BOLLETTINO
UNIONE MATEMATICA ITALIANA

ANDREA CIANCHI

Eigenfunctions of the Laplace-Beltrami
Operator, and Isoperimetric and Isocapacitary
Inequalities

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 6 (2013), n.1,
p. 167-190.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2013_9_6_1_167_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2013_9_6_1_167_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2013.



Bollettino U. M. 1.
(9) VI (2013), 167-190

Eigenfunctions of the Laplace-Beltrami Operator,
and Isoperimetric and Isocapacitary Inequalities (*)

ANDREA CIANCHI

1. — Introduction

This is a slightly expanded version of a talk that I delivered in the occasion of
the XIX Congress of the Italian Mathematical Society held in Bologna in
September 2011. I wish to thank the Scientific Committee and the Organizing
Committee of the Congress for their kind invitation, of which I am sincerely
honored.

We shall discuss some methods of geometric nature in the study of
qualitative and quantitative aspects of eigenvalue problems for the Laplace
operator, and some of its generalizations. Among various issues of relevance
on this topie, two questions will be focused. On the one hand, information
on the spectrum of the Laplacian, and, in particular, on its discreteness, will
be provided. On the other hand, criteria for the regularity of eigenfunc-
tions, and specifically their integrability and boundedness, will be illu-
strated. The results to be presented are the fruits of a collaboration with
V. G. Maz’ya.

A prototypal instance of the problems at hand concerns the Laplace operator
in a bounded open subset Q of R” coupled with (homogenous) Dirichlet boundary
conditions. The Dirichlet Laplacian on ©, denoted by 45, is the semi-definite self-
adjoint operator in the Hilbert space L?(M) associated with the closed bilinear
form

(1.1) a(u, v) :fVu«Vvdoc,
Q

which is defined for % and v in the Sobolev space Wé’Q(Q).

The spectrum of the operator 43 is discrete, namely its continuous spectrum
is empty, and all the eigenvalues have finite multiplicity. This is a classies in
spectral theory — see e.g. [RS].

(*) Conferenza Generale tenuta a Bologna il 14 settembre 2011 in occasione del XIX
Congresso dell’Unione Matematica Italiana.
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In a PDE’s setting, the eigenvalue problem for the Laplacian under Dirichlet
boundary conditions takes the form
{ —du=Ju in Q

(1.2)
u=>0 su 0Q.

Recall that a function v € Wé’z(Q) is an eigenfunction of problem (1.2) associated
with the eigenvalue 1 € R if

(1.3) fVu -Vode = }Lf@wdac
Q Q

for every test function v € WS’Z(Q).

Standard regularity results ensure that any eigenfunction u of problem (1.2)
is bounded in Q. Moreover, a sharp estimate is known for any L(£) norm of « in
terms of its L2(Q) norm. A result of [PR] and [Chi] tells us that, if ¢ € (2, oc], then

(1.4) [/l o) < €, g, Dl 20

for every eigenfunction u of (1.2) associated with the eigenvalue A, where

ng 1
q
qn
(f ,'ﬁn—1+q—7J,2,1(V)QdT>
L1 (g-2m 0

Cn,q,A) =nwl, “1

: )
‘7_’27‘71 1

( | Vng(r)ZdrY

0

Js—1 is the first positive zero of the Bessel function Jy_;, and w, = #*/I'(%+1),
the Lebesgue measure of the unit ball in R". Moreover, equality holds in (1.4) if
and only if Q is a ball, and 4 is the smallest Dirichlet eigenvalue in Q.

A key tool in the proof of inequality (1.4) is the standard isoperimetric in-
equality in R" due to De Giorgi [D], which, loosely speaking, amounts to saying
that the ball minimizes perimeter among all sets in R” of given measure. More
precisely, on denoting by |E| the Lebesgue measure of a set £ in R", and by P(E)
its perimeter (in the sense of geometric measure theory [Ma7, Zi]), the iso-
perimetric inequality in R" asserts that

(15) nal/"|E|V" < P(E)

for every measurable set E in R" having finite measure.

Variants in this basic setting lead to different conclusions, whose proofs re-
quire other tools. This is the case, for instance, when eigenvalue problems for the
Laplacian under Neumann boundary conditions are considered.
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The Neumann Laplacian in an open set  of finite measure in R”, denoted by
Ag , is the semi-definite self-adjoint operator in the Hilbert space L?(M) asso-
ciated with the same closed bilinear form a(u, v) as in (1.1), but now defined for u
and v in the whole Sobolev space W'2(Q).

The Neumann counterpart of (1.2) is problem

(1.6) on

{Au},u in Q
o

0 su 0Q.

An eigenfunction % of the Laplacian under homogeneous Neumann boundary
conditions is a solution to (1.6) for some 1 € R. This amounts to requiring that
u € WH2(Q), and fulfills the equality

(1.7) waVvdac:ifuvdm
Q Q

for every test function v € W12(Q).
Unlike that of 45, the spectrum of A3 need not be discrete if  is irregular.
Moreover, the (possible) eigenfunctions « of (1.6) may not belong to L4(Q2) for g > 2.
Thus, the question arises of minimal regularity conditions on Q for the
spectrum of AY to be discrete, or for an estimate of the form

(1.8) ||u||Lq(Q) < C||“||L2(Q)

to hold for some g € (2, ], for some constant C = C(22, ¢, 4), and for any ei-
genfunction u of (1.6) associated with the eigenvalue 1.

One purpose of this exposition to point out how these issues can be addressed
on making use of a variant of the isoperimetric inequality (1.5), called the relative
isoperimetric inequality in €, where subsets £ of Q are considered, and the
(n — 1)-dimensional Hausdorff measure of just the inner part of the boundary of
E comes into play. An inequality involving a suitable capacity — the condeser
capacity — of subsets of Q, instead of their perimeter, will be shown to be even
more effective in dealing with very iregular domains.

In fact, our discussion will be carried out in a broader framework, where the
open set Q2 is possibly replaced with a more general noncompact n-dimensional
Riemannian manifold M. Accordingly, the Laplace-Beltrami operator on M will
be taken into account.

The analysis of spectral problems for the Laplace-Beltrami operator on
Riemannian manifolds is a very classical issue. We do not even attempt to pro-
vide an exhaustive bibliography on this matter; let us just mention the reference
monographs [Cha, BGM], and the papers [Bou, Br, BD, Che, CGY, DS, Dol, Do2,
Es, Ga, Gr2, HSS, JMS, Na, SS, So, SZ, Ya]. Most contributions to this topic
regard compact manifolds.
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Our main focus will be instead on the case when
M need not be compact,

and
H' M) < o,

an assumption which will be kept in force throughout. Here, H" denotes the
n-dimensional Hausdorff measure on M, namely the volume measure asso-
ciated with the Riemannian metric on M. We shall also assume that M is
connected.

Minimal conditions on the geomerty of the manifold M for the discreteness of
the spectrum of the Laplace-Beltrami operator, and for LY(M) or L>(M) esti-
mates for eigenfunctions will be presented.

Information on the regularity of the geometry of M will be retained either
through the isocapacitary function vy, or the isoperimetric function I, of M.
They are the largest functions of the measure of subsets of M which can be
estimated by the capacity, or by the perimeter of the relevant subsets, respec-
tively. Loosely speaking, the asymptotic behavior of vy; and I3, at 0 accounts for
the regularity of the geometry of the noncompact manifold M: decreasing this
regularity causes vy(s) and Iy (s) to decay faster to 0 as s goes to 0. The in-
equalities associated with vy, and ), are called the isocapacitary inequality and
the isoperimetric inequality on M, respectively.

Let us mention that the isoperimetric function of open sets in R" was in-
troduced in [Mal], and employed in the study of Sobolev inequalities [Mal], and
in a priori estimates for solutions to elliptic boundary value problems [Ma2, Ma6].
Isocapacitary functions were introduced and used in [Mal, Ma3, Ma4, Mab, Ma7]
in the characterization of Euclidean Sobolev embeddings. Later investigations
and applications of the isoperimetric function, as well as extensions to the case of
Riemannian manifolds, can be found e.g. in [CGL, Ga, Grl, Gr2, GP, KI].

Both the conditions in terms of vy, and those in terms of I, that will be
imposed for the spectrum to be discrete, or for the validity of eigenfunction
estimates are sharp in the class of manifolds M with prescribed asymptotic be-
havior of vy and I, at 0. Each one of these two approaches has its own ad-
vantages. The isoperimetric function /), has an apparent geometric nature, and
it is usually easier to investigate. Although the isocapacitary function can be less
simple to be analyzed, its use is in a sense more appropriate, since it not only
implies the results involving I3, but also applies in situations where the latter
does not. Typically, this is the case when manifolds with complicated geometric
configurations are taken into account.

The results outlined in the present note are the object of the papers [CM2]
and [CM3], to which we refer for a more detailed exposition and for proofs. Let
us mention that methods relying upon the use of isoperimetric and isocapacitary
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functions have also been successfully applied to deal with existence [ACMM] and
regularity [CM1, CM4] of solutions to Neumann boundary value problems in
irregular domains and with irregular data.

2. — Perimeter and capacity

Let £ be a measurable subset of M. Its perimeter P(F) can be defined as
P(E) =H"10'E),

where H" ! stands for the (n — 1)-dimensional Hausdorff measure on M induced
by its Riemannian metric. Recall that 0*E agrees with the topological boundary
OF of E when F is sufficiently regular, for instance an n-dimensional Riemannian
submanifold (with boundary) of M. In the special case when M is an open subset
Q of R", and E C Q, we have that P(E) = H" (0"E N Q).

The isoperimetric function I : [0, H"(M)/2] — [0, oc] of M is defined as

(2.1) Iy(s) =inf{PE):s < H"(E) < H"(M)/2} for s € [0, H"(M)/2].
The isoperimetric inequality
(2.2) Iy(H"(E)) < P(E) if 0 <H"(E) <H"M)/2,

is a straightforward consequence of definition (2.1). The function I, is explicitly
known only for manifolds in special classes [BC, CF, CGL, GP, MHH, K1, MJ, Pi,
Ri], including Euclidean balls and spheres [BuZa, Ci2, Ma7]. Qualitative and
quantitative information on I, is however available under fairly general as-
sumptions — see e.g. [BuZa, Cil, HK, KM, La, MaT7]. In particular, the fact that
M is connected ensures that

(2.3) Iy(s)>0 for s € (0, H"(M)/2].

The asymptotic behavior of I, at 0 depends on the regularity of the geometry of
M. For instance, if M is compact, or if it is an open set in R" with Lipschitz
boundary, then

(2.4) In(s) ~ st/ near 0.
Here, and in what follows, the notation
(2.5) f=g near 0

for functions f, g : (0, 00) — [0, c0) means that there exist positive constants cy, co
and sy such that

(2.6) c19(c1s) < f(s) < caglces) if s € (0, s).
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The notion of capacity is related to that of the Sobolev space W12(M). The
latter is defined as

W2(M) = {u e L?(M) : w is weakly differentiable on M and |Vul| € LZ(M)} .

Here, Vu denotes the gradient of » on M, and |Vu| is its length in the
Riemannian metric of M. We adopt the notation Wé’Z(M) for the closure in
W12(M) of the set of smooth compactly supported functions on M.

The standard capacity of a set £ C M can be defined as

2.7) CE) =

inf { f |Vu|2 dr:u e Wé’z(M ), > 1 in some open neighbourhood of E}
M

A property is said to hold quasi everywhere in M, briefly q.e., if it is fulfilled
outside a set of capacity zero.

Each function u € W'2(M) has a precise representative % which is quasi
continuous, in the sense that for every & > 0, there exists a set A C M, with
C(A) <e, such that the restriction of % to M \ A is continuous. The function % is
unique, up to subsets of capacity zero. In what follows, we assume that any
function u € WH2(M) is precisely represented. A standard result in the theory of
capacity ensures that, for every set £ C M,

(2.8) C(E) = inf{ f |Vaul? dec : w € Wy*(M),u > 1 q.e. in E}
M

(see e.g. [MZ, Corollary 2.25]).
A variant of the capacity C(E), of use in our applications, is the condenser
capacity C(E, @) of the sets £ € G C M, which is defined as

(2.9) CE,G) =

inf{f|Vu|2doc cu € WM, u>1 q.e. in £ and u <0 q.e. in M\G} .
M

Accordingly, the isocapacitary function vy : [0, H"(M)/2] — [0,00] of M is
given by
(2.10) vy(s) = inf {C(E, @) : E and G are measurable subsets of M such that
EcGcMands<H'E) <H'G) < H”(M)/Z}
for s € [0, H"(M)/2].
The ensuing isocapacitary inequality reads

(2.11) v (H(E)) < C(E, G) if 0<H"N(E) < H"(M))2.



EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR ETC. 173

The function vy, is clearly non-decreasing. The functions vy; and Ij; are related
by the inequality

(2.12) v (s) > 7 1 for s € (0, H"(M)/2).

Dz g

s Iy

Let us notice that a reverse inequality in (2.12) does not hold in general, even
up to a multiplicative constant.
Combining (2.3) and (2.12) tells us that

(2.13) yu(s) > 0 for s € [0, H"(M),/2].

When M is compact, or when it is an open set in R" with Lipschitz boundary, one
can exploit equations (2.4) and (2.12) to show that

s if n > 3,

(2.14) vy (s) ~ -1
<log i) if n=2,

near 0.

3. — Discreteness of the spectrum

Given any n-dimensional Riemannian manifold M as in Section 1, we denote
by 4y the semi-definite self-adjoint Laplace operator in the Hilbert space L*(M)
associated with the closed bilinear form

a(u,v) :f<Vu, Vo) dH"(«x),
M

defined for  and v in the Sobolev space W(M). Here, (-, -) stands for the scalar
product induced by the Riemannian metric on M.

This definition of 4y, includes various special instances. For example, if the space
C3°(M) of smooth compactly supported functions on M is dense in W2(M), the
operator Ay, agrees with the Friedrichs extension of the classical Laplacian, re-
garded as anunbounded operator on L(M) with domain C5°(M). This is certainly the
case when M is complete [Ro, St], and, in particular, if M is compact. When M is an
open subset 2 of R”, the operator 4, agrees with the Neumann Laplacian Ag on Q.

In the present section we deal with the problem of the discreteness of the
spectrum of 4. This property is well known when M is compact, or when M is an
open subset of R"™ with finite measure and sufficiently regular boundary.
However, the spectrum of Ay; may be not discrete in general.
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Special situations, which are not included in this standard frameworks, have
been considered in the literature by ad hoc methods. For instance, conditions for
the discreteness of the spectrum of the Laplacian on noncompact complete
manifolds with a peculiar structure are the object of [Ba, Bro, DL, Es, Kl1, K12].

A necessary and sufficient condition on a Riemannian manifold M for the
spectrum of 4y to be discrete can be given in terms of its isocapacitary
function vy,.

THEOREM 3.1 (Manifolds with a discrete spectrum). — The spectrum of Ay is
discrete if and only if

(81) I

Theorem 3.1, combined with inequality (2.12), yields a sufficient condition for
the discreteness of the spectrum of Ay, in terms of the isoperimetric function I,
of M.

COROLLARY 3.2 (Discreteness of the spectrum via Iy;). — Assume that

(3.2) lli‘[(l) G 0

Then the spectrum of Ay is discrete.

Let us point out that conditions (3.1) and (3.2), as well as any other criterium
involving vy, or Iy, that will exhibited in what follows, are invariant under re-
placements of vy, or I, with functions which are equivalent near 0 in the sense
of (2.5).

Observe that in particular, the classical result on the discreteness of the
spectrum of the Laplacian on any compact Riemannian manifold M can be re-
covered either via Theorem 3.1, or via Corollary 3.2, owing to (2.4), or (2.14),
respectively.

Although not necessary for a single manifold M, assumption (3.2) is essen-
tially minimal for the spectrum of Aj; to be discrete in classes of manifolds M
with prescribed isoperimetric function ;. To be more specific, consider any non-
decreasing function 7 : [0, c0) — [0, co), vanishing only at 0, and such that

I
(3.3) (®) ~ a non-decreasing function near 0.

n—1

S

Then, there exists an n-dimensional Riemannian manifold of revolution M ful-
filling

(34) Iy (s) = I(s) near 0,
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[CMS3, Proposition 4.3]. Note that assumption (3.3) is required in the light of the
fact that (2.4) holds for any compact manifold M, and that Iy,(s) cannot decay
more slowly to 0 as s — 0 in the noncompact case. Now, if I is such that
lim s(}lp%) > 0, then

s

(3.5) lim sup 0

LA
s—0  du(s)

as well. Owing to Proposition 5.1, Section 5 below, condition (3.5) for the relevant
manifold of revolution M is equivalent to

lim sup >0,

s—0 VM(S)

and, by Theorem 3.1, the latter implies that the spectrum of 4, is not discrete.

A key step, of possible independent interest, in the derivation of Theorem 3.1
is the next theorem, showing the equivalence of condition (3.1) to the compact-
ness of the embedding

(3.6) WY(M) — L2(M).
THEOREM 3.3. — Embedding (3.6) is compact if and only if (3.1) holds.

Indeed, a standard result in the theory of positive-definite self-adjoint
operators in Hilbert spaces (see e.g. [BS, Chapter 10, Section 1, Theorem 5])
ensures that the discreteness of the spectrum of the operator —4,; + Id, and
hence of —4y;, on M is equivalent to the compactness of embedding (3.6).

4. — Eigenfunction estimates

We are concerned here with estimates for eigenfunctions of the Laplacian on
the manifold M, namely functions « € W'2(M) fulfilling

(4.1) f (Vu, Vo) dH @) = ) f wv dH"(x)
M M

for some A € IR, and for every test function v € W2(M).
Note that, if M is a complete Riemannian manifold, then (4.1) is equivalent to
the weak formulation of the equation

(4.2) Au+u =0 on M,

where 4 denotes the Laplace-Beltrami operator on M, called Laplacian in what
follows, for simplicity. In the case where M is an open subset Q of R", equation
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(4.1) agrees with (1.7), and hence solutions to (4.1) are eigenfunctions of the
Neumann problem (1.6).

When M is compact, one easily infers, via local regularity results for elliptic
equations, that any eigenfunction u of the Laplacian belongs to L°°(M). Explicit
bounds, with sharp dependence on the eigenvalue A, are also available [SS, SZ],
and require sophisticated tools from differential geometry and harmonic ana-
lysis. If the compactness assumption is dropped, then the membership of u to
W12(M) only (trivially) implies that « € L?(M). Higher integrability of eigen-
functions is not guaranteed anymore. Our aim is to exhibit minimal assumptions
on M ensuring LY(M) bounds for all ¢ <oo, or even L>(M) bounds for eigen-
functions of the Laplacian on M. The results to be presented can be easily ex-
tended to linear uniformly elliptic differential operators, in divergence form,
with merely measurable coefficients on M. Let us emphasize, however, that they
provide nontrivial new information even for the Neumann Laplacian on open
subsets of R".

4.1 — LY estimates for eigenfunctions

An optimal condition on the decay of vy, at 0 ensuring L9(M) estimates for
eigenfunctions of the Laplacian on M for q € (2, 00) is contained in the following
theorem. Interestingly enough, such a condition is independent of q.

THEOREM 4.1 (L? bounds for eigenfunctions via vy;). — Assume that

(43) o ®

Then for any q € 2,00) and for any eigenvalue A, there exists a constant
C = C(vy,q, 2) such that

(4.4) ||u||L(I(M) < C”“”LZ(M)

for every eigenfunction u of the Laplacian on M associated with A.
An estimate for the constant C in inequality (4.4) can also be provided.

PROPOSITION 4.2. — Define the function O : (0, H"(M)/2] — [0, 00) as

7
O(s) = sup ——
re(og) v (7)

for s € (0, H"(M)/2].
Then inequality (4.4) holds with
Cy

Coy,q. ) =—F—+
(07(Ce/ %)

)

Dol
Q=
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where C1 = C1(q, H"(M)) and Cy = Cs(q, H"(M)) are suitable constants, and o1
1s the generalized left-continuous inverse of 6.

ExXAMPLE 4.3. — Assume that n > 3, and there exists f € [(n — 2)/n,1) such
that the manifold M fulfils vy(s) > Cs”? for some positive constant C and for
s € [0, H"(M)/2]. Then (4.3) holds, and, by Proposition 4.2, for every q € (2, o)
there exists an constant C = C(q, H"(M)) such that

’\(qi
[/l paary < CAHD || paary

for every eigenfunction u of the Laplacian on M associated with the eigenvalue A.

Let us note that, by Theorem 3.3, condition (4.3) turns out to be equivalent to
the compactness of the embedding W'2(M) — L?(M). Hence, in particular, the
variational characterization of the eigenvalues of the Laplacian on M entails that
they certainly exist under (4.3). Observe that condition (4.3) is also equivalent to
the discreteness of the spectrum of Ay, on M provided by Theorem 3.1.

The next result shows that assumption (4.3) is essentially minimal in Theorem
4.1, in the sense that L9(M) regularity of eigenfunctions may fail under the mere
assumption that

vyu(s) ~ s near 0.

THEOREM 4.4 (Sharpness of condition (4.3)). — For any n > 2 and q € (2, ],
there exists an n-dimensional Riemannian manifold M such that

(4.5) vyu(s) = s near 0,
and the Laplacian on M has an eigenfunction w¢ LI(M).

The manifold mentioned in Theorem 4.4 is a manifold of revolution from a
family described in Subsection 5.1 below.

The following criterion for L(M) bounds of eigenfunctions in terms of the

isoperimetric function Ip; can be obtained from Theorem 4.1 and inequality
(2.12).

THEOREM 4.5 (L7 bounds for eigenfunctions via I};). — Assume that

(4.6)

li =

sll% I M(S)

Then for any q € (2,00) and any eigenvalue J, there exists a constant
C = CWy,q, ) such that

(4.7) el Laary < Cllwll g2

for every eigenfunction u of the Laplacian on M associated with A.
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An analogue of Theorem 4.4 on the minimality of assumption (4.6) in Theorem
4.5 is contained in the the next result, showing that, for every q > 2, eigen-
functions which do not belong to L%(}M) may actually exist when

Iy(s)~s near 0.

THEOREM 4.6 (Sharpness of condition (4.6)). — For any n > 2 and q € (2, o],
there exists an n-dimensional Riemannian manifold M such that

(4.8) Iy(s) ~s near 0,

and the Laplacian on M has an eigenfunction u ¢ LI(M).

4.2 — Boundedness of eigenfunctions

The boundedness of eigenfunctions cannot be established via the criterion of
Theorem 4.1. This is instead the object of the following result, where a slight
strengthening of assumption (4.3) is shown to yield L>*(M) estimates for ei-
genfunctions of the Laplacian on M.

THEOREM 4.7 (Boundedness of eigenfunctions via vy;). — Assume that

(49) [-5 coe,

. vu(s)

Then, for any eigenvalue 1, there exists a constant C = C(vyy, A) such that

(4.10) %l @y < Cllwll 2

for every eigenfunction u of the Laplacian on M associated with A.
Information on the constant C' appearing in (4.10) is available.

PROPOSITION 4.8. — Assume that (4.9) is in force. Define the function
Z:(0,H"(M)/2] — [0, 0) as

=(s) = f dr for s € (0, H"(M)/2].

S VM (r)

Then inequality (4.10) holds with
_ G
(E71Co/ D)

where Cy and Cs are suitable absolute constants, and Z~1 is the generalized left-
continuous inverse of =.

Clom,2) =
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EXAMPLE 4.9. — Assume that » > 3, and there exists f € [(n — 2)/n,1) such
that the manifold M fulfils vy,(s) > Cs”? for some positive constant C and for
s € [0, H"(M)/2]. Then (4.9) holds, and, by Proposition 4.8, there exists an
absolute constant C such that

_1
N2l xry < C2ZP|ul| L2,

for every eigenfunction « of the Laplacian on M associated with the eigenvalue 4.

Condition (4.9) in Theorem 4.7 is essentially sharp for the boundedness of
eigenfunctions of the Laplacian on M. In particular, it cannot be relaxed to (4.3),
although the latter ensures L%(M) estimates for every q<oc. Indeed, under
some mild qualification, Theorem 4.10 below asserts that given (up to equiva-
lence) any isocapacitary function fulfilling (4.3) but not (4.9), there exists a
manifold M with the prescribed isocapacitary function on which the Laplacian
has an unbounded eigenfunction.

A precise statement of this result involves the notion of function of class 4.
Recall that a non-decreasing function f : (0, 00) — [0, 00) is said to belong to the
class 45 near 0 if there exist constants ¢ and sy such that

(4.11) f(@2s) < cf(s) if 0<s < sg.

THEOREM 4.10 (Sharpness of condition (4.9)). — Let v be a non-decreasing
Sfunction, vanishing only at 0, such that

lim —=0
o ws)
but
f ds
——< =00
] v(s)
Assume in addition that v € As near 0, and that either n > 3 and
v(s) . .
(4.12) — ~ a non-decreasing function near 0,
S
or n = 2 and there exists o > 0 such that
v(s) . )
(4.13) a S0 non-decreasing function near 0.

Then, there exists an n-dimensional Riemannian manifold M fulfilling
(4.14) v (s) = v(s) near 0,

and such that the Laplacian on M has an unbounded eigenfunction.
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Assumption (4.12) or (4.13) in Theorem 4.10 is explained by the behavior
(2.14) of vy when M is compact, and the fact that vy (s) cannot decay more
slowly to 0 as s — 0 in general. The assumption that v € 45 near 0 is due to
technical reasons.

A condition on Iy, parallel to (4.9), ensuring the boundedness of eigenfunc-
tions of the Laplacian on M follows from Theorem 4.7 and inequality (2.12).

THEOREM 4.11 (Boundedness of eigenfunctions via ;). — Assume that
S
4.15 ——ds<oo.
(415) ‘0[ Iy(s)

Then, for any eigenvalue 1, there exists a constant C = C(Iy;, A) such that
(4.16) ||uHLoc<M) < C||“||L2(M)

for every eigenfunction u of the Laplacian on M associated with A.

Our last result tell us that the gap between condition (4.15), ensuring L>(M)
bounds for eigenfunctions, and condition (4.6), yielding LY(M) bounds for any
q < oo, cannot be essentially filled.

THEOREM 4.12 (Sharpness of condition (4.15)). — Let I be a non-decreasing
Sfunction, vanishing only at 0, such that

Im 75 =

but

fizds:oo.
0I(s)

Assume in addition that

I . ,
(4.17) (i ~ a non-decreasing function near 0.
S

Then, there exists an n-dimensional Riemannian manifold M fulfilling
Iy(s) = I(s) near 0,

and such that the Laplacian on M has an unbounded eigenfunction.

Observe that assumption (4.17) agrees with (3.3), on which we commented in
Section 3.
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5. — Applications

We conclude with applications of the results of the preceding sections to two
classes of Riemannian manifolds. The former consists of Riemannian manifolds
of revolution, the latter of a family of surfaces in R®, each one containing a se-
quence of clustering submanifolds. The analysis of the surfaces from such a fa-
mily will demonstrate the advantage in the use of isocapacitary inequalities,
instead of the more standard isoperimetric inequalities, in the problems under
consideration.

5.1 — Manafolds of revolution

Let L € (0, 00], and let ¢ : [0, L) — [0, o) be a function in C*([0, L)), such that
(56.1) o(r) >0 forre (0,L),
(5.2) p0) =0, and ¢'0)=1.

Here, ¢’ denotes the derivative of ¢. Given n > 2, we call n-dimensional manifold
of revolution M associated with ¢ the ball in R" given, in polar coordinates, by
{ryw): r€[0,L),w € ‘S"il} and endowed with the Riemannian metric

(5.3) ds? = dr® + p(rYda?

where da? stands for the standard metric on the (1 — 1)-dimensional sphere
st Owing to our assumptions on ¢, the metric (5.3) is of class C'(M).

Fig. 1. — A manifold of revolution.

Under an additional convexity assumption near infinity, for the manifolds of
this family conditions (4.3) and (4.6), and conditions (4.9) and (4.15) turn out to
coincide, and can be formulated in terms of ¢.

PRrOPOSITION 5.1. — Let L € (0, 00] and let ¢ : [0,L) — [0, 00) be a function in
CY([0, L)) fulfilling (5.1) and (5.2) and such that:
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@) }L"i pr) =0;
(ii) there exists Ly € (0,L) such that ¢ is decreasing and convex i (Lg, L);
L
(i) [ p(p)" " dp<oc.
0

Then the metric of the n-dimensional manifold of revolution M built upon ¢
is of class CY(M), and H"(M) < oco. Moreover:
(i) Conditions (4.3), (4.6), and

i ([ g ) (o) =

are equivalent. Here, R is any number in (0, L).
(ii)) Conditions (4.9), (4.15), and

L .t
f <Wf (ﬂ(ﬂ)nldﬂ> dr<oo

are equivalent.

A characterization of those manifolds of revolution on which the spectrum of
Ay is discrete follows from Theorem 3.1 and Proposition 5.1.

PROPOSITION 5.2. — Let L and ¢ be as in the statement of Theorem 5.1. Let M
be the n-dimensional manifold of revolution built upon ¢. Then the spectrum of
Ay s discrete if and only if

i (f i) ([ o) =0

forany R € (0, L).

Estimates for eigenfunctions of the Laplacian on manifolds of revolution M
are the content of the next result.

PROPOSITION 5.3. — Let L and ¢ be as in the statement of Theorem 5.1. Let M
be the n-dimensional manifold of revolution built upon .

(1) Assume that

r

1 (f ()" 1) ( f o 1dp)
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for any R € (0,L). Then for every q € (2,00) and every eigenvalue 2 of the
Laplacian on M, there exists a constant C = C(p, q, 1) such that

||u||Lq(M) < CH“”LZ(M)

for every eigenfunction u associated with A.
(ii) Assume that
L

L
1
f (Wf CD(P)HIdp) dr < co.

Then for every eigenvalue A of the Laplacian on M there exists a constant
C = C(p, A) such that

||u|lL°¢(M) < CH””LZ(M)
for every eigenfunction u associated with A.

Propositions 5.2 and 5.3 tell us that, as far as manifolds of revolution are
concerned, methods based on the use of the isoperimetric function and of the
isocapacitary function lead to equivalent results on the discreteness of the
spectrum of 43, and eigenfunction estimates.

Let us specialize the results of Propositions 5.2 and 5.3 to the one-parameter
family of manifolds of revolution M whose profile ¢ : [0, 00) — [0, co) satisfies

(5.4) p(r) =e " for large 7.
One can show that
(5.5) Iy(s) ~ s(log (1/s)))

and

1-1
/ near 0,

H(M)/2

dr \! 2-2/o
(5.6) vM(s)z< Il W) ~ s(log (1/5)) near 0.
M

S

An application of Proposition 5.2 ensures that the spectrum of 4, is discrete if
and only if

(5.7) 2> 1.

Owing to Part (i) of Proposition 5.3, under (5.7) all eigenfunctions of the
Laplacian on M belong to LY(M). Moreover, by (5.6) and Proposition 4.2, there
exist constants C; = C1(q) and Cy = C2(q) such that

Cpi72
1l Locary < Cre™ ||ull L2an)

for every eigenfunction u of the Laplacian associated with the eigenvalue A.
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On the other hand, Part (ii) of Proposition 5.3 tells us that the relevant ei-
genfunctions are bounded under the more stringent assumption that
(5.8) o> 2.
In particular, owing to (5.6) and Proposition 4.8,

Colis

2l xary < Cre 2||u||L2(M)

for some absolute constants C; and Cs and for every eigenfunction u associated
with .

5.2 — A family of manifolds with clustering submanifolds

Here, we are concerned with a class of noncompact surfaces M in R®, which
are reminiscent of a planar domain appearing in an example of [CH]. The re-
levant surfaces contain a sequence of mushroom-shaped submanifolds {N*}
clustering at some point, which does not belong to the surface (Figure 2).

rk

( FLAT) k4 —
L,

NN s> W )
/N = ol

Fig. 2. — A manifold with a family of clustering submanifolds.

Let us emphasize that the submanifolds {N*} are not scalings of each other.
Roughly speaking, the diameter of the head and the length of the neck of N*
decay to 0 as 27 when k — oo, whereas the width of the neck of N* decays to 0 as
o(27%), where ¢ is a function such that
(5.9) lim ) =0.

s—0 S

The isoperimetric and isocapacitary functions of M depend on the behavior of

o at 0 in a way described in the next proposition. Roughly speaking, a faster
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decay to 0 of the function o(s) as s — 0 results in a faster decay to 0 of I;(s) and
vu(s), and hence in a surface M with a more irregular geometry.

PRrROPOSITION 5.4. — Let M be the surface described above. Assume that
o : [0,00) — [0, 00) s an increasing function of class Ay near 0, such that

skt . .
(5.10) “® 1S non-increasing
for some 5 > 0.
@ If
2 . .
=) 1is non-decreasing,
then
(5.11) Iy(s) ~ a(s¥/?) near 0.
@G If
s i .
o) s non-decreasing,
then
(5.12) vy (s) ~ 0(31/2)3‘% near 0.

The operator 4y for the surfaces of this family can be described as follows.

ProposITION 5.5. — Let M be the surface described above, with o satisfying
(5.9). Then

Coe(M) = WH2(M).

Hence, the operator Ay agrees with the Friedrichs extension of the Laplacian
on M.

The next proposition relies upon the criterion for the discreteness of the
spectrum of A, in terms of the isocapacitary function of M given in Theorem 3.1.

PROPOSITION 5.6. — Let M be the surface described above. Assume that o € Ao

3
and fulfills (5.10), and that the function % 1s monotonic. Then the spectrum of
Ay (which, by Proposition 5.5, agrees with the Friedrichs extension of the

Laplacian on M) is discrete if only if

$3

(5.13)
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Owing to equation (5.12), one can derive the following conditions for bounds of
eigenfunctions of problem (4.1) via Theorems 4.1 and 4.7, whose criteria involve
the isocapacitary function vy,.

PROPOSITION 5.7. — Let M be the surface described above with o € Ao.

(i) Assume that

3

.8
(5.14) EL%@ =

Then any eigenfunction of the Laplacian on M belongs to L1(M) for any q < oc.

(ii) Assume that

2

(5.15) f% ds < oo
0

Then any eigenfunction of the Laplacian on M is bounded.

Note that assumptions (5.14) and (5.15) are weaker than parallel assumptions
which follow from an application of Theorems 4.5 and 4.11, and equation (5.11),

and read
2

(5.16) lim % ~0,
and

83
(5.17) f@ ds < oo,

0

respectively. For instance, if b > 1 and
a(s) =s° for s > 0,

then (5.14) and (5.15) amount to b <3, whereas (5.16) and (5.17) are equivalent to
the more stringent condition that b <2. This shows that the use of vy; can actually
yield the discreteness of the spectrum of the Laplacian, and regularity of ei-
genfunctions, for manifolds where the criteria involving I, do not apply.

Since, by (5.12), vy (s) = sb?l, from Examples 4.3 and 4.9 we deduce that there
exists a constant C = C(q) such that

%l oy < CAFD ||| 21

for every q € (2, o] and for any eigenfunction u of the Laplacian associated with
the eigenvalue 1. Observe that the existence of such eigenfunction follows from
condition (4.3), as explained in the comments following Theorem 4.1.



EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR ETC. 187

REFERENCES

[ACMM] A. ALviNO - A. CiaNncHI - V. G. MAzZYA - A. MERCALDO, Well-posed elliptic

[Ba]
[BGM]
[BC]
[BS]
[Boul]
[Bro]
[Br]
[BuZa]
[BD]
[Cha]
[CF]
[Che]
[Chi]

[CGY]

[Cil]
[Ci2]
[Ci3]
[CM1]
[CM2]
[CM3]

[CM4]

Neumann problems involving irregular data and domains, Ann. Inst. H.
Poincaré Anal. Non Linéaire, 27 (2010), 1017-1054.

A. BAIDER, Noncompact Riemannian manifolds with discrete spectra, J. Diff.
Geom. 14 (1979), 41-57.

M. BERGER - P. GAUDUCHON - E. MAZET, Le spectre d’une variété Riemanni-
enne, Lecture notes in Mathematics 194, Springer-Verlag, Berlin, 1971.

I. BENJAMINI - J. CA0, A new isoperimetric theovem for surfaces of variable
curvature, Duke Math. J. 85 (1996), 359-396.

M. S. BIRMAN - M. Z. SOLOMJAK, Spectral theory of self-adjoint operators in
Hilbert space, D. Reidel Publishing Company, Dordrecht, 1986.

J. BOURGAIN, Geodesic restrictions and LP-estimates for eigenfunctions of
Riemannian surfaces, Amer. Math. Soc. Tranl. 226 (2009), 27-25.

B. BROOKS, On the spectrum of non-compact manifolds with finite volume,
Math. Zeit. 9 (1984), 425-432.

B. BRrooKkS, The bottom of the spectrum of a Riemannian covering, J. Reine
Angew. Math. 357 (1985), 101-114.

Yu. D. BURAGO - V. A. ZALGALLER, Geometric inequalities, Springer-Verlag,
Berlin, 1988.

V. 1. BURENKOV - E. B. DAVIES, Spectral stability of the Neumann Laplacian,
J. Diff. Eq. 186 (2002), 485-508.

1. CHAVEL, Eigenvalues in Riemannian geometry, Academic Press, New
York, 1984.

I. CHAVEL - E. A. FELDMAN, Modified isoperimetric constants, and large time
heat diffusion in Riemannian manifolds, Duke Math. J. 64 (1991), 473-499.

J. CHEEGER, A lower bound for the smallest eigevalue of the Laplacian, in
Problems in analysis, 195-199, Princeton Univ. Press, Princeton, 1970.

G. CHITI, A reverse Holder inequality for the eigenfunctions of linear second
order elliptic operators, Zeit. Angew. Math. Phys. (ZAMP) 33 (1982), 143-148.
F. CHUNG - A. GRIGOR'YAN - S.-T. YAu, Higher eigenvalues and isoperimetric
mequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8
(2000), 969-1026.

A. C1aNCHI, On relative isoperimetric inequalities in the plane, Boll. Un. Mat.
Ttal. 3-B (1989), 289-326.

A. CIANCHI, A sharp form of Poincaré type inequalities on balls and spheres,
7. Angew. Math. Phys. (ZAMP) 40 (1989), 558-569.

A. CiaNcHI, Moser-Trudinger inequalities without boundary conditions and
isoperimetric problems, Indiana Univ. Math. J. 54 (2005), 669-705.

A. CiancHI - V. G. MAZYA, Newmann problems and isocapacitary inequal-
ities, J. Math. Pures Appl. 89 (2008), 71-105.

A. CIANCHI - V. G. MAZ'YA, On the discreteness of the spectrum of the Laplacian
on complete Riemannian manifolds, J. Diff. Geom. 87 (2011), 469-491.

A. CiaNcHI - V. G. Maz'ya, Bounds for eigenfunctions of the Laplacian on
noncompact Riemannian manifolds, Amer. J. Math., to appear.

A. CiaNcHI - V. G. MAzYA, Boundedness of solutions to the Schridinger
equation under Neumann boundary conditions, J. Math. Pures Appl. 98
(2012), 654-688.



188
[CGL]
[CH]
[DS]

(D]

[Dol]
[Do2]
[DL]
[Es]
[Ga]

[Gr1]

[Gr2]

[GP]
[HK]
[He]

[HSS]

[HHN]

[JMS]

[KM]
[KI1]
[KI2]
[KI]

[La]

ANDREA CIANCHI

T. COULHON - A. GRIGOR'YAN - D. LEVIN, On isoperimetric profiles of product
spaces, Comm. Anal. Geom. 11 (2003), 85-120.

R. COURANT - D. HILBERT, Methoden der mathematischen Physik, Springer,
Berlin, 1937.

E. B. DAvVIES - B. SIMON, Spectral properties of the Newmann Laplacian of
horns, Geom. Funct. Anal. 2 (1992), 105-117.

E. DE GIorat, Sulla proprieta isoperimetrica dell’ipersfera, nella classe degli
msiemi aventi frontiera orientata di misura finita, (Italian) Atti Accad. Naz.
Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I 5 (1958) 33-44.

H. DoONNELLY, Bounds for eigenfunctions of the Laplacian on compact
Riemannian manifolds, J. Funct. Anal. 187 (2001), 247-261.

H. DoNNELLY, Eigenvalue estimates for certain moncompact manifolds,
Michigan Math. J. 31 (1984), 349-357.

H. DoNNELLY - P. L1, Pure point spectrum and negative curvature for
noncompact manifolds, Duke Math. J. 46 (1979), 497-503.

J. F. ESCOBAR, On the spectrum of the Laplacian on complete Riemannian
manifolds, Comm. Part. Diff. Equat. 11 (1986), 63-85.

S. GALLOT, Inégalités isopérimétriques et analitiques sur les variétés rieman-
niennes, Asterisque 163 (1988), 31-91.

A. GRIGOR'YAN, On the existence of positive fundamental solutions of the
Laplace equation on Riemannian manifolds, Mat. Sbornik 128 (1985), 354-363
(Russian); English translation: Math. USSR Sb. 56 (1987), 349-358.

A. GRIGOR'YAN, Isoperimetric inequalities and capacities on Riemannian
manifolds, in The Maz'ya anniversary collection, Vol. 1 (Rostock, 1998), 139-
153, Oper. Theory Adv. Appl., 109, Birkhuser, Basel, 1999.

R. GRIMALDI - P. PANsu, Calibrations and isoperimetric profiles, Amer. J.
Math. 129 (2007), 315-350.

P. Ha1ASZ - P. KOSKELA, Isoperimetric inequalites and imbedding theorems in
wregular domains, J. London Math. Soc. 58 (1998), 425-450.

E. HEBEY, Nonlinear analysis on manifolds: Sobolev spaces and inequalities,
American Math. Soc., Providence, 1999.

R. HEMPEL - L. SECO - B. SIMON, The essential spectrum of Neumann
Laplacians on some bounded singular domains, J. Funct. Anal. 102 (1991),
448-483.

M. HOFFMANN-OSTENHOF - T. HOFFMANN-OSTENHOF - N. NADIRASHVILI, On
the multiplicity of eigenvalues of the Laplacian on surfaces, Ann. Global Anal.
Geom. 17 (1999), 43-48.

V. Jaksic - S. MoLCHANOV - B. SiMoN, Eigenvalue asymptotics of the
Neuwmann Laplacian of regions and manifolds with cusps, J. Funct. Anal.
106 (1992), 59-79.

T. KILPELAINEN - J. MALY, Sobolev inequalities on sets with irregular
boundaries, Z. Anal. Anwendungen 19 (2000), 369-380.

R. KLEINE, Discreteness conditions for the Laplacian on complete non-
compact Riemannian manifolds, Math. Zeit. 198 (1988), 127-141.

R. KLEINE, Warped products with discrete spectra, Results Math. 15 (1989),
81-103.

B. KLEINER, An isoperimetric comparison theorem, Invent. Math. 108 (1992),
37-47.

D. A. LABUTIN, Embedding of Sobolev spaces on Holder domains, Proc.



[LP]
[MZ]

[Mal]

[Ma2]

[Ma3]
[Ma4]
[Ma5]

[Ma6]

[Ma7]

[MHH]

[MJ]
[Na]

[PR]

[Pi]
[RS]
[Ri]
[Ro]

[Sal

[SS]

[So]

EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR ETC. 189

Steklov Inst. Math. 227 (1999), 163-172 (Russian); English translation: Trudy
Mat. Inst. 227 (1999), 170-179.

P.-L. LioNSs - F. PACELLA, Isoperimetric inequalities for convex cones, Proc.
Amer. Math. Soc. 109 (1990), 477-485.

J. MALY - W. P. ZIEMER, Fine regularity of solutions of elliptic partial
differential equations, American Mathematical Society, Providence, 1997.

V. G. MAZYA, Classes of regions and imbedding theorems for function spaces,
Dokl. Akad. Nauk. SSSR 133 (1960), 527-530 (Russian); English translation:
Soviet Math. Dokl. 1 (1960), 882-885.

V. G. MAz'YA, Some estimates of solutions of second-order elliptic equations,
Dokl. Akad. Nauk. SSSR 137 (1961), 1057-1059 (Russian); English translation:
Soviet Math. Dokl. 2 (1961), 413-415.

V. G. Maz'YA, On p-conductivity and theorems on embedding certain functional
spaces into a C-space, Dokl. Akad. Nauk SSSR, 140 (1961), 299-302 (Russian).
V. G. MAz'YA, On the solvability of the Newmann problem, Dokl. Akad. Nauk
SSSR, 147 (1962), 294-296 (Russian).

V. G. MAZ'YA, The Newmann problem in regions with nonregular boundaries,
Sibirsk. Mat. Z. 9 (1968), 1322-1350 (Russian).

V. G. MAzYA, On weak solutions of the Dirichlet and Newmann problems,
Trusdy Moskov. Mat. Obsé. 20 (1969), 137-172 (Russian); English translation:
Trans. Moscow Math. Soc. 20 (1969), 135-172.

V. G. MAZ'YA, Sobolev spaces with applications to elliptic partial differential
equations, Springer, Heidelberg, 2011.

F. MorGaN - H. HowWARDS - M. HUTCHINGS, The isoperimetric problem on
surfaces of revolution of decreasing Gauss curvature, Trans. Amer. Math. Soc.
352 (2000), 4889-4909.

F. MorGaN - D. L. JoHNSON, Some sharp isoperimetric theorems for
Riemannian manifolds, Indiana Univ. Math. J. 49 (2000), 1017-1041.

N. NADIRASHVILI, [soperimetric inequality for the second eigenvalue of a
sphere, J. Diff. Geom. 61 (2002), 335-340.

L. E. PAYNE - M. E. RAYNER, An isoperimetric inequality for the first
eigenfunction in the fixed membrane problem, Z. Angew. Math. Phys. 23
(1972), 13-15.

CH. PrrTET, The isoperimetric profile of homogeneous Riemannian mani-
folds, J. Diff. Geom. 54 (2000), 255-302.

M. REED - B. SiMoN, Analysis of Operators IV, Academic Press, New York,
1972.

M. RITORE, Constant geodesic curvature curves and isoperimetric domains in
rotationally symmetric surfaces, Comm. Anal. Geom. 9 (2001), 1093-1138.

W. ROLKE, Uber den Laplace-Operator auf Riemannschen Mannigfaltigkei-
ten mit diskontinuierlichen Gruppen, Math. Nachr. 21 (1960), 132-149.

L. SALOFF-COSTE, Sobolev inequalities in familiar and unfamiliar settings, in
Sobolev spaces in mathematics, Vol I, Sobolev type inequalities, V.G.Maz'ya
editor, Springer, 2009.

H. F. SMITH - C. D. S0GGE, On the LP norm of spectral clusters for compact
manifolds with boundary, Acta Math. 198 (2007), 107-153.

C. D. S0GGE, Lectures on eigenfunctions of the Laplacian, Topics in mathe-
matical analysis, 337-360, Ser. Anal. Appl. Comput., 3, World Sci. Publ,,
Hackensack, NJ, 2008.



190 ANDREA CIANCHI

[SZ] C. D. S0GGE - S. ZELDITCH, Riemannian manifolds with maximal eigenfunc-
tion growth, Duke Math. J. 114 (2002), 387-437.

[St] R. S. STRICHARTZ, Analysis of the Laplacian on complete Riemannian
manifolds, J. Funct. Anal. 52 (1983), 48-79.

[Ya] S. T. YAu, Isoperimetric constants and the first eigenvalue of a compact
manifold, Ann. Sci. Ecole Norm. Sup. 8 (1975), 487-507.

[Zi] W. P. ZIEMER, Weakly differentiable functions, Springer-Verlag, New York,
1989.

Dipartimento di Matematica “U. Dini”, Universita di Firenze
Piazza Ghiberti 27, 50122 Firenze, Italy
E-mail: cianchi@unifi.it

Received December 2, 2011 and in revised form March 24, 2012



