, . .., €., given by
e \!

(56.1) Cori = <8—+ r> fori=1,...,n.

These weights are nothing but the discrete version of the exponentially decaying
weight ¢ — exp( — t/e) for we have that de;.; + e ;/e = 0. Namely, e,.; is the so-
lution of the constant time-step implicit Euler discretization of the problem
e + e/e =0, with the initial condition e(0) = 1. Finally, we denote the discrete
counterpart of K(u?, u!) by IC.(u°, ub), i.e.,

K., ul) = {@o, ..., uy) €EVy : up = u’, pouy = pul}.

The discrete WIDE functional W, represents a discrete version of the ori-
ginal time-continuous WIDE functional W,. We shall drop the subscript et from
€;,; in the remainder of this section for the sake of notational simplicity.
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5.1 — Well-posedness of the discrete minimum problem

Exactly as in the time-continuous situation, in case £ is A-convex the funec-
tional W, turns out to be uniformly convex for all sufficiently small ¢. Note that

for all (ug, ..., u,) € K. (u°, ul) we have that
(5.2) >t < C<|u°|2 +u P r|62uk2>
k=2 k=2

where C depends on 7. Hence, the functional W, is coercive on K (u?,ul).
Indeed, the coercivity of W, in V"3 with respect to (ug,...,u,_2) is im-
mediate. As for the coercivity in H we see that, due to (5.2), the discrete
WIDE functional W, controls the norm in H (up to constants depending on
T, p,v,¢ and 7).

LeEMMA 5.1 (Well-posedness of the discrete minimum problem). — For ¢ and t
small and all u°,u' € H, the discrete WIDE functional W, admits a unique
minimizer in K (u®, ub).

ProoF. — This argument is the discrete analogue of the proof of Theorem 3.1.
In particular, we start by decomposing W, into a quadratic part Q.. and a convex
remainder R,, as

War(“ny s aun)

nog n—1 i1 n—2 Ciio n—2 Ciio
=&Yt 2w +ev > L o — 27D LE P+ > L [
(" D . 2 . 2 . 2

Jj=2 j=2 j=2 j=2

n—2

+ Z T€j+2f G(uj) dw =: Qm’(u07 s ,?/Ln) + R;:r(uﬂa s aun)
Q

=2

with G(u) = F(u) + A~ |u|2 /2. The result follows by checking that, for small ¢ and
7, the functional Q. is uniformly convex. To this end, for (uy, ..., u,) € K (u®, u')
let (vy, ..., v,) be defined as v; = \/e;u;. Then, we compute that

\/6_1(5’&@ = Ly 0V; + 010;
\/552% = 88152?)7‘, + éa‘ras‘révi—l + 0-6151)1' + U?{”i—l

where ¢, = \/¢/(¢+ 1) and 6., = (1—4,;)/7 such that /., — 1 and 0., — 1/(2¢) for
7 — 0. Moreover, we used that
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Hence, we can rewrite Q..(u, ..., u,) as

Ly
Quelato, - ) = sZpZ 5 (21070 + oZlovy* + 2.0 |ov 1 + k1)

+evz . (fz o, ? + o |v,|) PR 5 v P

+ 82,0 Z T (3310;5(52%'7 5?)]'—1) + gz:fas:r(ézvja 57}]) + &;7031(527)]', vj—l)
j=2

+ L0 (O0), 00j_1) + 62,00}, vj_1) + esrai(évjflavjfl))

2 et
+str€Man(5vj,?)]) + Z 2=y

j=2
Next, we collect all terms involving |v;| and obtain

n—1 n—2

‘c"pZZ §r|v] 1| “V‘gvzzﬁar ar|v]| — i Z STWJ

= [&pot. + eviio? — I L] Z%h}ﬂz

1&pat eVl g2
+ 2 (o + o ) + 2 o

We check that the coefficient in square brackets in front of the sum in the above
right-hand side is positive for sufficiently small ¢ and 7. For instance, one can
choose 7 = 3¢ and compute ¢, = 1/2 and (1—¢,;)/7 = 1/(6¢). In particular, the
coefficient reads

% A
462 16

[&patl, + evl % — A~ Kﬂz#—&-

eT F‘L’

which basically corresponds to the coefficient multiplying |v|2 in the first line of
(3.3). Next, we look at the mixed terms. Using summing by parts, we obtain

D 20, v5-1) = (60, v,) — G101 — Y _ 700,

= =2

Hence, we have that
gzpz (2 ef|§v]| +£810’§T(5221j,7)j1)>

u 1
=&py 107, (— - é) |00, + & plsc62, (00, v2) — (G01,01)).
i=2 2
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Finally, using again summation by parts for the remaining mixed terms, we
check as in the time-continuous case that the quadratic form @, is uniformly
convex. Hence, the existence of unique minimizers follows by the Direct
Method. O

5.2 — Discrete Euler-Lagrange system
As in Section 3.1 the unique minimizer (uy,...,u,) of the time-discrete

functional W, solves the corresponding Euler-Lagrange system and we directly
compute that

n n—1 n—2
( 3) 0= 82/) Z re]-(ézuj, 527}]’) +é&v Z rej+1(5uj7 5’1)]‘) + Z €42 <DE(?/L]‘), 7)j>
5. j=2 j=2 j=2

v(v(h s 77)7L) S ’CT(Ov 0)

Let us now proceed as in the continuous case. First of all, we sum-by-parts and
obtain that

n n n
Py we(u;, ) = p Y ei(Puy, 00) — p Y ei(*u;, 0v;1)
=2 =2 =2

n—1
_ pen(52un7 51)11) _ /)62(52u2, 51}1) — /) Z T(é(@ézu)j-&-la 51}])
=2
- n—1 n—1
P2 pen (P, 00,) = p Y (000w, 0) +p Y (0(@0PW)41,v; 1)
j=2 J=2

n—2
= peu(6uty, 0,) — p(3(ed* )y, V1) + p(3(ed®w)3, v1) + p Y (0% (") 42, 1))

j=2
n—2

"=0 pen (01, 00,) — p(O(@d* ), va1) + p Y TP 2,0)),
j=2

where we have used that pév; = 0 and vy = 0. Similarly, we obtain

n-1 n—2
v Z Tej+1(5uj7 51)7) = Ven((sun—la Vp—1) — V Z 7(5(6i+25u7'+1)7 ,Uj)
j=2 J=2

Next, by means of the definition of e; in (5.1) and some tedious computations
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we check that
52 (ed” = ot 25 ! 52
po-(ed w2 = ﬂej+2( Ujrz — 0 Uj41 + 5 %)

1
piej120Uj11) = pejiz (52%'+1 - 55%.;') ,
and rewrite relation (5.3) in the equivalent form

N-2
0="> te (P82 0ty — 2pedujia + poPuj — evdujiy + vouj, vj) + (DE(w)), v))
=

+&2p (en(ézun, ovy) — ((5(652u)n,vn,1)> + eveyn (OUp_1, Vp_1)-
This holds for arbitrary v € K,(0,0) and we have therefore proved the following.

LEMMA 5.2 (Discrete Euler-Lagrange system). — Let (uo, . . ., uy) € K.(u®, u')
be the unique minimizer of the discrete WIDE functional W.. Then, (ug, . .., %y)
solves

(54)  Epdtujis — 2epPuiy + pdtuj — evd®ujyy + vou; + DE(w)) = 0,
subject to the initial and final conditions

(5.5) up = u’, pouy = put, and

(5.6) ezpézun =0, gzpégun = gpé‘zun,l + evOUy_1.

Equations (5.4)-(5.6) are the discrete analogue of equations (3.5)-(3.7).

5.3 — Discrete estimate

The argument of Subsection 4.1 can be made rigorous at the time-discrete
level. We present here a time-discrete version of estimate (4.5) by using the time-
discrete Euler-Lagrange system (5.4). Namely, we aim at proving the following.

LEMMA 5.3 (Discrete estimate). — Let (uy,...,u,) minimize the discrete
WIDE functional W, over IC.(u’, ul). Then, for all & and t sufficiently small we
have

n—2 n—2
(5.7) P+ o+ B < C.
j=2 j=2

PrOOF. — Let us assume from the very beginning that p > 0 throughout this
proof. Indeed, the case p = 0 (and correspondingly v > 0) is already detailed in
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[17]. We argue by mimicking at the discrete level the estimate of Subsection 4.1.
Namely, we shall perform the following:

n—2 n—2 k
(5.8) Z 5. 4)’1; S —ul + Z <Z T(5’4)’U51Liul> '
k=2 k=2 1=1

At first, let us test the time discrete Euler-Lagrange equation in (5.4) on
v = t(ou;—u!) and sum for j = .,k <n—2in order to get that

k k k
(5.9) &Y 1 ujiz,0u —u")—26p Y " 1(SPujiy, Suj—u) —ev Y 1Pz, Sup—u')
j=2 j=2 J=2
k k k
+p > (0w, ouy — uh) + vy w(Suy, oup —u) + Y t(DEw;), duj — u') = 0.
j=2 j=2 Jj=2

We now treat separately all terms in the above left-hand side. The fourth-order-
in-time term can be handled as follows.

K K
(5.10) &p> (S ujsz, u—u) = &p Y (Pujiz— uji1, ou—u')
Jj=2 j=2

k
= (Pt y2, Sup—u") — Ep(Pus, Suz — u') — Ep > 1(SPujy1, 8%uy)
=3

k
= Ep(Pttgs2, Swp—ut) — Ep Y 1wy, 0P uy)
)

&p &p
= &p(Pup 2, Sup—u') - —|52uk+1| t5 | Pusl” + pZ|52%;+1 O,
j=2

where we also used that du; = u!. Next, we treat the third-order-in-time term of
(5.9) somehow similarly as

k k
(511)  —2ep Y t(Pujir, duj—u') = —2ep( w1, Sup—ut) +2ep > tloPu; .
= =2

As for the remaining discrete time derivatives in (5.9) we compute

(5.12) pZT(5 w;, Suj— u)—zzmj ouj 1 +5 |(5u —ul?,

j=2
k
(5.13) 8VZT(5 Ujt1, OU— u)— |6uk+1 —ulf? ——\5% —u'F— Z|5u7+1 5u, ,
Jj=2 =2

k k
(5.14) vz (0w, ouj—ut) = vy tlowF — v w(duy, ul).

j=2 j=2 Jj=2
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By using the A-convexity of F' we obtain for the last term in (5.9)

k Lk
o(DEuy), du—u) "= 3" t(DEw), ouj—u)

Jj=2 J=1

k
> E(u) — Ew®) = " t(DE(u)), u') + me —uj [
J=1

J=1

(5.15)

Bl

We now recollect computations (5.10)-(5.15) into equation (5.9) in order to de-
duce that

E (0 tpy, Sup—ut) — - |52%k+1| — 2ep(P g1, S — )+23pZT|52%;
j=2

k
P 12 & 12 2 It 9
616 oo wl — 5 louk—u] +VZT|5M_;'| +E'(uk)+§];r|5uj|

Mw

<C+ Y t(DE@w),u') + vzf(au,,u ).

=1 j=2

.,

Let us now move to the consideration of the second term in (5.8). We multiply
(5.16) by 7 and take the sum for k = 2,...,n — 2 getting

n—2

8/)21’(5 Wir2, Op—ul) — pZT|52uk+1| ~2ep Y w01, S —h)
k=2 k=2
n—2 k 0 o ,07172 L2 &y n—2 L2
+2gpk zfzrw | +§Zr|5u,ru | fEZﬂéukau \
— j=2 Jj=2 k=2
(517) n—2 k n—2 e 2 k
+vY Ty ol + > B + EZ ey louf?
k=2 j=2 k=2 j=2
n—2 k n—2 k
<C+ ZTZ ‘C<DE(1/L]'),ZL + VZ ‘EZ r((iuj,ul).
k=2 j=1 k=2 j=

By summing by parts, we can write the first term in (5.17) in the following way:

n—2 n—2
&p Z (P upy2, Sup—u') = p Z (O er2— g1, Owyy — ub)
k=2 k=2
n—2
(5.18) = &p(0Puy, Oty —u") — Ep(Pug, uz — ul) — p > (0 U1, )

k=3
n—2
2 2 : 2 2
= —=&p 7(5 ’LL;Hl,(S uk)
k=2
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where we have used the initial condition pdu; = pu' and the final condition
pd*u, = 0. Moreover, we can also compute that

(5.19)
n—2
— 2ep Z (a1, Oup—ut) = ZSPZ (Ot — U1, Sup—u')
k=2 k=2
n—3
= 6/7|(5u2 —u' |2 + 8/72 |5uk+1 —ouy, |2 - 8p|5un72 —ul ‘2 + 28/)(57/%72 _57/57171; Oy 2 _ul)
k=2
n—3
= &p|oug — ul |2 +¢ep Z |5uk+1—5uk\2 — ep|5un,g—u1 |2 — 28pr((52un,1, Othyy_o—ul)
k=2

3
Z o §8p|5un—2_u1‘2 - 28/7‘[2‘52“”_”2'

Furthermore, we observe that

n—2 n—

n—2
(5:20) 2ip 3 clof —epzr<52uk+l,52uk> ”erzum
k=2

n—2 pn 2 82 n—2 82/7 n—2
> 2y tlo"ml* erézuk+l| — S dPuf =LY Aol
k=2 k=2 k=2

3 n—2
> p<28— 582> Z r|52uk|2 - 82p7:|52un,1|2.

k=2

Let us now write estimate (5.16) by choosing k¥ = n» — 2 and taking advantage
of the final boundary conditions in (5.6)

&
ev(Ott—1, Otz —1") — ep(6* 11, OUy—2—u") — —p 0% 1*

(5.21) +2.spzf|52uj| +Z \(mn a—ul|? ——|5un 1=l +er\5u]| +E(t,_2)
j=2 j=2
n—2 n—2
<C+ > tDE@),u') + v w(duj,u').
Jj=1 j=2

Note that due to the final conditions in (5.6) the following identity holds:
v
—p52u7071 = méunfL

Hence, we have that
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eV (01, Oty —1") — ep(0* U1, Oty —ul)

ey
= ev| Oy 1|* — (01, Ohy—1—Oty—2) — (St _1, U + P (U1, Oty_o—ut)

_av|5un 1| —evt(Ouy— 1,5 Up— 1)—8V<1++>(57/Ln 1, U )+6V<T+ >|5u,7 1|

evt
- (57/% laéun 1— 5“?@ 2)
T+¢

2 3
T VT VT 2 T 1
=ev|[ 1+ + + oun—1|" —ev{ 14+ —— | (0tp_1,%
( t+e  plt+e) P(T+£)2>| w1l ( r+e>( )

> v(s— §> |01 P — 2v]ut 2.

Therefore, by recalling that p > 0 we have from (5.21) that

e v &t 2eth)? "72
(35 5t

n—2
(5.22) |5un a—u'? +vZ‘c\5u]| + E(ty_3)
j=2
n—2 n—2
<C+) t(DE(u),u +er(5uj,u)
j=1 j=2

where we have used that

e 3
%\m_l —u'f* < Sevlow,aff +C,

&2

&P o 2 > )\ 2 &V 2
_ " = — | — > —— .
L\t = -5 (T H) R

By taking the sum of (5.22) and (5.17), using the equalities (5.18), (5.19), (5.20),
and recalling the fact that p > 0 we obtain that

1 3 ve ve &1 2er®? 381}1’
2 2 |5un 2—U | + |- ‘5 Uy — 1|
n—2 n—2

k 2\ n—2
3¢
2 2 2
+v(l-e) > lou| +E(un_2)+2€p§ :TE 7[6%uj] —I—/)(ZS—?) Y tlo%ul

=2 j=2 k=2

-2
221|6uk ull? +< T>
k=2

n—2 n—2 n—2

<C+Zr DE(u)), u’ +er(5u;,u )+ZTZT DE(u)), ! +erZr(5u7,u ).

k=2 j=1 k=2 j=2

n—2 n—2

k
o tloul® + Z B (uy,)

k=2 j=2

| ‘b
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As ¢ and 7 are assumed to be small, by using the growth conditions in (2.1) and
Young’s inequality we readily get the estimate. O

5.4 — Proof of Lemma 4.1

In order to conclude the proof of Lemma 4.1 we need to show that the
time-discrete energy estimate in Lemma 5.3 passes to the limit as © — 0 (for
fixed ¢ > 0). To this aim, we check the discrete-to-continuous /I"-convergence

W, ER W, with respect to the weak topology on U (see [5, 7] for relevant
definitions and results on I'-convergence).

For all vectors (wy, ..., w,), we indicate by w, and w;, its backward constant
and piecewise affine interpolants on the partition, respectively. Namely,

w.(0) = w:(0) := wo, W) :=w;, w@) := a;B)w; + A—o;(D))w;_1
fort e (@1 —1)r,it], 1=1,...,n

where we have used the auxiliary functions
o) =t — G —Dr)/rfort e (i — r,it], i=1,...,n.
With these definitions we can reformulate the estimate in Lemma 5.3 as

T2t T2t
(5.23) (p+) f By 2 dt + f E@)dt < C

where u: and %’ denote the interpolants associated with the minimizer
(ug, . . ., uy) of the discrete WIDE functional W,.

LeMMA 5.4 (Discrete-to-continuous I'-convergence). — Let
Y, = {u:10,T] = VNX : uis piecewise affine on the time partition}
and define the functionals W,, W, : V — [0, 00] as

W) if ue K’ u),
00 elsewhere,

W.(u) := {

Wee(0), u(2), . .., u(T)) if w e V. N K@, ub),
00 elsewhere.

Wm’ (u) = {

Then, W, I'-converges to W, with vespect to both the strong and the weak to-
pology of V.
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Before going on, let us remark that
(524) e, @, @ +0), (- +20) — (tH e‘t/”) strongly in L=(0, T),
the convergence of e, being actually strong in W1>°(0, 7).

ProoF. — The proof is classically divided into (i) proving the I'-liminf in-
equality and (ii) checking the existence of a recovery sequence (see [7, 5]).

Ad (i). Assume to be given a sequence u, € ]A/T such that u, — u with
respect to the weak topology on V and liITIL iglf We(u,)<oco. Let us denote by

i € CY([0,T; VNX) the piecewise-quadratic-in-time interpolant of u; :=u.(i7),
1=0,...,n, defined by the relations

U (t) ;= u.(t) for tel0,1]
and O, = o (&)Ou.(t) + A—o(t)0u.(t—1) fort e (r,T]

where we have used the notation o (t) := o;(¢) fort € (¢ — 1)z,iz],i =1,...,n. We
preliminarily observe that

(5.25) O () = Opu(t — ) + 1o, (D) Ou.(t) Vvt € (¢, T].

Since lim iglf W..(u,) < oo we can extract a not relabeled subsequence such that

we have u.(0) = «° and

—0

T T—7 T-2t
. Ep (0 - 2 v [ 9 _ _
lim sup (7fef|8ttuf| dt+§ fef( - 4+1)|Ou.|” dt + f e.(- +20)E(u,) dt | <oo.

T T

Then, owing to convergences 5.24 we have that, for small t,

T T—1 T2t
p[1owdt v [ joafrat+ [ B@odt<c.

Hence, by using the growth conditions (2.1) and by possibly further extracting a
not relabeled subsequence (and considering standard projections for ¢ > T — 21)
we have that

(5.26) u; — u weakly in L”(0, T; X),
(5.27) 2, — u weakly in L2(0, T; V),
(5.28) u, — u weakly in HY(0, T; H),
(5.29) il — v weakly in H%(0, T; H),
(5.30) pOyit. — pvy strongly in C%(0, T; H).

Indeed, we have that v =u. In order to check this fix w € L2(0,T;H) and
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compute that

T T T
» f (Ovie—1tr, w) At = p f (Oytte—tz, ) dt + p f Oue( - —7) + ToreOysfie—at, w) it
0 0 T
T T
= p [ @te—r,w)dt + p [ @ ~7) — B + oDy, )
0 T

T T
= | @ue—u,wrat — pr [ A=00)@uite, w)at — 0
0 T

where we have used (5.25), (56.28), |o.| <1, and the boundedness of |/pdyu% in
L%(0, T; H). Namely, pdyii. — pu; weakly in L2(0, T; H) and v = . In particular,
owing to convergence (5.30) we have proved that pu! = pdu.(0) = pus(0) and
u € Kud, ul).

Eventually, we exploit the convergences in (5.24) and (5.26)-(5.29) in order to
get that

3 &p 2 3 &p 2 - &p 2
Of e 20 fuu dt < limint f 2.0 |Outef* dt = lim inf ;mj7|52uj| ,

T T—7 n—1
Of e‘t/ggzl\ut|2dt§lirfrliglf f éf(~+r)%|8tuf|2dt:lirpjglf ;fejﬂsz—kujf,

T T—27 n—2
fe*t/ﬂE(u) dt < liminf f e(- +20B(@,) df = liminf 3 te; 2B (uy).
5 7—0 , 7—0 =

In particular, these three inequalities ensure that
o n 82 D 5 n—1 &V > n—2
Wa(w) < liminf | > e 5 0P+ e 5 10wl + > e 0B w))
Jj=2 J=2 Jj=2
= hrrrllglf War(“O, cee 7un) = llfgljglf Wer(ur)a

which is the desired I-liminf inequality.
Ad (ii). Let us define the backward floating mean operator M, on L0, T; H)
by setting
u? for t € [0, 1)

t
M (w)t) = 1
]

t—1

u(s)ds forte[r,T].

Then, let u € K(u°, u') be fixed and define (uq, . ..,u,) by

uy = u°, pulzpqurrpul, u; = M (w)tit) forit=2,...,n.
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We denote by u. and %, the piecewise affine and constant interpolants, respec-
tively, associated with (uy, ..., uy,).

We aim to show that u, is a recovery sequence for . Indeed, we clearly have
that %, converges strongly to u in L2(0, T; V)N LP0, T; X), while %, converges at
least weakly to u in L2(0 T;V)nLP0,T; X). Moreover, one can check that

f|atuf g2 dt—f|u _uf? dt+Z f

=2 (_1)

—f|u —? dt+z

=2 (_1)r

2

f u(s) —u(s—7)) ds —uy| dt

(-1t

(5.31) 2
J[M (ug)ds — ;| at

(t—Dr

Hence, as one has that M, (u;) — u; strongly in L2(0, T: H), we conclude that u, — u
strongly in H(0, T'; H). In particular, we have verified that u, — u weakly in i/
Next, we exploit the A-convexity of /' and compute that

n—2 n—2 it
SteisB@) =Y [ eia(E@)-EW) + ei o)t
=2 =2 (i_1)r

T2t

< f e +2f)(<Am,m—u> - (F ), i) — % 2 — uf? + E‘(u)) dt

In particular, by taking the lim sup as © — 0 and recalling that %, — u strongly
in L20,T; V)N LP(0, T; X) and the convergences (5.24), we have that

T

(5.32) lim sup (Z i ol (%)) f e 1 E(u) dt.

7—0 0

Next, we deal with the second-order derivatives in time like we did in (5.31). We
compute

pfléuf —uy|* dt = /)Z f

=2 (i—1)¢

2
’LL1 zuz 1+’LL1 2 d
—————— — Uy t

2

dt

Gi—1)r

n it 1 it 1
= pz f = f(ufu( +—1))ds — = f (u—u(- —1)) ds —uy
=2 (i-1) (-1 (i-2)7
(5.33) 2

T

s f 5 f<sf(ut—ut(~—r))dr>ds—utt

=2 (j—1)¢ (i-1)t

dt

T 2

dt — 0

J[ M. (M (uy)) ds — uy
(-De

>

=2 (j—1)




WEIGHTED INERTIA-DISSIPATION-ENERGY FUNCTIONALS ETC. 25

where the convergence to 0 is ensured by the fact that M.(M.(uy)) — uy
strongly in L2(0, T'; H). In particular, the convergence in (5.33) shows that (see
the proof of (i) for the definition of u.)

Oty — uy  strongly in  L20, T; H).

Finally, combining (5.31)-(5.33) we have proved that

T
W{;(u):fet/s( e + 5 \ut\ +E(u)> dt
0

T —7 T2t
> Tim sup ( f %|attuf| dt + f e +r) Y\ By, 2 dt + f a.(- +2r)E’(uT)dt>

n 82 n—1
= lim sup (Z 1€, —— uL| + Z reHl |(5ul| + Z reﬁgE’(ul))
=0 \'=2

=2
= limsup W (uo, . .., %)
—0
= limsup W (u,).
—0
Namely, u. is a recovery sequence for u. O

Proor or LEMMA 4.1. — The minimizers u¢ of the discrete functional W,
fulfill estimate (5.23) and are hence weakly precompact in . As W, I'-
converges to W, with respect to the same topology by Lemma 5.4, we
have, by the Fundamental Theorem of I'-convergence (see [7, Ch. 7] and
[5, Sect. 1.5]), that ¢ — u* weakly in U, where «* is the unique minimizer
of W,. Finally, estimate (5.23) passes to the limit and we have proved
Lemma 4.1.
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