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Bollettino U. M. 1.
(9) V (2012), 655-688

Microstructures and Phase Transitions (*)

E. PRESUTTI

Abstract. — This is a short survey on some recent developments in the theory of phase
tramsitions and microstructures in a mathematically rigorous context. The issue is
discussed at the microscopic, mesoscopic and macroscopic levels recalling the most
used mathematical techniques, mainly from probability theory and variational
calculus.

1. — Introduction

I have been working in the last years on some problems related to phase
transitions and microstructures and I will try in these notes to give an idea of the
state of the art in this field at least from my very personal perspective.

Maybe the best way to introduce the issues is by discussing some simple
examples. The “microstructures” mentioned in the title refer to phenomena
where the competition between forces acting on very different scales gives rise to
“fast oscillations”, microstructures. The following example is borrowed from
lectures by Stefan Miiller on elasticity, it explains the issue very nicely. The
problem is to minimize the functional

(1.1) Fw) :fl {((3—;‘)2 - 1)2+u2} dae
0

du
dx
which instead wants # = 0. The two requests are obviously incompatible but a
good compromise can be reached because the two “act on very different scales”,
the integral of u? is on “scale 1” the derivative instead depends on the “in-
finitesimal variations” of . This can be exploited by taking functions # which are
always close to 0 but have derivative equal to +1, as for instance a function
which oscillates between —¢ and +¢ with slopes +1. The inf of F'(u) on such
functions is 0 (by letting ¢ — 0), thus /" has infimum equal to 0 and no minimum.

F(u) describes a competition between —— which wants to be equal to +1 and u?

(*) Conferenza Generale tenuta a Bologna il 17 settembre 2011 in occasione del XIX
Congresso dell’Unione Matematica Italiana.
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The infimum is described by minimizing sequences as those introduced above
which are examples of microstructures, in this case the oscillations do not have a
definite scale as they become infinitely fast (as ¢ — 0).

The other main issue in these lectures is about phase transitions. This is one
of the most significant achievements of modern science which settles an old
philosophical dispute: gas, liquid and solid are only accidental attributes of
matter, a same substance (same atoms and molecules) may appear in the solid
liquid or vapor phase by changing the external conditions; you may change dress
but you are still the same person.

I will restrict to a very special class of phase transitions, technically
“phase transitions of first order with order parameter the [mass] density”.
This simply means that there is a “forbidden interval” of densities, say
(¢, p"), so that if we put a mass p|4| of fluid in the region A (|4| the volume of
A) with p e (p/,p"), (“canonical constraint”), then the fluid separates into a
part with density p’ and another one with density p”. It does not exist an
equilibrium state with homogeneous density p. (o' and p” play the role of the
slopes +1 in the Miiller example). Thus if we “move in 4” we go from one
phase (with density p’) to another phase (with density p”), hence we see a
“phase transition”.

How fragmented are the phases? In most cases, due to surface tension,
the fragmentation is minimal (compatibly with the canonical constraint of a
given mass), with many results on the optimal shape of the interface, the so
called Wulff shape problems. However there are cases where other forces
than surface tension enter into play and it may then happen that the interface
“disintegrates” into very many small pieces, this is the microstructures re-
gime.

The existence of a forbidden interval is related to a lack of convexity (at least
in all the cases that we shall consider here). Let us examine a simple example
which, as before, involves a functional, the Ginzburg-Landau functional. Let 4 be
a torus in Rd, % a non negative, smooth function on 4 and

(1.2) F) = [{Wa) + [Vue)}dr
A

F%l(u), the Ginzburg-Landau functional, is interpreted as the free energy of
the density profile u. We suppose W a double well, more precisely that W is
smooth and that there is an interval (p’, p”") where the convexification W** of
W is strictly smaller than W, while elsewhere they are equal to each other. As
we shall see (p/,p") is the forbidden interval in a phase transition.

By thermodynamie principles the equilibrium free energy density is obtained
by minimizing the free energy functional in regions so large that surface effects
are negligible. We thus postulate that the free energy density @(p) when the
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mass density is p € R, is

. L[ FE
(13)  9(p)=liminf .(p), @A(p):mf{ A/f“) ‘ Af u= p|/1|}

The free energy f,(s) of a homogeneous density profile with density s is
Fils) = FE(s1,) = [A|W(s)

which is not a convex function of s. If in (1.3) p € (p/,p") the phase transition
picture suggests that the true free energy density is W(p")p + W(p")A — p), p
such that p = pp’ + (1 — p)p”, because the parts of the fluid with density p’ and p”
carry a free energy density equal to W(p') and respectively W(p"), and their
volume fractions are p and 1 —p (as imposed by the mass constraint). Since
W (p) = W(p"p + W(p")(1 — p), consistency of the above requires that:

THEOREM. — @(p) = W**(p).

ProoF. — See for instance [7], here we just give a sketch.
Lower bound: Fil(u) > [W*(u) > |A|W*(p). where p: [u = p|A| (to derive
A P

the first inequality the gradient term in (1.2) has been dropped and W bounded
from below by W**; the last inequality follows from the Jensen inequality as W**
is convex).

Upper bound. If p¢ (p/,p") take u = pl,. If instead p =pp’ + A — p)p’,
p € (0,1), construct a minimizing sequence by taking a regularization (with the
required mass p|A|) of the function p'1, + p”1, where A is (for instance) a
rectangle in 4 and A” its complement (such that |A4'|/|4] = p). O

This suggests that the appearance of a forbidden density interval is caused by
the “homogeneous profiles free energy density” developing a concavity, so that
free energy decreases by fragmentation. While this is exactly what we have seen
in the above example, much less clear is how it translates in atomistic models of
fluids. I will try to do that starting in the next section from the analysis of phase
transitions at 0 temperature, where the theory is supported by mathematical
proofs.

From Section 3 on we study positive temperatures. I will first recall the de-
finition of Gibbs measures (which are postulated to be the equilibrium states in
the statistical mechanics theory) and then see what phase transitions should look
like in such a context, the conditional tense because a mathematical proof is still
lacking and is, in my view, among the most important open problems in statistical
mechanics.

A deep insight on phase transitions came from the van der Waals theory of
the liquid-vapor transition, and many of its ideas are still actual today. The
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van der Waals theory, outlined in Section 3, does not fit into the Gibbs
formalism and in the 60’s there have been works to derive it from statistical
mechanics models. Kac introduced his famous Kac potentials and the analysis
was then extended by Lebowitz and Penrose with coarse graining and re-
normalization group ideas. All that is sketched in Section 4 where it is shown
that non local versions of the Ginzburg-Landau functional describe (ap-
proximately) the Gibbs measures after coarse graining. This is an important
step as it establishes a bridge with continuum theories and opens the way to
the use of variational techniques.

In this way the van der Waals theory has been derived from statistical me-
chanics, but the derivation involves a scaling limit where the range of the in-
terparticles interaction diverges while its strength vanishes (keeping fixed the
interaction energy per particle). By taking first the thermodynamic limit (i.e. the
domain where the system is confined invades the whole space) and then the
above scaling limit, it was proved that the equation of state of the fluid is like in
the van der Waals theory. However such an equation of state does not refer to
any particle system, it is only the limit of equations of state of particle models and
it is not clear whether it is of van der Waals type even before the limit. This has
been proved for some special versions of Kac potentials as discussed in Section 5.
Variants of the model and conjectures on their behavior are presented in Section
6. In Section 7 we shall briefly discuss interfaces, their optimal shape (the Wulff
problem) and the case of microstructures when the interface breaks into many
small pieces.

2. — Zero Temperature

We shall consider a system of point particles in RY, restricting to d = 2 be-
cause it is significantly simpler than d = 3 and yet rich of interesting features.
Our analysis will be in the framework of classical mechanics neglecting all
quantum effects: they are indeed very relevant at low temperatures and hence
we are far from realistic in this section which deals with systems at 0 tempera-
ture. Reason is twofold, this is an introductory chapter to phase transitions at
higher temperatures and, secondly, we want to keep the analysis as simple as
possible.

As mentioned our systems are made of identical point particles which interact
pairwise via a potential repulsive at the origin and with an attractive tail at large
distances, the prototype is the Lennard-Jones potential

(2.1) V(R)=aR™2 —bR® a,b>0

so that the energy of the particles configuration ¢ = (q1, ..., q.), n € N, ¢; € RY,
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is

1
(2.2) H(g) =5 V(g — g
i

H(q) is invariant under permutations of g, i.e. it does not depend on the labels of
the particles which are considered as undistinguishable.

The positive divergence of V' at the origin ensures stability of matter (i.e. the
energy per particle is bounded from below). If on the contrary the interaction
was negative and bounded away from zero in a neighborhood of the origin then
by putting all the particles of ¢ in that set we would get H(q) < fc|q|2 so that the
energy per particle H(q)/|q| would diverge to —oo and matter would not be
stable. The attractive tail of the Lennard-Jones potential is instead responsible
for the occurrence of a phase transition, as we shall see.

The basic axiom of equilibrium statistical mechanics at 0 temperature is that
the equilibrium states are “ground states” namely configurations which minimize
the energy (velocities are thus set equal to 0 and particles configurations will be
described only by the positions of the particles). Our aim in this section is to
prove that the ground state energy density, defined next, has a phase transition
in the sense discussed in the introduction.

DEFINITION. — The ground state energy e(p). Let A be a torus in R? (even-
tually d = 2), |A| its volume, X 4 the space of configurations q with all particles
m A and X 1, the subset of ¢ € X 4 such that |q| = n, |q| the number of particles
m q. Set

n N\ _ .. HQ
(2.3) Q(M’A)_qél}fgm—/l

and, for any p > 0 and any increasing sequence of tori A,

(2.4) e(p):= liminf e<ﬂ;A)
A=REn/|—p \|4|

THEOREM. — e( p) is a continuous, convex function of p € R and the liminfin
(2.4) is actually a limit.

The proof of the theorem is omitted, see [46] for the proof of an analogous
statement at positive temperatures.

Equilibrium states are minimizers of the energy (at given density and in a
given region A) and, for what said in the introduction, a phase transition should
correspond to minimizers of e( p; A) which are not spatially “homogeneous”. It is
not obvious what “homogeneous” means for a particles configuration, in general
the notion requires the use of “coarse graining” with a transition to a continuum
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description. In the particular case of zero temperature we can make the ansatz
that the relevant homogeneous configurations are lattice configurations; more-
over, supposing that lattice ground states want to maximize the number of
nearest neighbors (n.n.) of a site, and recalling that we are in d = 2 dimensions,
we restrict to triangular lattice configurations, denoted by Tp, R the lattice

mesh.
Define
A-R? |4] JLRY ]

THEOREM. — There are a' and b’ both strictly positive so that
(2.6) er(p) =ad'p’ —b'pt
ProoF. — It is readily seen from (2.5) that, supposing 0 € Tk,

2.7) eT<p>=g [Z V()
L€ L R(p)

In fact the r.h.s. is the product of the density p times the energy per particle, i.e.
1/2 the interaction energy of the particle at the origin with all the others. The
factor 1/2, also present in (2.2) is to avoid counting twice a same pair of particles.

To compute the r.h.s. of (2.7) we use a scaling argument:

—12 —6
> Ve = S S

xeTy weTy

(2.8)
xeTy

hence (2.6) after observing that R(p) = ¢/p~/2, ¢/ > 0. O

er(p) is not convex, its graph and the graph of its convexification e;*( p) are as

in Figure 1.

TR

Fig. 1. — er(p) and e (p) (dashed line) differ in (0, p,).

—=
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In the interval (0, p,) (Where e (p) <er(p))

(2.9) e;'(p) = eﬂp&f <er(p)

C

p. is the point where er(p) and ej(p) are equal and have the same derivative:

(2.10) eT;p Y _ eh(po)

c

Since e( p) (defined in (2.4)) is convex and e(p) < er(p) then e(p) < e;'(p), so that
by (2.9) er(p) > e(p) in (0, p,) which proves that Tr(p) is not a ground state when
p €(0,p,). Let 4 = A(A, p) be a cube such that |4|/|4] = p/p,, then by (2.9)

. . H(T N A(A, p)

(2.11) ei(p) = lim (Cripo P ), pe©,p)
[ Al—o0 ]

where 4= A(4,p) is a cube such that |4|/|4| = p/p.. Namely e;'(p) can be

approximated in a large box A by putting a triangular lattice configuration with

mesh R(p,) in a fraction pﬁ | 4] of the box and nothing else in the complement. To

prove (2.11) we observe tchat the error in energy goes like the surface, i.e. as
|A|<d*1)/d, and since in (2.11) we divide by ||, the error goes like |A|7l/d and thus
vanishes in the limit.

The above would prove that the system has a phase transition if we knew that
er‘(p) is indeed equal to the ground state energy e(p). In principle the true
ground state energy could be attained at completely different configurations
than the triangular ones considered so far. That this is not the case has been
proved by Theil, [49], as we are going to discuss. Theil studies the energy per
particle rather than the energy per volume:

(2.12) E :=liminfE,, E,:= inf H@)
n—o0 alal=n|q|
and he has proved that:
THEOREM 2.1. — For a class of potentials (of Lennard-Jones type) E = M,
p, as in (2.10). Pe

REMARK. — By (2.10) the inf of eT/()p ) is attained at p, so that ' = inf {eT/()/) ) }

COROLLARY. —e(p) = e5'(p), p € (0, p.), so that e( p) is the limit as |4] — oo of
energies of triangular lattice configurations with density p, in suitable subsets of
A as in the r.h.s. of (2.11).
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Proor. — We have already seen (after (2.10)) that e( p) < e;*(p). Suppose by
contradiction that there is p’ € (0, p,) such that

/

e(p)<e(p) = eT<pc>/”7

Then E' = @ <E while by Theil’s theorem E’ > E because if ¢ is a mini-
;

mizing sequence for (2.4) then

Q)
i 207 _
- |qW| 0

A physical interpretation of the above is as follows. Suppose we have a region
A which contains exactly a subset of the triangular configuration with density
p > p.. To decrease the density we may dilate 4 by pulling outwards its
boundaries. The triangular lattice in A4 then stretches uniformly to a larger mesh.
However when we are past the critical density p, the triangular configuration
becomes unstable and eventually it “breaks” by shrinking to a triangular con-
figuration with the smaller mesh R(p,) and a fraction of A is left empty.
Earlier results, [45], [27], refer to more special interactions; a more recent
paper, [50], studies the optimal shape, Wulff shape, of the crystal with a finite
number of particles, see also the notes by G. Friesecke available at
http://www.acmac.uoc.gr//CKM2011/talks/Friesecke.pdf

3. — Gibbs measures and the van der Waals theory

The idea behind the theory of equilibrium states at positive temperatures is
that energy levels higher than the ground state energy may be favored by the
larger number of configurations where they are attained. Following Boltzmann,
volumes in phase space are related to thermodynamie entropy which leads to the
well known competition between energy and entropy with the minimization of
the free energy f = e — T's. All these ideas are contained in the Gibbs formula on
which modern equilibrium statistical mechanics is based, as the main postulate of
the theory is that the equilibrium states are described by Gibbs measures.

DEFINITION. — The canonical Gibbs measure for a system of N particles in
the torus A is the probability on A~ defined by the formula

dq 1

N P

where dq = dqy - - - dqy 1s the Lebesgue measure on RN and Z 44N, the canonical

(3.1) Hapn(dg) = ZZ}/},NefﬁH(q)lquN
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partition function, is the normalizing factor; k is the Boltzmann constant and
(by an abuse of language) [ is the inverse temperature.

The N'!in (3.1) is redundant as it simplifies with the one in Z ;4 5. It is added
to remind that particles are identical so that the N! configurations which differ
from each other by a permutation of the labels are counted only once. The N!
becomes important when identifying the thermodynamic potentials which is the
content of the second postulate in the theory:

DEFINITION. — The thermodynamic free energy density fz(p) is identified to

1
3.2 (D=— lm - logZyy
(82) Tl A=RIN/|A—p PBlA] BAApN
dq

—pH
where Z 55 = [ e PH(@) NI

AN
(3.2) establishes a bridge between intermolecular forces and thermodynamic
potentials which is by now well established and accepted. It is a theorem (among
the most significant in statistical mechanics) that the thermodynamic potentials
defined in this way do satisfy the thermodynamie principles, see for instance the
Ruelle’s basic book, [46].
It readily follows from (3.1) that if 7 — 0 (hence f — oo) the Gibbs measure in
the limit is supported by configurations with minimal energy, hence:

CONJECTURE. — If d > 2 then for all § large enough there is a “forbidden
interval” (pj;, pip) with (py, pip) — (0,p,) as f — oo, p, as in Theorem 2.1.

Of course the conjecture remains empty till we specify the meaning of a
forbidden interval of densities. The definition involves a coarse graining and it is
given next.

Let 7', ¢ > 0, be a partition of RRY into cubes of side ¢. We then associate to a
configuration q the function

(0)
53) PO =100
where |g N CY| is the number of particles of the configuration ¢ which are in the
cube of the partition 7 which contains the point 7, this cube denoted by C{.
pO(r; q) is evidently constant on the cubes of 7(” and is therefore “z‘“-measur-
able”. It is the local density in the configuration ¢ measured with mesh /.
(py. pp) is called a forbidden interval if for any p € (pj, pp) the following
happens. For any ¢ > 0 there is ¢, and for any ¢ > ¢, the following picture holds
whenever A is large enough. Let N be the integer part of p|4| and u = 4 -
Then there is a “nice set” G C X 4y, u[G] > 1 — ¢, so that if ¢ € G then p©(r; ¢),



664 E. PRESUTTI

r € A, has either values in [p — ¢, pj; + ] or [pj — &, pj + €] except for r in a set
which has Lebesgue measure < ¢|4].

In d =1 there is no phase transition for a large class of systems (see for
instance [43] for a proof in the Ising system). It is also known that in all di-
mensions forbidden intervals must be away from 0 (p}g > 0), see for instance [46],
but there is no proof that for Lennard-Jones or Lennard-Jones type of potentials
that a forbidden interval actually esists. This is in my view one of the most im-
portant open problems in statistical mechanics.

There are however proofs of existence of forbidden intervals for the lattice
gas (if particles are constrained to be on a lattice with at most one particle per
site) and for more general lattice spin systems (in particular for the the Ising
model) the key words being Peierls estimates and Pirogov-Sinai theory, see for
instance [47], [51] and [39].

By integrating i = 1, 5y in (3.1) over the region

U {ge X,y H(@@Q =E}
EedE

we obtain the probability x(dE) of having energy values in the interval d&. Under
some regularity properties on H this measure has a density:

(3.4) wWdE) = Z e PED(E)IE

D(E)dE is the Lebesgue volume of phase space where the energy is dE.
Boltzmann’s famous formula states that the thermodynamic entropy S(E) is
equal to

(3.5) S(E) = k log D(E)
(3.4) then reads as:
(3.6) WdE) = Z e PE-TSEqR — 71 AAI=TSED)| 4 de

e =FE/|A| s(E) =S(E)/|A| the energy and entropy densities. We are thus re-
duced to the analysis of the free energy e — T's(¥) and due to the presence of the
large factor || the relevant part of the measure will be concentrated around its
minimizers. In particular this suggests that

(3.7) lim 8 ZasN _ sup{—pe — Ts(E))}
Mj—=oo  [] e

(3.7) is indeed theorem (valid for a large class of interactions, see [46]) known as
“equivalence of ensemble” (here the equivalence is between “the microcanonical
and canonical ensembles”). By the second postulate which relates the Lh.s. of
(3.7) to the free energy density, see (3.2), (3.7) shows that entropy and free en-
ergy are related via a Legendre transform in agreement with the laws of ther-
modynamics.
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Thus the second postulate which identifies the free energy is equivalent to the
Boltzmann formula for the entropy. While theoretically important this re-
presentation of the Gibbs measure has little practical consequences, the major
difficulty is to handle surfaces of constant energy, which enter in the computa-
tion of the entropy S(£), a task which has so far eluded all attempts due to the
complexity of the interactions among all the particles.

The problem drastically simplifies if we change hamiltonians. Let us start
from mean field.

3.1 — The mean field theory

In mean field the Lennard-Jones interaction is replaced by a constant po-
tential where the constant depends on the region where the system is confined:

(3.8) V(qi,q) = A

J
, I >0, H@Q=—-5— -1

Since the energy depends only on the particle numbers the sets of phase space
with constant energy are the same as those with given number of particles and
thus easy to compute. Before doing that a few remarks on (3.8).

To explain the prefactor | 4| observe that the interaction of a particle with all
the others is —J(N — 1)/|4| = —Jp and thus bounded as desired. With (3.8) we
are considering only the contribution of the long, slowly varying attractive tail of
the interaction, which justifies neglecting the actual position of the particles so
that each one interacts almost equally with any other one.

The mean field partition function is:

4"
N1

Hence, after using the Stirling formula for N!, we get from (3.2) and (3.9)

(3.9) Zmi = PN/l

J
(3.10) ) = =3 7 +% (logp -~ 1)

which is physically a nonsense ! In fact fﬁmf( p) is not a convex function of p, as it
should in a theory compatible with thermodynamic principles, and moreover it is
not even possible to convexify it, as inf fﬁmf( p)/p = — oo: matter is unstable if the
energy per particle is unbounded from below, the entropy term plog p cannot
contrast the —p? energy as p — oc.

The origin of the problem goes back to the initial assumption (3.8) where the
energy keeps only the attractive part of the Lennard-Jones interaction and
drops the short range repulsive part, which is in fact essential to ensure stability.
A way to take it into account in a simple way (but not so simple in the end) is to
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suppose that particles are not points but small hard spheres (of radius E) which
cannot overlap with each other. Then (3.9) is replaced by

fR _ _BININ-1)/@ dq
(3.11) 2R oBINW-D/ \Al)f { 11 1‘qi,q_l_|>23} o
AN i#£] '

The problems we had in (3.10) are now absent because the density is bounded but
the analysis of the integral in (3.11) is far from trivial.

3.2 — The van der Waals theory.

Van der Waal proposed a theory for the liquid-vapor transition which is mean
field with an approximation to (3.11), thus it is based on the following two as-
sumptions:

e Energy. The energy H(q), ¢ € X4, is only a function of the number of
2
particles |g| in ¢ and of the volume |A|, in particular H(q) = — %/l”, J>0
e Phase space volumes. The Lebesgue phase space volume of a system with
N particles is (|4| — Na)", a > 0.

Van der Waals explains the parameter a as the volume “occupied” by a par-
ticle, thus if there are N particles the volume they occupy is Na, hence Na < |4|.
The volume “left free” is |4| — Na and the second assumption argues that the
system behaves as if each particle is free to move (independently of the others) in
the free volume. (|4] — Na)" is a crude approximation of the integral in (3.11)
(yet it is correct in d = 1 dimensions). It has the advantage of providing an ex-
plicit expression to the entropy which is

N

_ 1 N _
(3.12) S(p) _klog{m(w — Na) } =i

Writing £ — T'S = |4|f(p) and using the Stirling formula we get in the limit
4] = o0

J 1
(3.13) f(p)z—Epz——(—p(logp—1)+plog(1—pa))
B
which like in (3.10) is not convex but instead is stable, i.e. it has a well defined
convexified, as we are going to discuss. df(p)

In thermodynamics the chemical potential A is defined as A = dpp

second principle of thermodynamics it should be a non decreasing function of p.
Instead its graph is as in Figure 2.

and by the



MICROSTRUCTURES AND PHASE TRANSITIONS 667

Fig. 2. — 1 as a function of p.

As a remedy Maxwell proposed to modify this graph by cutting along the
dashed line so that the parts above and below the dashed line have the same area.
This is the famous “Maxwell equal area rule” which is equivalent to replace f( p)
by f**(p), the convexification of f(p).

With the van der Waals plus thre Maxwell equal area rule theory we have
recovered what found at 0 temperature with the energy replaced by the free
energy. There are however three main drawbacks in the theory:

e The interaction between two particles depends on the region 4 where the
system is and moreover it vanishes as |4| — oc.

e The phase space volume in the second van der Waals assumption is only an
approximation, the correct expression is the one in (3.11)

e The Maxwell equal area rule is an ad hoc prescription, it should instead be
derived from within the theory, as in the zero temperature case

4. — Kac potentials and free energy functionals

The problem of deriving the van der Waals theory in a statistical mechanies
framework was solved in the 60’s with the works of Kac, Uhlenbeck and
Hemmer, [29], [30], [31], followed by those of Lebowitz and Penrose, [35], and
Gates and Penrose, [17], [18], [19], see also the more recent [32].

A very short summary of these results is presented here, in a form useful for
the sequel but not always historically accurate. With this in mind we may say that
Kac basic idea is to relax the mean field assumption to a local condition. Write the
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hamiltonian in the form H(q) = [ e(r; g)dr thus interpreting e(r; ) as the energy
density at » when the particles configuration is q.

e Local mean field. Kac shifts the assumption from the total energy H to the
local energy density e(r; ¢) by assuming that the latter depends only on the “local
particles density p(r; q)” at » (which will be defined next). By an abuse of notation
we write e( p(r; q)) for e(r; q).

e Local particles density. A choice (others, more convenient, will be dis-
cussed later on) is

g N B, ()]

(4.1) pr;q) = B ()

B,1(r) the ball of radius y~! and center 7; |B,1(r)| = y~%|By| its volume (|B;| the
volume of the unit ball). Observe that if we replace B,-:1(r) by 4 we are back to
mean field.

o The hamiltonian H,(q). Being the integral of the energy density is:
(42) Hy(g) = [ e(pr,@))dr

By taking the Kac scaling parameter y small the system looks like mean field
and since mean field has a phase transition we may hope to prove in this way that
there is a phase transition as well for the system with y > 0 sufficiently small, or
in the limit y — 0.

e Choice of the energy density. Kac choice is e(p) = —%2 — Ap (we are here

including the chemical potential in the energy). The energy per particle e( p)/p is
in this way unbounded from below, same problem as in the van der Waals theory
which Kac solves in the same way:

e Hard cores. To ensure stability, the phase space is restricted to config-
urations ¢ such that for all pairs ¢;, g; of particles in ¢, |¢; — q;| > 2R, R > 0 the
“hard core radius”. We may as well say that we have added a pair interaction
which is = oo if |¢; — ¢;| < 2R and = 0 otherwise. A system of particles with such
an interaction is called the “gas of hard spheres”.

Before proceeding with the theory it is convenient to generalize the definition of
the local particle density p(r; q) as

(4.3) prsq) = J, % qr) = > J,(r.q), reR’

qi<q

Lyt

. It is in fact convenient
|B,-1(r)|

(4.1) is a particular case of (4.3) with J,(», 7)) =



MICROSTRUCTURES AND PHASE TRANSITIONS 669

to have J,(r,7") smooth rather than discontinuous as in (4.1). We keep however
the same scaling dependence on y and set

(4.4) I, ") =y (e, )

where J(r,7') is a symmetric, translation invariant (/(r, ") = J(0,7 — 7)) smooth
probability kernel which vanishes when |r — #/| > 1. Observe that by definition

(4.5) f I, (rr)dy = f Jor,1dr =1

so that the sum in (4.3) is the empirical density of ¢ around a point r, weighted
with the probability kernel J, (which therefore involves the particles of ¢ which
are in a ball of radius y~! and center 7).

Reduction to pair interactions. The definition of the model is now complete.
It can however be reformulated in the more familiar context of pair interactions.
We get in fact from (4.2)

1 /
(4.6) H,(q) = —5 g V,(qi, q5) — Zq|
Aj
where )/ = 1+ E V.(¢i,¢;) and
qi

(4.7 V(i q) = f J,(r,q)d(r, qpdr = (I, x J,)(qi, ;)

Thus V, = J, x J,, the convolution of J, with itself: it then follows that the in-
teractions V, in the theory we have presented are positive operators (while in the
original Kac formulation they could be arbitrary). Observe that the the inter-
action range is 2y~! and that A’ — 4 as y — 0.

The Lebowitz-Penrose approach to Kac potentials uses ideas from re-
normalization group. The basic step of renormalization group is to coarse grain
the Gibbs measure with a given hamiltonian on some scale and find the corre-
sponding effective hamiltonian. This defines a map from hamiltonians to ha-
miltonians and its iterations define the renormalization group. The scheme is the
following.

e Introduce a family of partitions 7 of R” into cubes of side £ = 2, C¥ being
the element of the partition containing a point € R?. The partitions are chosen
so that each one refines the next one, in the sense that each cube in 7?” is union
of cubes of 7¥.

e Given ¢ denote by N,, r € R%, a non negative integer valued function
measurable on 7', i.e. constant on each cube of 7*.

e The effective hamiltonian H gf)f on the scale ¢ is (modulo an additive con-
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stant) Her = —f ' log u({N,}), u({N,}) the Gibbs probability that in each C\
there are N, particles.

The computation of Hgf)f is usually very hard, but it becomes easy for Kac
potentials, at least on scales 1 < ¢ < y~1. By the smoothness of JJ, the Kac en-
ergy is quite insensitive to variations of the positions of the particles inside a
cube C (as J, varies in the cube at most by cy¢) and to a first approximation we
can replace q by p(r) = £-%g N CY| in the convolution J, * g. Indeed, for any
configuration q¢ € X' satisfying the hard core condition,

(4.8) H,(@) — [ (), pO)dr] < et |4
o ® lgnC°| _ N . o o
where p*”(r) = p(r,q) = R T is the particles density in the cube C}°.

The energy [e(J,  p*’())dr is not yet the effective hamiltonian because we
still have to integrate over all the configurations yielding the assigned occupation
numbers {N,}: the effective hamiltonian has also an entropy contribution (the
log of the above phase space volume). This would be easy to compute if particles
were points, it is instead pretty hard because of the hard core constraint (an issue
overcome in the van der Waals theory by ad hoc assumptions on the entropy). It
is not hard to prove that we make a “small error” if we assume factorization,
namely if we take the entropy, i.e. the log of the volume of phase space of con-
figurations in {N,}, as the sum of the entropies in each cube, which, modulo a
minus sign, is

e Ny 1 dq
(49) fC (@) = ﬂ|C| 10g{é!:1qi_%>2R N }

(Factorization increases the entropy, as we disregard the hard core constraint
among particles of different cubes; a lower bound is obtained by restricting
particles in each cube to be away from the boundaries of the cube by R, for such
integrals the factorization is correct and the error in restricting to such volumes
will become negligible in the limit).

Even with the simplification (4.9) the computation of the integral remains
difficult for the presence of the hard cores constraints 1, -2r. From general
results in statistical mechanies it follows that there is a convex function f(p)
(the free energy of the hard cores gas) so that

N,

(4.10) lim lim AhC(M| re(p)

[4| =00 N/|4]—p
In the next section we shall describe in more details what is known about ft¢,
which is not much. There are in the literature several formulas for f™(p) ela-
borated via numerical simulations and heuristic considerations, [48], [26], [28],
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we refer to [32] for their analysis. We state below some properties which we are
going to use (which strictly speaking should be regarded as conjectures).

e 1¢(p) is a continuous convex function in (0, P Pe >0

e h¢(p) is asymptotic to —plogp — 1) as p — 0 together with its first and
second derivatives

e fP(p) — 400 as p — p, and its second derivative is strictly positive in a
neighborhood of p,

Neglecting the error in (4.8) and replacing f¢ ( | C|> by its limit we then have

N,
(411) HAND = 270 ) =
where the free energy functional F,(p) is
1
(4.12) Fyp) = f {e(], % p) +3 7y ar

By scaling » — yr we get, calling p*(r) = p(y"1r) and F = F},
(4.13) F.(p)=yF(p")

which replaced in (4.11) shows that for small y the Gibbs measures should con-
centrate around the minimizers of F, the conditional tense because (4.11) is only
an approximation.

However the above arguments can be made rigorous even though in a weaker
sense:

THEOREM 4.1. — Let {A} be an increasing sequence of tori in R% Let
s € (0,p.)

(4.14) fp(s) = log Z, 1N

lim
|| —00, N/|A]—s ﬂIAI

the free energy density (notation are explained after the theorem). Then

(@15)  lmfye= = lm o A|1nf{FA/;(p) p: f p= N}

In the above theorem Z, 4 is the canonical partition function defined in
(3.2) with H = H, as in (4.2), e(p) = — 5 /p and there is a hard core repulsion

among particles; (the existence of the limit (4.14) is true in general); ',z is the
corresponding functional defined in (4.13) on L>°(A4; R.) (with the convolution
defined in the torus A). The proof of the theorem is omitted.
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THEOREM 4.2. — In the same context as tn Theorem 4.1, the limat in (4.15) is
equal to ¢ (s), 1.e. the convexification of

2

_ s 1 he
(4.16) $s) = == ds 5 /MG

ProOOF. — We need to prove that

(4.17) Jim oo A‘ inf {F.p(p) | - f p=sldl} =)

The proof of (4.17) is obtained by rewriting first ¥,z in a more convenient
way, see (4.20) below; exploiting this we will then show that ¢™(s) is a lower
bound for the liminf of the Lh.s. of (4.17) and complete the proof by exhibiting
a recovering sequence which realizes the bound ¢™(s).

Recall that F 4 is defined on L*(A; R, ) with periodic conditions, mean-
ing that J % p is computed by repeating periodically p on the whole R%: this
is what we mean when we say that we take A to be a torus in R?. We then
have

(4.18) f (] * p(r)2dr = f f V@ )0 )y di”
A A

A

Vo' ") =« D@ ") = [T, ) (r,7")dr. Thus

R
1 1 1
(419) -3 Af (J  pr)Pdr = — 5 Af pPr + 5 Af Af Var, ) {pr) — p')Y2drdy’
hence
@20)  Fopp = [ e+ 5 [ [Ve (o - pa)ydrdr
A

In this form the functional looks very much like the Ginzburg-Landau functional
of (1.2) with the gradient term replaced by the non local expression in (4.20) and
indeed the proof is now a repetition of the one sketched in the introduction for
the minimization of the Ginzburg-Landau functional.

Lower bound. We shall prove that

(4.21) 1‘%5?0%' it {Figp) | fp_s|A|}>¢(s)

Define F”;, by replacing ¢ by ¢ in (4.20). By definition ¢ > ¢™ so that
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Fup> Fj_ﬂ. Since V(r,7') > 0,

* Kk ok 1
(4.22) Fiyp) > Af ™ (p(rdr > | Al (W Af prdr)

having used Jensen in the last inequality (as ¢ is convex by definition). The
lower bound (4.21) is then proved.

Recovering sequences. If s is such that ¢™(s) = ¢(s), for each 4 we take
p(r) = s and for such p, F4(p) = ¢™"(s). Suppose next that ¢ (s) < $(s), there are
then s’ <s<s” so that

(4.23) ¢ (s) = pp(s") + (1 — p)g(s”), pe(0,1)

Let A" a coordinate rectangle in A with |A'| = p|A. Define u () = p' in A" and
= p" elsewhere in A, so that [u, = s|4|. The last term in (4.20) is bounded
proportionally to L?~! (L the length of the side of the cube 4) hence

. F u ) / 7/ *%
(4.24) Jim A|(A|A = pg(p)) + (1 = p)p(p") = ¢ (5)
which shows that u, is indeed a recovering sequence. O

Phase transitions. By a continuity argument, ¢(s) is concave in any given
interval strictly contained in (0, p,) once f is large enough, so that there are in-
deed forbidden density intervals and Theorem 4.1 together with Theorem 4.2
show that the particle system has a phase transition at least in the limit y — 0.
We shall come back later on the meaning of such a statement.

A function which satisfies the same properties as £¢(p) is the van der Waals
free energy p(logp — 1) — plog (1 — p/p,), see (3.13): with such a replacement we
have obtained the van der Waals phase transition without using the Maxwell
equal area rule, as the limit free energy is ¢ (s).

The functional F4(p) hides the existence of microstructures. The replace-
ment in (4.10) of the finite volume free energy £ <%) by its thermodynamic
limit £P¢(p) turns out to be [partially] incorrect when the hard spheres gas un-
dergoes a phase transition (as it is believed to occur in d = 3, see Section 6).
Indeed if there is a phase transition then a density p in the forbidden interval is
realized by a non homogeneous profile which alternates regions with density p;
and with density p,. The grains of such fragmentation are believed to be
“slightly” smaller than y~! and in such a case the typical configurations will have
in the cubes C (whose side is < y~!) one of the above two densities. The pre-
dictions of the functional will however be correct on scales larger than y~!. In

conclusion if when studying the functional we read a density value p inside the
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forbidden interval we should always remember that it is in fact describing a
hidden finer structure with oscillations between the two extremal values p; and
P9, such microstructures are also called in the literature “mushy regions”.

5. — The LMP model

The weak point in the theory of the previous section is that phase transitions
are proved only in the limit y — 0. The graph of the free energy density f, s (see
Theorem 4.1) has (for f large enough) a linear segment, but the statement is
proved only in the limit y — 0. When y > 0, no matter how small it is, f, 3 may
very well be a strictly convex function.

On the other hand J, and hence the hamiltonian H, have no well defined limit
as y — 0 so that we cannot attribute the phase transition observed in the limit to
any statistical mechanics particles model.

All that is not a mathematical subtlety, for instance we know that in d =1
there is no phase transition, while in the Kac theory phase transitions occur
independently of the dimensions, hence also in d = 1.

It seems that we are back to the same problem we had with the mean field and
van der Waals theories, but already at the times when the Kac and the Lebowitz-
Penrose papers appeared the feeling was that much more could in fact be done
with Kae potentials. The two main technical obstacles are:

e The basic step in the theory is to reduce to variational problems with free
energy functionals, which requires a proof that the effective hamiltonians are
well approximated by such functionals. Their difference however grows as ||
multiplied by a small factor vanishing with y. Thus if y is kept fixed as we want,
the approximation becomes useless when studying the Gibbs measure in large
volumes.

e There is a poor control of the hard cores interaction. Even without the Kac
potential we do not know how the hard spheres gas behaves. It may very well be
that the hard spheres gas alone has a phase transition without the help of Kac
potentials, as shown in d = 3 by numerical computations.

Let us start from the second point, namely the poor knowledge of the hard
spheres system. As we shall discuss later this is not totally true, we have in fact
a very good control of the hard spheres gas for small densities (i.e. when the
typical inter-particles distance is much larger than the hard core radius). In
this case the entropy of the hard spheres is to leading orders the same as in the
ideal gas.

One may then hope to be lucky so that the relevant densities which appear in
the analysis are in the hard core low density regime, but unfortunately this does
not seem likely. The attractive Kac interaction in fact goes like —p? and it thus
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wants p to grow to infinity; this can only be contrasted by the hard cores in-
teraction which however in the above small density regime where it is close to the
ideal gas has a free energy which grows only as plog p. The argument then in-
dicates that the hard core interaction can control the Kac energy only away from
the ideal gas approximation.

To overcome the impasse, LMP (Lebowitz, Mazel and Presutti), [34] and [43],
have proposed to change the Kac energy density —p?/2 into

2 4

(5.1) o(p) = _”E+%— Jp, H, :fe(Jy x q(r))dr

e( p) is now stable, i.e. e( p)/p is bounded from below, and with such a choice of the
energy density there is no longer need to have a hard core interaction as well. The
LMP model is indeed defined by the hamiltonian (5.1) with no hard-cores added.
It should be said that

e the LMP analysis applies as well to other regularizing terms than p?, (5.1) is
just an example;

e the double well structure of e( p) is misleading because p > 0: a double well
will appear when adding (actually subtracting) the entropy.

The very first step of course is to check that also the LMP model has a phase
transition in the limit y — 0. The coarse-graining estimates are mainly un-
changed (actually simpler in the part regarding the entropy as here we have
point particles) and Theorem 4.1 extends to the LMP model with I, 4 4 replaced
by a new non local functional F}}} which has the scaling property (4.13), namely

F(p) =y FNE (), 4" = yA and p*(r) = p(y '), with FENT given by

6.2)  FPw) = f {e(J xu(r)) — ;s(u(r))}dr, su) = —ulogu — 1)
A

s(u) the entropy of the ideal gas.
Minimizers of Fy" are constant functions, as in the Ginzburg-Landau
functional:

LEMMA 5.1. — Let A be a torus in Rd, d>1, then

1
. LMP/ N _ | 413 1
(5.3) %L}}(lﬁym Fgy (u) = I/ll})rzlg {e(/)) /),8(/))}

PROOF. — We rewrite Fi{*" as

FkiﬁP(u) =f ({e(J*u) —%S(J*u)} + {%S(J*u) —%s(u)})

A
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We have f s(u) = f J * s(u) and, by convexity (—s is convex),
A A

1S(J*u)—%.]*s(u) >0

B
so that
(5.4) y 1
2\A|/lgg¢ﬂ(/?), ¢/}(p) = e(p)—Bs(p) -

The same ideas are used to prove the analogue of Theorem 4.2 (details
omitted):

THEOREM 5.1. — Let ¢5°(s) be the convexification of ¢4(s), the latter defined in
(5.4), then
(5.5) lim —L inf {FLMP( IR f p= s|/1|} — &)
i=oe 4] J !

By a direct computation ¢; , (here the dependence on 7 is made explicit) has
the following properties:

. qﬁw( -) is convex for f < 8, = (3/2)3/2

e for > f3, there are p_ ;<p. 4 so that qﬁm(s) > ¢Z§,(S) in (p_ 4,p, p) while
qﬁﬁ’ (8 = 45}}3(3) elsewhere

e for any f# > f5, there is A(f) so that the minimum of ¢, is attained at

P10 P—p) = pip( P+ p)

The critical points of ¢; ,(p) are the solutions of the mean field equation
L
B

which for f > f, and 1 = A(f) looks as in Figure 3.

Let us go back to the problems raised in the beginning of this section where
we have outlined the two main difficulties to realize the Kac program for phase
transitions at fixed y. The second one, which concerns the hard core interaction,
has already been overcome by adopting the LMP model where hard spheres are
replaced by point particles (stability being ensured by having changed the en-
ergy density).

The other main difficulty refers to the fact that the true effective ha-
miltonian differs from the functional by a term which grows as || multiplied
by a small factor &(y) vanishing with y. If y is kept fixed, as we want, the error

d
(5.6) i {e.(p)+ = plogp—1)} =0, p=exp{—pep)}=:Ks(p)
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Fig. 3. — Graph of Kj ;5 (p) with § > ...

explodes in the thermodynamic limit and Gibbs measure and free energy
functional indeed give very different pictures for the relevant density pro-
files.

The conclusion is that we should not be so ambitious to pretend that the
Gibbs measure is really well described by the functional: this may be true on
large but not too large domains namely such that &(y)|4| is small. On much
larger scales the error between effective hamiltonian and functional becomes
important.

Indeed the functional does not take into account fluctuations: rarely yet with
finite frequency there are large deviations from the optimal behavior predicted
by the functional. Such fluctuations have a macroscopic importance as the for-
bidden density interval turns out to depend on .

The typical configurations of a pure phase with density p have empirical local
density close to p except in “small islands” where there are significant deviations
from p and to prove phase transitions we need to control the probability of such
deviations. To do that we use coarse graining but only in the region where such
deviations occur. In this way the error grows only with the volume of this region
(times the small factor &(y)). The excess free energy of the functional on the
profiles describing excursions from the minimizers is large: the key point is to
prove that it is proportional to the volume (of the region where the deviations
occur) and so large to kill the error done in the coarse graining. This is just a
rough sketch, many problems are hidden both technical and theoretical, and here
I just refer to [34] and [43],

THEOREM 5.2. — In the LMP model in dimensions d > 2 there is f* > 8, so
that given any f € (B, ) for any y > 0 small enough there is a “forbidden in-

terval” (p_.p. P py) Paipy = Pasp @Sy — 0.
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There are two senses in which the interval ( P py P ﬂ‘},) is forbidden. There is
a “thermodynamics sense” which simply means that the graph of the free energy
density f,(p) has a straight segmentin [p_ 4., p, 4,]. The interval (p_4.,p, 5.)
is forbidden also in the sense outlined in the introduction and specified in Section
3, however a proof of the latter statement is not explicit in the literature (which
states the existence of more than one DLR measures).

6. — LMP plus hard cores

While the Kac original hamiltonian (i.e. an attractive pair potential scaled
with y plus hard cores), may be regarded as a plausible schematization of the
Lennard-Jones interaction, the LMP hamiltonian is certainly further away from
a realistic model of interacting molecules. The LMP energy density e( - ) should
rather be seen as an effective energy due to the long tail of the interaction so that
it is less sensitive to the actual position of the particles and depends only on their
empirical density. The decreasing small density behavior (=~ —p?) reflects the
long range attractiveness of the interaction while repulsive forces take over at
smaller distances where the density is higher (= p*).

Energies at very large densities however become very sensitive to the actual
position of the particles and the LMP approximation in terms of their empirical
density is certainly quite rough. To improve the LMP model we can add a hard
core interaction which then dominates the energy when the density grows to-
wards the maximal, “close packing” density.

In the LMP plus hard cores model there are two terms which fight against
the growth of the density, one is the p* term present in the LMP energy, the
other one is the hard core interaction. By adjusting the parameters we may well
separate the two effects so that the hard core interaction is “very weak” in the
density regime where the LMP phase transition appears and enters into play
only later when the density is much larger.

In this section we shall discuss the phase diagram of the LMP plus hard cores
model, none of the properties which will be stated have been actually proved so
that this section should be regarded as merely conjectural, but research is going
on and hopefully something will appear in the future.

Let us start with the pure hard spheres gas, the LMP energy will be added
later on. As mentioned already several times, very little is known analytically on
the hard spheres gas. The only results refer to low densities (i.e. when the typical
interparticle distance is much larger than the hard core radius R: pR? < 1).
Asymptotically as p — 0, the entropy s"(p) behaves as

(6.1) s"(p) ~e sideal(p) = —p (1og p— 1)

sideal( p) the entropy of a gas of non interacting point particles.
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The “imperfect gas” where the hard core length is not neglected as in (6.1) has
been much studied starting from the famous Mayer virial expansion where the
equation of state of the hard sphere gas is expressed as a convergent series in the
density p, valid for pR¢ small enough. Many attempts have been made to improve
the radius of convergence of the series, but nothing is known analytically on what
happens when pR? is no longer small.

Numerical evidence, [26], [28], [48], shows that in d = 3 the hard core free
energy density f"¢(p) is linear in an interval (p;,p,) (Which scales as R~%).
Such a phase transition would mark the transition from disorder to order.
When p < p; entropy wins and the hard spheres positions are random and thus
quite disordered. We very well know (for instance when we play the game of
who puts more non overlapping discs on a table) that in disordered config-
urations a lot of space gets lost and at some point it becomes very hard to find
room for new spheres. When such a critical condition is reached, to increase
the density we need to readjust (in some region of the space) the particles
disposing them in some more ordered way which accommodates for a higher
density. Such a phenomenon may explain the origin of the (p;,ps) phase
transition.

There is no physical reason to expect the LMP phase transition to disappear if
instead of points we take spheres, the proof however cannot be straightforward
otherwise we would work directly with the Kac model (of attractive Kac inter-
actions among spheres). However, since the analysis on the LMP model is “ro-
bust”, we may hope to be able to handle LMP plus hard cores if pR? < 1,
i.e. when the hard core radius R is much smaller than typical interparticle dis-
tance. We could then study the system as a perturbation of LMP because in the
above regime the hard core constraint should be quite unimportant.

Coarse graining is about integrating over configurations with the “multi-ca-
nonical” constraint that the numbers N; of particles in the cubes Cg) of a given
partition 7' are fixed. By choosing properly ¢ (/ < y~1) we may consider to first
order the Kac interaction independent of the actual positions of the particles in
each cube and the integration within such an approximation is over particles
which interact only via hard cores. If the relevant numbers N; turn out to be such
that the local densities N;/¢? are in the domain where the virial expansion ap-
plies, [37], [38], [46], [33], [42], [15], [16], we can then control the difference be-
tween entropies of hard spheres and point particles in terms of a convergent
series in the particles density.

The fact that the numbers N; cannot be dangerously large will be enforced by
the repulsive p* part of the LMP energy. Such a term is absent in the Kac model
where the growth of N; is contrasted only by the hard cores interaction, for this
reason in Kac the numbers N; are typically large, while here they can be con-
trolled by the LMP energy alone and by choosing R small we can then suppose to
be in the virial expansion regime.
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Recent works on cluster expansion, [44], have extended its validity to systems
in the canonical ensemble (i.e. where the number of particles in a region is
prescribed) and thus apply directly to the coarse graining procedure outlined
above.

Conjectures on the phase diagram

We fix an inverse temperature f € (f,, f*) as in Theorem 5.2 and consider the
LMP model with additional hard cores interaction with hard core length R. In
agreement with the previous discussion we suppose R%p +.p <1 (pyp are the
mean field pure phase densities in the LMP model) and the conjectures below
are tacitly stated for values of y sufficiently small.

Let us first discuss the phase diagram when we increase the chemical po-
tential A from —oo to +oo (with f fixed as above). We expect to see three phases,
gas, liquid and solid, but while the transition gas-liquid will be sharp the liquid-
solid one will be “diffuse”. Let us start with 1 increasing from —oc. This is the gas
phase regime where densities are very small and the typical interaction among
particles is weak. This regime is very well understood even for general inter-
actions and a fortiori here.

The system will stay in the gas phase till the chemical potential 1 reaches a
critical value /g,. Then a new phase appears and precisely at /g, two phases
exist, gas and liquid. As soon as the chemical potential increases past 4z, the gas
phase is suppressed and only the liquid one survives. Due to the condition
Rp +p <1 we expect that the gas and liquid densities at the transition are
pretty close to those in LMP. The conjectures so far look quite solid, what follows
is instead much more tentative.

If we further increase the chemical potential the liquid density will then in-
crease with A (but quite slowly due to the p* term in LMP). Once / and the
density become large the influence of the hard core interaction becomes more
and more significant (and the analysis harder). At some large value of the che-
mical potential, say /’, the density will reach the value p;, i.e. where the for-
bidden interval for the pure hard spheres system starts. A further increase of 2
past A’ would cause a jump (from p; to p, in the pure hard sphere gas, but such a
jump is not compatible with the LMP energy which (for large densities) is in its
strongly convex region.

This is the competition between forces on very different scales discussed in
the introduction, recall the Stefan Miiller example. We thus expect to see mi-
crostructures, namely on scales smaller than y~! the hard core interaction wins
and we locally see one or the other of the two allowed densities p; and p,: they will
be however spatially arranged in the right proportion so to have on a larger scale
the uniform density p which the LMP energy demands. We thus observe as 4
increases past 4’ clusters of the solid phase (of density p,) forming in some sui-
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table pattern. The clusters size increases with 1 till invading the whole space,
i.e. at 4 = 2", namely when the total density is p,: the competition between LMP
and hard core interactions is at this point over. Further increases of 4 past 1"
only cause an increase of density past p,, with the solid being the only existing
phase at all scales.

The corresponding picture in a canonical ensemble setting, where the order
parameter is no longer the chemical potential 4 but the particles density p, is as
follows. Notation are as in Section 3, where we have introduced partitions 7 into
cubes CZ(.[')).

The gas phase exists when the density p is below a critical value p” . Close
(for R small) to the LMP value p_ 4.. When p < p/_ B “typically” “most cubes”
Cf) have density “essentially” equal to p. “Typically” “
the sense explained in Section 3.

In the forbidden density interval (p_ ;.. ;) (0, 4 close for small R to the

most” and “essentially” in

LMP value p, ;,) typically most cubes C“> are plus or minus cubes, namely they
have density essentially equal to g/, . The minus and plus cubes are those
where we see the gas or the liquid phases ¢ can be arbitrarily large and we still
see in most CE/) a pure phase (either the liquid or the gas phase), but the
statement holds provided the region A is large enough (in terms of ¢). This means
that the clusters of each phase are large and not too dispersed, a statement which
will be much strengthened in the next section.

As the density p increases past o/, ; , “typically” “most cubes” CZ@ have density
“essentially” equal to p, analogously to the picture we have seen for the gas phase.

However when p increases past p; we see two scales. For small ¢ (much
smaller than the LMP interaction range y~!) typically most cubes Cf.[) have
density essentially equal to p; or py, the phase in the cubes p; being liquid, in the
others solid. For larger values of ¢, ¢ > y~! instead typically most cubes CZ@ have
density essentially equal to p. These cubes, apparently “normal” have however
microstructures, since when observed on smaller scales exhibit a different
structure (droplets of density p; and p,). When p is past p, only the solid phase is
present and we see p at all scales.

» «

7. — Wulff shape and microstructures

Phases may coexist with different geometries, the interface may be a single
smooth surface or it may break into very many pieces. The former case arises
when the surface tension is the dominant force, then, in the presence of a phase
transition with a canonical constraint, the phases separate in such a way to
minimize the integral of the surface tension over the interface (the Wulff pro-
blem) compatibly with the canonical constraint. Microstructures instead arise
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when other forces than surface tension enter into play: on some small scale
surface tension wins and we see one phase or the other, but when averaging over
larger scales other forces prevail and we see a constant density.

So far we have considered thermodynamic potentials like the free energy
density and entropy, which are all bulk quantities (as they are obtained by
computing the free energy or the entropy of the system in a large region 4, then
dividing by the volume | 4|, and finally taking the thermodynamic limit | 4] — oo).
Surface tension instead is a thermodynamiec potential of a different kind as it
involves surface rather than volume properties, it thus belongs to a completely
new and indeed much more complex chapter of statistical mechanics.

The primitive notion in the macroscopic theory of phase coexistence (with
only two pure phases having density p’ and p” > p') is that states are described
by functions u(r), » € Q, Q2 the macroscopic region where the system is confined
(supposed to be the unit torus in R?%), with values p’ and p” (“local equilibrium
assumption”). The free energy of such states is

(7.1) D) = f o(@)dr

X

where X :=d{r:u(r) =p'} (the boundary of the region where u =p’) is a
smooth surface, 7% the unit normal on 2 and o(#) > 0 the surface tension that we
suppose to be a strictly positive smooth function on the unit ball.

“Geometric measure theory” shows that it is possible to extend @ to functions
u which are p/, p” valued and have “bounded variation”. In fact, measure theo-
retically, the boundary of a BV set is almost everywhere C! relative to the
Hausdorff measure of codimension 1, [9], [14], [4]. Thus modulo sets of zero
measure we may regard the surface as C! and (7.1) naturally extends to such u.
Any other state which is not BV has an infinite free energy cost: thus the cost of
an interface controls its regularity (in the C! sense) but only modulo a region of
the interface of zero measure.

In the mesoscopic theory states are described by functions u( - ) with values in
R, (the local equilibrium assumption is dropped here) and their free energy is a
functional F'(u), at the moment we restrict for simplicity to the Ginzburg-Landau
functional (1.1), non local functionals will be considered later. Suppose that the
potential W in (1.1) has value 0 at p’ and p” and it is everywhere else strictly
positive. We call ¥4 the functional (1.1) defined on non negative functions % on
the torus 4 C R? such that |Vu|2 is integrable. Our aim is to derive the macro-
scopic functional (7.1) from F, in the thermodynamic limit |4| — oco. The first
task is to relate macroscopic and mesoscopic states. Since they are functions on
different spaces, Q and 4, we start by mapping A to Q by » — /L, L the side of
A. Then F , becomes the functional

(7.2) FP@) = F ), v(r)=ullr)
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defined on non negative valued functions v on the torus 2 such that |Vv\2 is
integrable. Explicitly

(7.3) FO(@) = L f (W) + L2Vl dr
Q

In the meso-theory macroscopic states (recall that they are BV functions on Q
with values p’ and p”) are not simply a subset of all the meso-states as they are
not in the domain of F. To identify the macro-states « we use the L! distance
and say that the meso-state v “recognizes” the macro-state u with accuracy ¢ > 0
if [v — u|;1 < e Then the meso-free energy of u (with accuracy ¢ and meso/macro
scale L) is

1 .
& o) = g it PO
The normalizing factor L1 foresees the fact that the mesoscopic free energy of
a state with coexisting phases scales as the surface (if the interface is nice where
nice means BV according to the macroscopic theory). Explicitly

[v—ul,1 <

(7.5) $D@w) =  inf f (LW@) + LY Vo2 dr
Q

We are thus led to conjecture that

(7.6) lim lim inf DL (u) = d(u)
with @(u) the functional defined in (7.1). This is indeed a theorem, [40], [7]. The
surface tension in (7.1) is isotropic, its explicit value is

g
(7.7) c=2 f VW(s)ds
J

It is remarkable and in some sense surprising how the above considerations
motivated by physical intuitions fit exactly in the scheme devised by De Giorgi in
the calculus of variations which led to the introduction of the notion of Gamma
convergence, see again [7] for details.

Analogous results have been proved for non local functional as those arising
from particles or spins systems with Kac potentials. See [3], [5] and [43], for the
case of Ising systems with Kac potentials where the limit free energy and the
surface tension are explicitly computed. An extension to more general systems
and a general definition of surface tension can be found in [1] and [2].

In the microscopic theory we follow the approach used in the mesoscopic
theory and since in the previous considerations we had not fixed the total mass
here as well we do not fix the number of particles in A. The equilibrium state in
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such a case is described by the gran canonical Gibbs measure w; ; , which is the
probability on X := |J A" defined so that its restriction to A" is:

n>0

1 e o d ,
(78) Aty i@ =7~ @ “”%, ge

3y

/. being the “chemical potential”, Zg, 4 the gran canonical partition function.

As in the mesoscopic theory we need to equilibrate the two phases: the ex-
istence of a forbidden interval translates in the language of the gran canonical
Gibbs measures into the following statement. There is / = ;3 so that

A lq| 1
(79) E%ngnx#ﬂ’/lﬁ’/l{ m*g <é& :é7 S:PI,,DH
Proceeding as in the mesoscopic theory and calling L the side of A4, we set
ncy
(7.10) pLOr,q) = e i GEX TEQ

the empirical density on scale ¢ (i.e. relative to the partition 7z(?) translated into a
function on the torus Q. Then, in analogy with (7.5) and recalling that the free
energy is related to minus the log of the Gibbs measure we set

1
(7.11) o) == *Wlog (4.4, [1P"0C @) —ulpr < g])
and define the free energy of the macro-state u as
(7.12) @(u) = lim lim inf lim inf )

If @(u) has the form (7.1) we have then derived the macroscopic theory from the
theory of Gibbs measures and identified the surface tension of the particle
system. Results have been obtained so far only for Ising systems, we shall give
some details after explaining the relation with the Wulff problem.

Macroscopic theory. The optimal shape for the coexistence of two phases with
the total mass constraint is a minimizer of the functional (7.1) with the mass
constraint. This problem has been solved by Wulff with an explicit construction
of the minimizing surface, see for instance [25].

Since in the mesoscopic and microscopic theories the limit functional is (7.1) it
is natural to conjecture that also the optimal state converges to the Wulf shape.
This requires an inversion of limits as one should first minimize the functional
and then take the thermodynamic limit. To interchange these operations a
coercivity property is needed, we refer to [7] for an analysis of the mesoscopic
theory.

The Wulff problem in a statistical mechanics context has been first studied by
Dobrushin, Kotecky and Shlosman [13] for the n.n. ferromagnetic Ising model in
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d = 2 at low temperatures. The proof uses sharp estimates on contours which are
used to define the interface at the spin level. By such estimates it is possible to
control the probability that the interface passes through a given set of points,
defining a polygonal structure which approximates the Wulff shape. The result
has then been extended to higher temperatures but the method is intrinsically
two dimensional. The first paper where ideas of Gamma convergence have been
used in a statistical mechanics context was the above paper [3] on the Ising model
with Kac interactions. The result however was obtained in the spirit of the
Lebowitz-Penrose theory that is in the thermodynamic limit followed by the
scaling limit y — 0.

There were afterwards several generalization in this same context, but the
first results on Wulff shape in general dimensions (obtained by using the ideas of
Gamma convergence) are in [6] and [8] which have then been followed by many
other papers with extensions and improvements.

We shall next briefly discuss the case where the interface breaks into many
small pieces giving rise to microstructures. For brevity we shall discuss only the
issue at the mesoscopic level, for particle models the analysis is still in fieri and
rigorous proofs are lacking. For concreteness we consider a specific model, the
Ginzburg-Landau functional Fﬁl(u) defined in (1.2) plus a non local term:

(7.13) Froa) = FS) + [ 7, 5
A

where u : 4 — R (which is interpreted as a magnetization density); the potential
W in (1.2) is taken here equal to W(s) = (s? — 1).

Without the non local term (i.e. setting y = 0) there is a phase transition, the
forbidden interval for the magnetization being ( — 1,1). Namely the graph of the
limit free energy density is constantly 0 in s € (—1,1)

gl
(7.14) HmiM{FAm‘fu:ﬂm}:O
A

4] — 00 | 4]

and a recovering sequence is made by a regularization of profiles with u = +1 (in
the right proportion), as discussed in the introduction.
If we consider the problem with the non local term we have for s € (—1,1):

. . . F;,;A(’LL) _ . S2
(7.15) 112% \/}|1Lnoo 1nf{ X ‘ ;l[u = s|/1|} =3

In the double limit first |4| — oo and then y — 0, the phase transition has dis-
appeared and the limit free energy density is strictly convex. We conjecture that
for y > 0 small enough there is no phase transition and minimizers at finite A will
be functions made by a regularization of profiles with 4 = £1 (in the right
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proportion). The scale where the function varies is determined by the non local
term and scale as ¢ with ¢ < y~!. Thus if we look on scales smaller than ¢ we
essentially see either 1 or —1, but on the average on scales much larger than /¢, we
see the imposed density s.

Proofs have been obtained when J, x J, is “reflection positive”, [20], and we
conclude the discussion on these topics referring to the literature, in particular
see [21], [22], [23], [24], [10], [12].
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