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The Immersed Boundary Method for Fluid-Structure
Interactions: Mathematical Formulation and Numerical
Approximation (*)

DANIELE BOFFI

Abstract. — The Immersed Boundary Method (IBM) has been introduced by Peskin in
the 70’s in order to model and approximate fluid-structure interaction problems
related to the blood flow in the heart. The original scheme makes use of finite dif-
ferences for the discretization of the Navier-Stokes equations. Recently, a finite
element formulation has been introduced which has the advantage of handling the
presence of the solid (modeled via a Dirac delta function) in a more natural way. In
this paper we review the finite element formulation of the IBM focusing, in par-
ticular, on the choice of the finite element spaces in order to guarantee a suitable
mass conservation. Moreover, we present some links with the fictitious domain
method.

1. — Introduction

In the 70’s Peskin introduced the Immersed Boundary Method (IBM) for the
modeling and the approximation of fluid-structure interactions arising from
biological problems [33, 34].

When studying fluid-structure interactions, a mathematical model is usually
based on distinct equations in the fluid and in the moving solid, which are related
through appropriate transmission conditions. One of the most intriguing aspects
of any numerical implementation concerns the movement of the computational
grids which have to adapt to the evolution of the system.

In view of their numerical approximations, basically all models for the de-
scription of fluid-structure interactions can be classified in two families: people
refer to partitioned schemes when two different solvers are used for the dis-
cretization of the fluid and the solid; on the other hand, when fluid and solid are
solved simultaneously with a unique solver, a scheme is termed monolithic.
Moreover, the interaction between the fluid and the structure can be modeled

(*) Conferenza Generale tenuta a Bologna il 14 settembre 2011 in occasione del XIX
Congresso dell’'Unione Matematica Italiana
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using weakly or strongly coupled approaches. Weakly coupled approaches al-
ways lead to partitioned schemes, while strongly coupled approaches can be
solved with both partitioned and monolithic strategies. We refer the interested
reader to the wide literature on this subject and, in particular to [32, 31, 30, 20]
and to the references therein.

Another important issue is related to the effects of the fluid as a so-called
added mass to the structure interface. In particular, if the solid density is
larger than the fluid density, then the added mass effect is negligible and
partitioned schemes usually converge in few iterations. On the other hand,
when the fluid and solid densities are comparable, then the method may fail to
converge. In particular, a simplified one dimensional model for an Arbitrary
Lagrangian Eulerian (ALE) scheme has been proved to be unconditionally
unstable in this context [17]. In order to circumvent these difficulties, several
strategies have been proposed, in particular based on implicit algorithms
which are solved iteratively via domain decomposition or algebraic splitting
strategies [29, 19, 1, 3, 2]. Other techniques involve discretizations based on
operator splitting strategies [27].

The peculiarity of the IBM consists in the fact that the presence of the solid,
immersed in the fluid, is modeled via an additional source term to the Navier-
Stokes equations describing the fluid evolution. This allows for a fluid resolution
on a fixed mesh; moreover, another important feature is that the source term
referring to the immersed body is defined by making use of a description of the
solid in its reference configuration.

The original version of the IBM makes use of finite differences for the re-
solution of the Navier-Stokes equations [33, 35, 34]. Since the source term arising
from the presence of the solid contains a Dirac delta function concentrated along
the solid domain, the finite difference scheme requires a suitable treatment of
the delta function, which is one of the major sources of troubles in the IBM.
Indeed, a too strong regularization of the delta function gives rise to a severe
dissipation.

On the other hand, the finite element method makes use of a variational
formulation which allows for a natural treatment of the Dirac delta function. A
finite element version of the IBM has been successfully introduced in a series of
papers, where several aspects have been considered, ranging from the modeling,
to the numerical stability, and to mass conservation of the presented method
[11, 13, 12, 14, 28, 8, 7]. The aim of the present paper is twofold: on one side, we
review the existing results in a unified framework, with a particular emphasis on
the mass conservation property which, to the author’s opinion, is one of the most
attractive features of the finite element IBM in comparison with the original
finite difference version; on the other side, we present a link between the IBM
and the fictitious domain approach (see, for instance, [24, 22, 23, 21]) which
proves promising for future investigations.
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2. — The immersed boundary method

In this section we describe the IBM following the results in [14, 8]. In par-
ticular, we shall present in a unified settings the situations when the fluid is two-
or three-dimensional and the solid is of codimension zero or one with respect to
the fluid.

Let Q ¢ R? be a domain in two or three space dimensions (d = 2,3) and let x
denote the Eulerian variable in 2. In general, the domain Q represents the space
occupied by the fluid and the solid. The fluid velocity and pressure are denoted as
usual by u and p, and are functions of x and of the time £.

We denote the solid domain at the time ¢ by B; ¢ R™ (m = d,d — 1) and the
reference solid domain by B. The mapping representing the solid position is
denoted by X, more precisely

X(G,t):B— B
The Lagrangian variable on B is denoted by s and the deformation gradient is
X
~Os’
A fundamental relationship between u and X is given by the physical con-
dition that the solid moves at the same velocity as the fluid, that is

F

u(x,t) = %’t{(s, t), with x = X(s,1).

When there are no external forces, the conservation of momenta states

pdzp(%—i—u-Vu) =V.6 in Q,

where p is the density and ¢ is the stress tensor, which can be defined as follows:
of in Q \ Bt
o =
or + 05 in B,
taking into account the extra stress a5 originated by the elastic component of the

stresses (we are assuming the material to be viscoelastic). Moreover, we are
considering an incompressible fluid, so that in Q\ B; we have

6 =ar = —pl+ u(Vu + (Va)").

Since in general the fluid and solid densities can be different, we consider the
following definition:

. pf in Q \ Bt
P= Ps in Bt.
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In order to write the variational formulation for our model, we need some
additional notation.
Let the excess Lagrangian mass density be defined as

Ps — Py if m = d (codimension zero)
B ts(ps — pf) if m = d — 1 (codimension one),
where ¢, is the thickness of the structure. Actually, in the codimension-one case,
mathematically the structure has no thickness; the rescaled density defined
above takes into account the (small) physical thickness.
We shall make use, moreover, of the Piola—Kirchhoff tensor P which takes
into account the change of variables
P(s, t) = |F(s, B)|oo(X (s, 8), OF " (s, 1)
so that
fo-sn da :fIPNdA VP,
P, oP
The rescaled Piola—Kirchhoff tensor is
% P if m = d (codimension zero)
o t,? if m = d — 1 (codimension one).

With these definitions, the variational formulation for the IBM reads as
follows: given uy GH(l)(Q)d and X, € Wb°(B) such that Xo(B) c @, find
u(t) € HY(Q)", p@) € LA(R), and X(t) € W-=(B) for all ¢ such that

pf%(u(t), v) + a®),v) + bu(), ut),v)

—(divo, p(t) = (d(®),v) + (f(t),v) o € Hj(Q)"

(divu(t),q) =0 Vg € LA(Q)
2
(d(t),v) = —op f aa—gv(X(s,t)) ds o € Hi(Q)!
(1) 5
(), v) = — f P(FGs, 1) : VoK (s, 0)ds Yo € HY(Q)
B

%(s,t) =u(X(s,1),t) Vse B
u(x,0) = uplx) Vx e Q2

X(s,0) = Xo(s) Vs € B.
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In the previous equation we used the short notation V,,u = Vu + (Vu)! and

a(u,v) = ,U(Vsymua vaymv)
bu,v,w) :%((u -Vo,w) — u-Vw,v)).

We refer the interested reader to [8] where it has been proved that (1) makes
sense; in particular the source terms d and f are distributions belonging to H!.

REMARK 1. — Equation (1) shows one of the most important features of the
finite element IBM. The source term f representing the effect of the solid to the
fluid can be written in a natural way in the framework of the variational for-
mulation. In the original formulation, this term consisted of a Dirac delta function
which needed to be approximated; in many situations this approximation was the
cause of artificial diffusion.

3. — Numerical approximation

3.1 — Space semi-discretization

Let us consider discrete subspaces V), C H(l)(_Q)d and @, C L(z) which satisfy
the inf-sup condition [16]. The reference configuration B of the structure is
subdivided into segments, triangles, or tetrahedrons. Let’s denote by S; the
discrete space obtained by a piecewise linear approximation of the structure
according to this subdivision. The set of edges (or faces) of the mesh of the body
is denoted by &), and s; denotes a vertex (t =1,...,M). We denote by [ - ] the
jump, and in particular we shall make use of the following term

[Pyl =PjN"+P,N",
where P), = P(IF,) is piecewise constant, since I}, = VX, is the gradient of a linear
function. Then, the space semi-discretization of problem (1) reads: given u;y € V;,
and X9 € Sy, find uy,(t) € Vy, prt) € @y, and X;,(t) € S), for all ¢ such that
d

Pf%(uh(t), v) + au;(t),v) + b, ), u,(t), v)

—(divo, pp(®) = (dn(®),v) + ({F1,(),v) Yo eV,
(divuy,(®),q) =0 Vg € Qy

2
(0.0 = ~op [ LA o0 ds eV,
ot
(2) B
h®,0) = =3 [IPIO vX@ydd  weV;
665}1 e
u;,(x,0) = up(x) Vx € Q
. .
o &) = w(Xpi(0),8) Vi=1,....M

X3,i(0) = X)0(s9) Vi=1,....M.
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3.2 — Full discretization

In order to write a full discrete scheme, we need to approximate the time
derivative in the Navier—Stokes equation and to discretize the second time de-
rivative in the definition of the source term d; arising from the excess
Lagrangian mass density. For the sake of the stability properties (better CFL
condition), an implicit scheme would be desirable (see, in this context, [13]). We
are working in the direction of using a multigrid strategy (in particular, we are
considering a full approximation scheme, see [15]) in order to make it possible the
solution of our problem with a fully implicit approach [9]. Here we present a
semi-implicit approach which has been successfully applied in [8], where a sta-
bility analysis has been performed.

Let us denote by At the time step and let us mark with the superseript »
functions evaluated at time ¢,, = n4t. The solution is performed in several steps.
In the first one, the source term f is evaluated as follows:

<f2+l>v> = - Z [[f)h]]n : U(XZ(S,t)) dA Yv € Vh-

ec&y,

Then the Navier-Stokes equations are solved: find u17+1 €V, and ;o”+1 €Qy
such that

u17+1 un
pf hA—t + b(uwrl n+1 U) + a(un+1 ) _ (diVU,pthl) —

v(X}(8))ds + (fv) Yo €V

n+1 _
s fuh 0.3 (8)) uy(X;~ (8))_

diva) ™, ¢) =0 Vg € Qn,

where the excess Lagrangian mass density has been approximated by taking
into account the equation linking the structure and the fluid velocity, so that the
second derivative of X has become the first derivative of u.

Finally, the structure is moved according to the velocity of the fluid:

n+1
M Aoy vz

For the reader’s convenience, we report in Table 1 the results of the stability
analysis performed in [8], where it can be appreciated that for any configuration
there exists a stable choice of At. This results should be compared to [17], where
it is shown that explicit schemes cannot be stable in the framework of ALE
discretizations.
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TABLE 1. — CFL condition: 4, is the fluid meshsize and /%, is the solid one

space dim. solid dim. CFL condition
2 1 L" At < Chyhs
2 2 LAt < Chy,
3 2 LAt < Ch
3 3 LAt < Ch2 /s

TABLE 2. — Area loss (%): scheme Q2 — P, At = 0.01, T = 1.

M 16 32 64 128 256 512 1024

N =4 36.468 35.944 37.166 37.988 38.413 38.635 38.753
N=8 15.951 14.090 13.057 12.809 12.809 12.843 12.867
N
N

=16  20.182 9.015 7.255 7.011 7.105 7.191 7.246
=32 45293 9.763 2.788 2.308 2.303 2.325 2.351

4. — Conservation of mass

There is a very easy test to check the mass conservation of our scheme. Let us
consider the domain Q = 10, 1[ x ]0, 1[ and let X, be a circle of radius R centered
at (1/2,1/2):

s = Rcos(s/R) +0.5
"=\ Rsin(s/R) + 0.5

), s € [0,27R)

Due to the elastic properties of the structure, the circle exerts a normal force
pointing towards the center and, since the fluid is incompressible, the fluid does
not move and the effect of the force is a jump in the pressure between the interior
(high pressure) and the exterior (low pressure). In particular, the area of the
domain surrounded by X remains constant.

In a particular configuration, Table 2 shows the area loss with respect to the
fluid mesh (N refers to the number of subdivisions of a side of 2 when a uniform
mesh of squares is used) and the number M of points used in order to approx-
imate the elastic structure

It is apparent that, when the fluid mesh is refined, more and more points are
required in the structure in order to preserve the same mass (see, for instance
the first column, where, as N increases, the area loss gets worse with the same
number of points N = 16). On the other hand, after a threshold, there is no
advantage in adding points to the structure if the fluid mesh is not refined: the
values corresponding to this threshold are marked with a frame box in the table.
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It roughly corresponds to the situation when two solid points are contained in
each fluid element.

When such threshold is reached, the quality of mass conservation is driven by
the scheme used for the fluid resolution. More precisely, we need to check how
the divergence free condition is preserved at discrete level. This is a well known
issue which has been the object of a wide literature. In particular, the divergence
free condition is imposed at discrete level in a weak sense:

3) fdivuhqh dx=0 Yar, € Q.
Q

It follows that if the discrete spaces satisfy the inclusion
(4) leVh C Qh

then the divergence free condition is imposed exactly, that is divu; = 0.
Unfortunately, there are few choices of spaces Vj, and @), that satisfy at the same
time the inf-sup condition and the inclusion (4); moreover, the most popular of
such choices, namely the Pj,; — P scheme (see [38]) is subjected to severe
limitations on the admissible triangulations.

In general a discontinuous pressure approximation enjoys more local mass
conservation properties: if @, contains piecewise constant functions, in parti-
cular, equation (3) implies that divu;, has zero mean value elementwise. In [7] we
discussed how to modify some continuous pressure schemes in order to enjoy
the same property.

Let us consider the Hood-Taylor (HT) family in two and three dimensions
[39], and the Bercovier—Pironneau (BP) element in two dimensions [4]. The
lowest order HT element in 2D and the BP element are sketched in Figure 1.

Since these elements are based on continuous pressure spaces, in general
they do not achieve local conservation of mass. An interesting way of improving
the mass conservation for such elements consists in adding an internal degree of

Fig. 1. — Lowest order HT (top) and BP (bottom).
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Fig. 2. — Augmented elements: lowest order HT (top) and BP (bottom).

freedom in each element to the pressures. The modified scheme, for a sample of
elements, is presented in Figure 2.

Given a triangulation 7, of the domain Q, the formal definition of the aug-
mented spaces is given as follows. The augmented HT family is defined in two
dimensions (k > 1) as

Vi = {v € H(QP : v|g € Pra(K)* VK € T}

Qn={q € L§(Q) : ¢ = & + 90, @k € C(Q), qilx € Pr(K), qolg € Py VK € T),}
and in three dimensions (k > 2) as

Vi = {v e HY(Q) : v|g € Pr1(K)® VK € T}

Qn=1{q€L§Q) : q=qr+q, qr € CQ), qilx € PrK), qolx € Po VK € T}};
the augmented BP element is defined in two dimensions as

Vi, = {v € H(Q? :v|x € Py(K) VK € T),)2}

Qu={q€LiD:q=q1+q, ¢1 € CQ), qilgx € P1(K), qolx € Po VK € T}}.

The idea of adding piecewise constant pressure in order to enhance the mass
conservation is not new; we refer in particular to [26, 25, 41, 18, 40, 36, 37]. In [7]
we presented a unified proof of stability for a wide class of elements which is
based on the stability analysis of [5, 6].

We refer to [7] for several numerical experiments in which the significant
improvement of the augmented spaces over the original ones can be appreciated.
Here we report in Figure 3 the improvement in the area loss when applied to the
model problem described at the beginning of this section.
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s P,iSOP /P,
-o-P/P,

- P,iSOP/(P.+P)
O P/P+P)

1—M/IV6

Fig. 3. — Area loss comparison between standard elements and augmented ones.

5. — Immersed boundary method and fictitious domain

The topic presented in this section represents some new ideas which look
promising for the analysis and the implementation of a suitable modification of
the method presented so far.

The motivation for the present study comes from the analogies that the IBM
shares, in a sense to be made more precise, with the fictitious domain approach
(see, for instance, [24, 22]). In particular, we shall introduce a formulation of the
IBM which has the same structure as the so called fictitious domain method with
distributed Lagrangian multiplier (see [23, 21]).

We start with a slight modification of the problem presented in equation (1).
We observe that the equation that drives the movement of the structure can be
written in a variational form in the following way:

2.())
ot

<,u,u(X(~,t),t) - > =0 VueHBY".
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Hence, it turns out that our problem can be restated as follows: find
u(t) € Hy(Q)", p@) e LA(Q), X(t) € H'(B)", and /. € 4 = (H'(B)")" such that

/)di(u(t), v) + a(u(®),v) + b)), ut),v) — (divo, p(t))

— op f WU(X(S B)ds — (1, v(X(, 1) Yo € Hi(Q)!
(divu(d. ) = Vg € LAQ)
(5) f D(F(s, 1) : Vv ds — (3,05) = 0 Vo, € H'\(B)"
B
<,u,u(X(-7t),t) - aX(;; t)> =0 Ve A
u(x,0) = uplx) Vx e 2
X(5,0) = Xo(s) Vs € B.

The analogies between (5) and the fictitious domain approach with distributed
Lagrangian multiplier can be appreciated with the following example which will
be deeper analyzed in [10]. Let us consider a simple one dimensional transmis-
sion problem: consider a real interval Q = (a,b) (which represents the union of
the fluid and solid domain) and a subinterval Q; = (¢, d) (representing the solid),
with a <c<d <b. Let v be a piecewise smooth function (representing a viscosity)
which can only jump across the interfaces ¢ and d:

v i Qr = Q\
V=
Ve In Q.

We are looking for % such that

—w" =f inQ
u=20 on 0Q.

In the framework of the fictitious domain approach with distributed
Lagrangian multiplier, our problem can be restated as follows: find
UecV=H\Q),Us; eV, =HY(Q),and 1 € 4 = (H(Q,))" such that

f WU da+ (,0],) fdeac wevV

(6) f(vb — WU, de — (A, v5) :fgg. — Fygde Yog € Vs
Q

(w0, Ulg, —Us) =0 Vi€ 4,

where F' and v, restricted to Q; coincide with f and v, respectively.
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In [10] we show that problem (6) is uniquely solvable and is equivalent in a
suitable sense to the original transmission problem. It will be also shown how to
approximate problem (6) with appropriate finite elements on a mesh which does
not fit with the interface. Hopefully, this will be a good starting point in order to
test and analyze the finite element approximation of the modified IBM (5).
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