BOLLETTINO
UNIONE MATEMATICA ITALIANA

LUIGI AMBROSIO, NICOLA GIGLI, GIUSEPPE SAVARE

Heat Flow and Calculus on Metric Measure
Spaces with Ricci Curvature Bounded Below -
the Compact Case

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 5 (2012), n.3,
p. 575-629.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2012_9_5_3_575_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2012_9_5_3_575_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2012.



Bollettino U. M. 1.
(9) V (2012), 575-629

Heat Flow and Calculus on Metric Measure Spaces with
Ricci Curvature Bounded Below - the Compact Case

LuU1GI AMBROSIO - NICOLA GIGLI - GIUSEPPE SAVARE

To the memory of Enrico Magenes, whose exemplar life,
research and teaching shaped generations of mathematicians

Contents
1-Introduction.........coouiiniiiiiiiiiiiiiiiiiiiiaiiaiiaeiaeinerennanns 575
2 - Preliminary notions .........ccoiuiiiiiiiiiiiiieieineenernarnannnns 577

2.1 - Absolutely continuous curves and slopes ........................ 577
2.2 - The space (X)), Wa) .ot e 578
2.3 - Geodesically convex functionals and their gradient flows ....... 580
3 - Hopf-Lax formula and Hamilton-Jacobi equation.................. 584
4 - Weak definitions of gradient..............ccoiiiiiiiiiiiiiiiininann, 588
4.1 - The “vertical” approach: minimal relaxed slope ................. 588
4.2 - The “horizontal” approach: weak upper gradients ............... 594
4.3 - The two notions of gradient coincide. .............c.ccoveveeneen... 601
4.4 - Comparison with previous approaches..................c........ 604
5 - The relative entropy and its Ws-gradient flow....................... 607
6 - The heat flow as gradient flow .............ccoiiiiiiiiiiiiiininen.... 612
7 - A metric Brenier theorem ...........ccovviiiiiiiiiiiiiniiineeniennanns 615
8 - More on calculus on compact CD(K, c0) SPACES ...ovvreneenrnananns 619
8.1 - On horizontal and vertical derivatives again .................... 619
8.2 - Two tmportant formulas. ............ooiiiiiiiiiiiiiin i, 621
9 - Riemannian Riccibounds ............coiiiiiiiiiiiiiiiiiiniarnennnnn. 623

1. — Introduction

Aim of these notes is to provide a quick overview of the main results contained
in [4] and [6] in the simplified case of compact metric spaces (X, d) endowed with
a reference probability measure m. The idea is to give the interested reader the
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possibility to get as quickly as possible the key ideas behind the proofs of our
recent results, neglecting all the problems that appear in a more general fra-
mework (as a matter of fact, no compactness assumption is made in [4, 6] and
finiteness of nt is assumed only in [6]). Passing from compact spaces to complete
and separable ones (and even to a more general framework which includes the
so-called Wiener space) is not just a technical problem, meaning that several
concepts need to be properly adapted in order to achieve such generality. Hence,
in particular, the discussion here is by no means exhaustive, as both the key
statements and the auxiliary lemmas are stated in the simplified case of a
probability measure in a compact space.

Apart some very basic concept about optimal transport, Wasserstein distance
and gradient flows, this paper pretends to be self-contained. All the concepts that
we need are recalled in the preliminary section, whose proofs can be found, for
instance, in the first three chapters of [1] (for an overview on the theory of
gradient flows, see also [3], and for a much broader discussion on optimal
transport, see the monograph by Villani [32]). For completeness reasons, we
included in our discussion some results coming from previous contributions
which are potentially less known, in particular: the (sketch of the) proof by Lisini
[22] of the characterization of absolutely continuous curves w.r.t. the
Wasserstein distance (Proposition 4.21), and the proof of uniqueness of the
gradient flow of the relative entropy w.r.t. the Wasserstein distance on spaces
with Rieci curvature bounded below in the sense of Lott-Sturm-Villani
(CD(K, oo) spaces in short) given by the second author in [12] (Theorem 5.7).

In summary, the main arguments and results that we present here are the
following.

(1) The Hopf-Lax formula produces subsolutions of the Hamilton-Jacobi
equation, and solutions on geodesic spaces (Theorem 3.5 and Theorem 3.6).

(2) A new approach to the theory of Sobolev spaces over metric measure
spaces, which leads in particular to the proof that Lipschitz functions are always
dense in energy in W'3(X,d, m) (Theorem 4.26).

(3) The uniqueness of the gradient flow w.r.t. the Wasserstein distance W; of
the relative entropy in CD(K, oo) spaces (Theorem 5.7).

(4) The identification of the L?-gradient flow of the natural “Dirichlet en-
ergy” and the Ws-gradient flow of the relative entropy in CD(K, oo) spaces (see
also [15] for the Alexandrov case, a paper to which our paper [4] owes a lot).

(5) A metric version of Brenier’s theorem valid in spaces having Ricei cur-
vature bounded from below in a sense slightly stronger than the one proposed by
Lott-Sturm-Villani. If this curvature assumption holds (Definition 7.1) and x, v
are absolutely continuous w.r.t. m, then “the distance traveled is uniquely de-
termined by the starting point”, i.e. there exists a map D : X — R such that for
any optimal plan y it holds d(x, y) = D(x) for y-a.e. (x, y). Moreover, the map D is
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nothing but the weak gradient (according to the theory illustrated in Section 4) of
any Kantorovich potential. See Theorem 7.3.

(6) A key lemma (Lemma 8.2) concerning “horizontal” and “vertical” differ-
entiation: it allows to compare the derivative of the squared Wasserstein distance
along the heat flow with the derivative of the relative entropy along a geodesic.

(7) A new (stronger) definition of Ricei curvature bound from below for metric
measure spaces which is stable w.r.t. measured Gromov-Hausdorff convergence
and rules out Finsler geometries (Theorem 9.1 and the discussion thereafter).

2. — Preliminary notions

As a general convention, we will always denote by (X, d) a compact metric space
and by m a Borel probability measure on X; we will always refer to the structure
(X,d,m) as a compact and normalized metric measure space. We will use the
symbol (Y, dy) for metrie spaces when the compactness is not implicitly assumed.

2.1 — Absolutely continuous curves and slopes

Let (Y, dy) be a complete and separable metric space, J C R an interval with
nonempty interior and J > t— 1y, € Y. We say that y; is absolutely continuous if

dy (5,70 < f gy dr, Vs, ted, t<s
t

for some g € L'(J). It turns out that, if , is absolutely continuous, there is a
minimal function ¢ with this property, called metric speed and given for
a.e. teJ by

T dY(ysa yt)

il =

See [3, Theorem 1.1.2] for the simple proof. Notice that the absolute continuity
property of the integral ensures that absolutely continuous functions can be
extended by continuity to the closure of their domain.

We will denote by C([0,1],Y) the space of continuous curves on [0, 1] with
values in Y endowed with the sup norm. The set AC?([O,I],Y) c C(0,1],Y)

consists of all absolutely continuous curves y such that [ 152 dt < oo: it is easily
0

1

seen to be equal to the countable union of the closed sets {y C nPdt < n}, and
0

thus it is a Borel subset of C([0,1], Y). The evaluation maps e; : C([0,1],Y) —» Y
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are defined by
et(y) = yta
and are clearly 1-Lipschitz.

We say that a subset D of Y is geodesic if for any x, y € D there exists a curve
(y) € D on [0,1] such that y, =, y; =y and dy(y,y,) = [t — s|dy(x,y) for all
s, t € [0,1]. Such a curve is called constant speed geodesic, or simply geodesic.
The space of all geodesics in Y endowed with the sup distance will be denoted by
Geo(Y).

Given f: Y — RU{x oo} we define the slope (also called local Lipschitz
constant) at points x where f(x) € R by

w— |/ —f@)|
D = lim ——————.
A A N

We shall also need the one-sided counterparts of the slope called respectively

descending slope and ascending slope:

@) -f@T ) - f@)
@1 D@ = lim ==y ey P Y@= m e e

)

where [ - ]" and [ -]~ denote respectively the positive and negative part. Notice
the change of notation w.r.t. previous works of the authors: the slopes and its
one-sided counterparts were denoted by |Vf|, |[VEf]. Yet, as remarked in [13],
these notions, being defined in duality with the distance, are naturally cotangent
notions, rather than tangent ones, whence the notation proposed here.

It is not difficult to see that for f Lipschitz the slopes and the local Lipschitz
constant are upper gradients according to [18], namely

[rl< [ 104
o y

for any absolutely continuous curve y : [0,1] — Y; here and in the following we
1
write [f for f(y,) —f(3) and [ g for [ g(p)l7,|ds.
dy Y 0
Also, for f, g : Y — R Lipschitz it clearly holds

(2.2a) IDGf + fo)| < || DF| + |BIIDgl, Vo, feR;
(2.2b) ID(f)| < |f11Dgl + |91l Df |.

2.2 — The space (7(X), W)

Let (X,d) be a compact metric space. The set 7(X) consists of all Borel
probability measures on X. As usual, if u € #(X) and T: X — Y is a u-mea-



HEAT FLOW AND CALCULUS ON METRIC MEASURE SPACES ETC. 579

surable map with values in the topological space Y, the push-forward measure
Tiu € 7(Y) is defined by Tyu(B) := w(T-1(B)) for every set Borel set B C Y.

Given u, v € #(X), we define the Wasserstein distance Wa(u,v) between
them as

(2.3) Wi (u,v) = minf (e, y) dy(ae, ),

where the minimum is taken among all Borel probability measures y on X?
such that

n,}y =/, nﬁy = here 7' : X% — X,  n'(xy,a2) == ;.

Such measures are called admissible plans or couplings for the couple (x,v); a
plan y which realizes the minimum in (2.3) is called optimal, and we write
y € OpT(u, v). From the linearity of the admissibility condition we get that the
squared Wasserstein distance is convex, i.e.:

(24)  WE(( = Dy + vt (4 — Dty + Ava) < (A — DWEay, vo) + AWy, v2).

It is also well known (see e.g. Theorem 2.7 in [1]) that the Wasserstein dis-
tance metrizes the weak convergence of measures in ’(X), i.e. the weak
convergence with respect to the duality with C(X); in particular (#(X), We) is
a compact metric space.

An equivalent definition of W, comes from the dual formulation of the
transport problem:

1 2 _ c
2.5) EWZ(ﬂ,V)—Sgp!Wdﬂ +!y/ dv,

the supremum being taken among all Lipschitz functions y, where the c-trans-
form in this formula is defined by

2
V@ =inf TV )

A function y : X — R is said to be c-concave if y = ¢° for some ¢ : X — R. It is
possibile to prove that the supremum in (2.5) is always achieved by a c-concave
function, and we will call any such function y a Kantorovich potential. We shall
also use the fact that c-concave functions satisfy

(2.6) ye =y
The (graph of the) c-superdifferential 9°y of a c-concave function y is the
subset of X? defined by

d*(x,y) }

Py ={@y : v@ +y @) =3
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and the c-superdifferential 0°w(x) at « is the set of y’s such that (x,y) € 0. A
consequence of the compactness of X is that any c-concave function y is Lipschitz
and that the set 9°w(x) is non empty for any x € X.

It is not difficult to see that if  is a Kantorovich potential for x, v € (X) and
y is a coupling for (u, v) then y is optimal if and only if supp(y) C 0°w.

If (X, d) is geodesic, then so is (°(X), Ws), and in this case a curve () is a
constant speed geodesic from g, to y; if and only if there exists a measure
n € 7(C([0,1],X)) concentrated on Geo(X) such that (e;);x = g, for all ¢ € [0,1]
and (eg, e1); € OPT(uy, 1t). We will denote the set of such measures, called opti-
mal geodesic plans, by GeoOpt( uy, 1;).

2.3 — Geodesically convex functionals and their gradient flows

Given a geodesic space (Y,dy) (in the following this will always be the
Wasserstein space built over a geodesic space (X,d)), a functional £ :Y —
R U {+ oo} is said K-geodesically convex (or simply K-convex) if for any o, 1 € Y
there exists a constant speed geodesic y : [0,1] — Y such that y, = yo, y; = y1 and

K
E(y) <1 -1)Eyo) +tEy1) — gt(l — 1)d% o, y1), vt € [0,1].

We will denote by D(%) the domain of £ ie. D(E) :={y: E(y)<oo}: if £ is
K-geodesically convex, then D(E) is geodesic.

An easy consequence of the K-convexity is the fact that the descending slope
defined in (2.1) can de computed as a sup, rather than as a limsup:

E()—Ez K +
(2.7 |D”E|(y) = sup (% +5dr(, z)) .

27y

What we want to discuss here is the definition of gradient flow of a K-convex
functional. There are essentially two different ways of giving such a notion in a
metric setting. The first one, which we call Energy Dissipation Equality (EDE),
ensures existence for any K-convex and lower semicontinuous functional (under
suitable compactness assumptions), the second one, which we call Evolution
Variation Inequality (EVI), ensures uniqueness and K-contractivity of the flow.
However, the price we pay for these stronger properties is that existence results
for EVI solutions hold under much more restrictive assumptions.

It is important to distinguish the two notions. The EDE one is the “correct
one” to be used in a general metric context, because it ensures existence for any
initial datum in the domain of the functional. However, typically gradient flows in
the EDE sense are not unique: this is the reason of the analysis made in
Section 5, which ensures that for the special case of the entropy functional un-
iqueness is indeed true.
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EVI gradient flows are in particular gradient flows in the EDE sense (see
Proposition 2.5), ensure uniqueness, K-contractivity and provide strong a priori
regularizing effects. Heuristically speaking, existence of gradient flows in the EVI
sense depends also on properties of the distance, rather than on properties of the
functional only. A more or less correct way of thinking at thisis: gradient flows in the
EVI sense exist if and only if the distance is Hilbertian on small scales. For instance,
if the underlying metric space is an Hilbert space, then the two notions coincide.

Now recall that one of our goals here is to study the gradient flow of the
relative entropy in spaces with Ricei curvature bounded below (Definition 5.1),
and recall that Finsler geometries are included in this setting (see page 926 of
[32]). Thus, in general we must deal with the EDE notion of gradient flow. The
EVI one will come into play in Section 9, where we use it to identify those spaces
with Rieci curvature bounded below which are more ‘Riemannian like’.

NoTE. — Later on we will refer to gradient flows in the EDE sense simply as
“ogradient flows”, keeping the distinguished notation EVI-gradient flows for
those in the EVTI sense.

2.3.1 — Energy Dissipation Equality

An important property of K-geodesically convex and lower semicontinuous
functionals (see Corollary 2.4.10 of [3] or Proposition 3.19 of [1]) is that the
descending slope is an upper gradient, that is: for any absolutely continuous
curve y; : J C R — D(F) it holds

(28) B~ Bl < [ 5|0 Blgodr,  vi<s
t
An application of Young inequality gives that
S S
1 L2 1 — 12
29) B < By)+; tf o dr+ 5 tf D Efy,)dr,  Vt<s.

This inequality motivates the following definition:

DEFINITION 2.1 (Energy Dissipation Equality definition of gradient flow). — Let
E be a K-convex and lower semicontinuous functional and let yo € D(E). We say
that a continuous curve [0, 00) 3 t+— y; is a gradient flow forthe E in the EDE sense
(or simply a gradient flow) if it is locally absolutely continuous i (0, o), it takes
values i the domain of E and it holds

S S
B 1f a1 f
210) B =E@)+; tf P dr+ 5 tf D ERg)dr, <.
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Notice that due to (2.9) the equality (2.10) is equivalent to
S S
1 .2 1 — 12
. > . — — . .
@1) B = B+ Of [l dr + 5 of D Efy,)dr,  ¥s>0

Indeed, if (2.11) holds, then (2.10) holds with ¢ = 0, and then by linearity (2.10)
holds in general.

It is not hard to check that if £: R? — R is a C! function, then a curve
y; + J — R%is a gradient flow according to the previous definition if and only if it

satisfies
y; = _VE(yt)a Vt S Ja

so that the metric definition reduces to the classical one when specialized to
Euclidean spaces.
The following theorem has been proved in [3] (Corollary 2.4.11):

THEOREM 2.2 (Existence of gradient flows in the EDE sense). — Let (Y, dy) be
a compact metric space and let E : Y — R U {4 oo} be a K-geodesically convex

and lower semicontinuous functional. Then every yy € D(E) is the starting point
of a gradient flow in the EDE sense of E.

It is important to stress the fact that in general gradient flows in the EDE
sense are not unique. A simple example is Y := R? endowed with the L> norm,
and ¥ defined by E(x,y) := x. It is immediate to see that £ is 0-convex and that
for any point (xg, o) there exist uncountably many gradient flows in the EDE
starting from it, for instance all curves (xy — ¢, y(t)) with |3/'(t)| < 1 and »(0) = yo.

2.3.2 — Evolution Variational Inequality

To see where the EVI notion comes from, notice that for a K-convex and
smooth funetion f on R? it holds y; = —Vf(y) for any ¢ > 0 if and only if

2

d |y — K
(2.12) < [y . d + 5 e - P fly) <fR), VeeRY wt>o0.
This equivalence is true because K-convexity ensures that v = —Vf(y) if and
only if

(vv?/—z>+§|y—2|2 +f(y) <f(2), vz € RY

Inequality (2.12) can be written in a metric context in several ways, which we
collect in the following statement (we omit the easy proof).

ProrosiTiION 2.3 (Evolution Variational Inequality: equivalent state-
ments). — Let (Y,dy) be a complete and separable metric space, £ :Y —
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(— 00, 00] a lower semicontinuous functional. Then the following properties
are equivalent.

(i) For any z € E it holds
(yn z)

dt 2
(ii)) For any z € E it holds

dF(e.2) + E(y) < ER),  for ae. te (0,00).

Y(ys,z) & (ys, 2)

fd (yraz)dT+fE(Z/1)d7'<(s—t)E(z) VO<t<s<oo.

(iii) There exists a set A C D(E) dense in energy (i.e., for any z € D(E) there
exists (z,) C A converging to z such that E(z,) — E(2)) such that for any z € A it
holds

- A5 Yin,2) — di(ye, 2

DEFINITION 2.4 (Evolution Variational Inequality definition of gradient
flow). — We say that a curve (y;) is a gradient flow of E in the EVI sense relative
to K € R (in short, EVIg-gradient flow), if any of the above equivalent properties
are true. We say that y; starts from yo if y: — yoast | 0.

This definition of gradient flow is stronger than the one discussed in the
previous section, because of the following result proved by the third author in
[29] (see also Proposition 3.6 of [1]), which we state without proof.

ProrosiTioNn 2.5 (EVI implies EDE). — Let (Y,dy) be a complete and
separable metric space, K € R, E:Y — (— oco,0] a lower semicontinuous
SJunctional and y; : (0,00) — DE) a locally absolutely continuous curve. As-
sume that y; is an EVIg-gradient flow for E. Then (2.10) holds for any 0 <t <s.

REMARK 2.6 (Contractivity). — It can be proved that if (y;) and (z;) are gradient
flows in the EVIg sense of the Ls.c. functional £, then

dy(1,20) < e Kldy (y, 20), Vi > 0.

In particular, gradient flows in the EVI sense are unique. This contractivity
property, used in conjunction with (ii) of Proposition 2.3, guarantees that if ex-
istence of gradient flows in the EVI sense is known for initial data lying in some
subset S C Y, then it is also known for initial data in the closure S of S. O

We also point out the following geometric consequence of the EVI, proven in [10].
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PROPOSITION 2.7. — Let E: Y — (— 00, o0] be a lower semicontinuous func-
tional on a complete space (Y, dy). Assume that every y, € D(E) is the starting
pownt of an EVI-gradient flow of E. Then E is K-convex along all geodesics
contained in D(E).

As we already said, gradient flows in the EVI sense do not necessarily exist,
and their existence depends on the properties of the distance dy. For instance, it
is not hard to see that if we endow R?® with the L™ norm and consider the
functional E(x,y) := «, then there re is no gradient flow in the EVIk-sense,
regardless of the constant K.

3. — Hopf-Lax formula and Hamilton-Jacobi equation

Aim of this subsection is to study the properties of the Hopf-Lax formula in a
metric setting and its relations with the Hamilton-Jacobi equation. Here we
assume that (X, d) is a compact metric space. Notice that there is no reference
measure 1 in the discussion.

Let f : X — R be a Lipschitz function. For ¢ > 0 define

d*(x, )

Ft ey =fy+ 5

and the function Q:f : X — R by

Qi f () := inf F(t,x,y) = min F(, x, y).
yeX yeX

€

Also, we introduce the functions D™, D~ : X x (0,00) — R as

D™ (x,t) := max d(x, ),

(31) D_(x’ t) := min d(x, ?/)7

where, in both cases, the y’s vary among all minima of F'(¢,x,-). We also set
Qo f = f and D*(x, 0) = 0. Thanks to the continuity of F' and the compactness of
X, it is easy to check that the map [0,00) x X > (f,x) — Q.f(x) is continuous.
Furthermore, the fact that f is Lipschitz easily yields

(3.2) D~ (x,t) < D" (x,t) < 2t Lip (f),

and from the fact that the functions {d2(~,y)}yey are uniformly Lipschitz (be-
cause (X, d) is bounded) we get that @, f is Lipschitz for any ¢ > 0.

PROPOSITION 8.1 (Monotonicity of D¥). — For all x € X it holds
(3.3) DT (x,t) < D (x,s), 0<t<s.
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As a consequence, DV (x,-) and D™ (x,-) are both mondecreasing, and they
coincide with at most countably many exceptions in [0, co).

Proor. — Fixx € X. Fort = 0there is nothing to prove. Now pick 0 <t <s and
choose x; and x; minimizers of F'(¢,x,-) and F(s,x,-) respectively, such that
d(x,x;) = D" (x,t) and d(x, xs) = D~ (x, s). The minimality of x;, xs gives

d? (xt, x) d? (906, x)

f(t)+ _f(s)

d? (acs, x) d (%t, x)

flag) +

<fle) +——

—_
—

Adding up and using the fact that E —we deduce

D" (x,t) = d(xy, ) < d(xs,2) = D™ (x, s),

[Va)

which is (3.3).
Combining this with the inequality D~ < D' we immediately obtain that both
functions are nonincreasing. At a point of right continuity of D~ (x, -) we get

DT (x,t) < ingD*(ac, s) = D~ (x,1).
§>
This implies that the two functions coincide out of a countable set. O

Next, we examine the semicontinuity properties of D*. These properties
imply that points (x,t) where the equality D*(x,t) = D~ (x,t) occurs are con-
tinuity points for both D* and D~.

PRroPOSITION 3.2 (Semicontinuity of D¥). — The map D* is upper semicon-
tinuous and the map D~ is lower semicontinuous i X x (0, 00).

Proor. — We prove lower semicontinuity of D~, the proof of upper semi-
continuity of D+ being similar. Let (x;, t;) be any sequence converging to (x, ) and,
for every 1, let (y;) be a minimum of F(¢;, «;, -) for which d(y;, x;) = D~ («;, ;). For
all 7 we have

o (y;, x;)

fly;) +—2222 o,

= Qtif(xi)7

Moreover, the continuity of (x,t) — Q. f(x) gives that lim; Q;.f(x;) = Q;f(x), thus
d (y7.7 x)

Lim f(y:) + = Quf(@).

This means that (y;) is a minimizing sequence for F(¢,x,-). Since (X, d) is com-
pact, possibly passing to a subsequence, not relabeled, we may assume that (y;)
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converges to y as 1 — oo. Therefore

D™ (x, ) < d(x,y) = lim d(w,y;) = lim D™ (x;, t;).
1—00 1—00 |:|

ProPOSITION 3.3 (Time derivative of Q:f). — The map t— Q.f is Lipschitz
from [0, 00) to C(X) and, for all x € X, it satisfies

[D* (@, )

d

Jor any t > 0 with at most countably many exceptions.

PrROOF. — Let t<s and a;, 25 be minima of F'(¢, x, -) and F(s,x,-). We have

2 —_
Q, f(@) — Quf @) < F(s,w,a) — F(t,w,a) — (9;’ xt”t—ss,
2 J—
st(ﬂ?) - Qtf(x) 2 F(SJC, x?) - F(t,x,xs) = d (2; xS)tth’

which gives that £ — Q; f(x) is Lipschitz in (¢, 4 co) for any ¢ > 0 and x € X. Also,
dividing by (s —t) and taking Proposition 3.1 into account, we get (3.4). Now

notice that from (3.2) we get that ‘%Qt f (x)‘g 2Lip?(f) for any x and a.e. t,

which, together with the pointwise convergence of Q.f to f as ¢ | 0, yields that
t— Q:f € C(X) is Lipschitz in [0, o). O

ProprosITION 3.4 (Bound on the local Lipschitz constant of Q;f). — For
(x,1) € X x (0, 00) 1t holds:
Dt (x,t
(35) DQfI@ < Y.

ProoF. — Fixx € X and t € (0, 00), pick a sequence (x;) converging to x and a
corresponding sequence (y;) of minimizers for F'(¢, x;, -) and similarly a minimizer
y of F(t,x, ). We start proving that

Qi f(x) — Qi f () < D*(x, t).

}H?o d(xe, x;) - t
Since it holds
1 d 1 Jd
Quf (@) — Quf () < Ft,,y:) — F(&, wi, y0) < f(ya) + (oc o —f(y) _M
< d@;’txi) (dC, ) + d, 43) < d@; 901) (d(@, @) +2D" @i, 1),

dividing by d(x, x;), letting ¢ — oo and using the upper semicontinuity of D™ we
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get the claim. To conclude, we need to show that
. ) +
i @)~ Quf@) _ D @.t)
i—00 d(x, x;) t

This follows along similar lines starting from the inequality

Qi f () — Qif @) < F(t, i, y) — F(E, x, ).
THEOREM 3.5 (Subsolution of HJ). — For every x € X it holds
d 1 9
(3.6) &Qtf(%) + 5 [IDQif|"(x) <0

with at most countably many exceptions in (0, co).

587

ProOF. — The claim is a direct consequence of Proposition 3.3 and Propo-

sition 3.4.

O

We just proved that in an arbitrary metric space the Hopf-Lax formula
produces subsolutions of the Hamilton-Jacobi equation. Our aim now is to prove
that if (X,d) is a geodesic space, then the same formula provides also super-

solutions.

THEOREM 3.6 (Supersolution of HJ). — Assume that (X, d) is a geodesic space.

Then equality holds in (3.5). In particular, for all x € X it holds

1
%Qtﬂm) + 5 D@ @) = 0,

with at most countably many exceptions in (0, 0o).

Proor. — Let y be a minimum of F(¢,x,-) such that d(x,y) = D" (x,t). Let

7 :[0,1] — X be a constant speed geodesic connecting « to y. We have

dz(ysa ?/1)

f(?/)—T

d*(z, y)

Qif () — Qrf () > f(y) + S

_ e,y - oy _ (D@, 1)*@s — 52

2t 2t

Therefore we obtain

= QU@ — QufG) o Quf@) — Quf () _ DY@,

510 d(, y,) 510 sD*(x,1) - t
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Since s— v, is a particular family converging to x we deduce

;
D-Qufie = 5,

Taking into account Proposition 3.3 and Proposition 3.4 we conclude. O

4. — Weak definitions of gradient

In this section we introduce two weak notions of ‘norm of the differential’, one
inspired by Cheeger’s seminal paper [9], that we call minimal relaxed slope and
denote by |Df|,, and one inspired by the papers of Koskela-MacManus [20] and of
Shanmugalingam [30], that we call minimal weak upper gradient and denote by
|Df,,- Notice that, as for the slopes, the objects that we are going to define are
naturally in duality with the distance, thus are cotangent notion: that’s why we
use the ‘D’ instead of the ‘V’ in the notation. Still, we will continue speaking of
upper gradients and their weak counterparts to be aligned with the convention
used in the literature (see [13] for a broader discussion on this distinction be-
tween tangent and cotangent objects and its effects on calculus).

We compare our concepts with those of the original papers in Subsection 4.4,
where we show that all these approaches a posteriori coincide. As usual, we will
adopt the simplifying assumption that (X, d, m) is compact and normalized me-
tric measure space, i.e. (X, d) is compact and m € 2(X).

4.1 — The “vertical” approach: minimal relaxed slope

DEFINITION 4.1 (Relaxed slopes). — We say that G € L2(X,m) is a relaxed
slope of f € LAX,m) if there exist G € L>(X,m) and Lipschitz functions
fn : X — R such that:

@) fu —fin L2(X, m) and |Df,| weakly converges to G in LA(X, m);
b) G <G m-a.e in X

We say that G is the minimal relaxed slope of f if its L>(X, m) norm is
minimal among relaxed slopes. We shall denote by |Df|, the minimal relaxed
slope.

Using Mazur’s lemma and (2.2a) (see Proposition 4.3) it is possible to show
that an equivalent characterization of relaxed slopes can be given by modifying
(a) as follows: G is the strong limit in L2(X, m) of G,, > |Df,|- The definition of
relaxed slope we gave is useful to show existence of relaxed slopes (as soon as an
approximating sequence (f;,) with |Df;| bounded in L?(X, m) exists) while the

equivalent characterization is useful to perform diagonal arguments and to show
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that the class of relaxed slopes is a convex closed set. Therefore the definition of
|Df |, is well posed.

LEMMA 4.2 (Locality). — Let G1, G be relaxed slopes of f. Then min{Gy, G2}
1s a relaxed slope as well. In particular, for any relaxed slope G it holds

|IDf|, <G m-a.e.in X.

Proor. - It is sufficient to prove that if B C X is a Borel set, then y5G1+
Zx\8G2 is arelaxed slope of f. By approximation, taking into account the closure
of the class of relaxed slopes, we can assume with no loss of generality that B is
an open set. We fix » > 0 and a Lipschitz function ¢, : X — [0,1] equal to 0 on
X\ B, and equal to 1 on By,, where the open sets B; C B are defined by

B, = {z € X : dist(x,X \ B) > s} C B.

Let now f;,;, i = 1, 2, be Lipschitz and L? functions converging to f in LA(X, m)
as n — oo, with |Df,, ;| weakly convergent to G; and set_ﬁ = _¢,1 Sa1 + A =@ )fne.
Then, |Df,| = |Dfn1] on B, and |Df,,| = |Dfy2| on X \ B,; in B, \ Ba,, by applying
(2.2a) and (2.2b), we can estimate

|Dfn| < ‘Dﬁz,2| + Lip(¢y)|fﬂ,1 _ﬁL,Zl + ¢T(|Dﬁz,1| + |Dfn,2‘)~
Since B, C B, by taking weak limits of a subsequence, it follows that
ZBZ,.GI + XX\B_rGZ + XB\BZ,.(GI +2G2)

is a relaxed slope of f. Letting » | 0 gives that yzG1 + xx\pG2 is a relaxed slope
as well.

For the second part of the statement argue by contradiction: let G be a re-
laxed slope of f and assume that B = {G <|Df|, } is such that m(B) > 0. Consider
the relaxed slope Gyp + |Df |, xx\ p: its L? norm is strictly less than the L? norm of
|Df|,., which is a contradiction. d

A trivial consequence of the definition and of the locality principle we just
proved is that if f : X — R is Lipschitz it holds:

(4.1) IDf|, < |Df|  m-ae.inX.

We also remark that it is possible to obtain the minimal relaxed slope as
strong limit in L? of slopes of Lipschitz functions, and not only weak, as shown in
the next proposition.

PROPOSITION 4.3 (Strong approximation). — If f € LA(X, m) has a velaxed
slope, there exist Lipschitz functions f, convergent to f in L*(X, m) with |Df;|
convergent to |Df|, in L2(X, m).
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PROOF. — If g; — fin L? and |Dyg;| weakly converges to |Df|, in L2, by Mazur’s
lemma we can find a sequence of convex combinations of |Dg;| strongly con-
vergent to |Df|, in L?; the corresponding convex combinations of g;, that we shall
denote by £, still converge in L? to f and |Df,| is dominated by the convex com-
binations of |Dg;|. It follows that

im [ |Df,[?dm < Hm | |Dgi|*dm = | |Df|? dm.
nggc)llfwl dm_gg!lgldm !fl*dm

This implies at once that |Df;, | weakly converges to |Df|, (because any limit point
in the weak topology is a relaxed slope with minimal norm) and that the con-
vergence is strong. O

THEOREM 4.4. — The Cheeger energy functional
1 2
(4.2) Ch(f) = Xf IDf % dm,

set to + oo if f has no relaxed slope, is convex and lower semicontinuous in
L2(X, m).

Proor. — A simple byproduct of condition (2.2a) is that oF" + G is a relaxed
slope of of + fg whenever o, § are nonnegative constants and F', G are relaxed
slopes of f, grespectively. Taking F' = |Df|, and G = |Dg]|, yields the convexity of
Ch, while lower semicontinuity follows by a simple diagonal argument based on
the strong approximation property stated in Proposition 4.3. O

PROPOSITION 4.5 (Chain rule). — If f € L>(X, m) has a relaxed slope and
¢: X — R is Lipschitz and C, then |D(f)|, = |¢'(f)||Df], m-a.e. in X.

PRrOOF. — We trivially have |Dg(f)| < |#'(f)||Df]. If we apply this inequality to
the “optimal” approximating sequence of Lipschitz functions given by Proposition
4.3 we get that |¢'(f)||Df|, is arelaxed slope of ¢(f), so that [Dé(f)|, < |¢'()||Df].
m-a.e. in X. Applying twice this inequality with ¢(r) := —r we get |Df], <
[D(— )|, < |Df], and thus |Df|, = |D(—f)|, m-a.e. in X.

Up to a simple rescaling, we can assume |¢'| < 1. Let y;(z) := z — ¢(z), notice
that | > 0 and thus m-a.e. on f~1({¢' > 0}) it holds

IDf1, < [D@]. + Dy (N, < $DIDSfI, +vi(OIDf|, = DS,

hence all the inequalities must be equalities, which forces |D(¢(f))|, = ¢'(f)|Df|,
m-a.e.onf1({¢' > 0}). Similarly, let y,(2) = —z — ¢(z) and notice that y}, < 0, so
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that m-a.e. on f~1({¢' < 0}) it holds

IDf, = IDC=1)l, < ID@UDL + IDGwa(M], < = NIDfI, —va(NIDfI, = |Df]..

As before we can conclude that |[D(¢(f))|, = — ¢ (f)|Df], m-a.e. onf1({¢ < 0}).
O

Still by approximation, it is not difficult to show that ¢(f) has a relaxed slope if
¢ is Lipschitz, and that |[D¢(f)|, = |¢ (f)||Df], m-a.e. in X. In this case ¢'(f) is
undefined at points « such that ¢ is not differentiable at f(x), on the other hand
the formula still makes sense because |Df|, =0 m-a.e. on f~}(N) for any
Lebesgue negligible set N C R. Particularly useful is the case when ¢ is a
truncation function, for instance ¢(z) = min{z, M}. In this case

\Df, it f(e) <M

et
[Dmin{f.31}], {0 0 o

Analogous formulas hold for truncations from below.

4.1.1 — Laplacian: definition and basic properties

Since the domain of Ch is dense in L?(X, m) (it includes Lipschitz functions),
the Hilbertian theory of gradient flows (see for instance [8], [3]) can be applied to
Cheeger’s functional (4.2) to provide, for all fy € L?(X, m), a locally Lipschitz
continuous map t — f; from (0, co) to L2(X, m), with f; — f; as t | 0, whose deri-
vative satisfies

(4.3) %ft € —9Ch(f) for a.e. t.

Here 0Ch(g) denotes the subdifferential of Ch at g € D(Ch) in the sense of
convex analysis, i.e.

dCh(g) := {g e LAX,m) : Ch(f) > Ch(g) +ff(f —g)dm Vf € LAX, m)}.
X

Another important regularizing effect of gradient flows of convex ls.c. func-

tionals lies in the fact that for every ¢ > 0 (the opposite of) the right derivative
d

— I
L?(X, m) norm in 9~ Ch(f;). This motivates the next definition:

1 .. . . .
fi = 1}%1 %(ﬁ — fi4n) exists and it is actually the element with minimal

DEFINITION 4.6 (Laplacian). — The Laplacian Af of f € LA*(X, m) is defined
for those f such that OCh(f) # 0. For those f, —Af s the element of minimal
L2(X, m) norm in OCh(f). The domain of 4 is defined as D(A).
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REMARK 4.7 (Potential lack of linearity). — It should be observed that in
general the Laplacian - as we just defined it - is not a linear operator: the potential
lack of linearity is strictly related to the fact that potentially the space
W'2(X,d, m) is not Hilbert, because f — [|Df|?> dm need not be quadratic. For
instance if X = R?, m is the Lebesgue measure and d is the distance induced by
the L™ norm, then it is easily seen that

) 2

Even though the Laplacian is not linear, the trivial implication

of

ox

o

2 _
re= (|2 + %

"

v € 9 Ch(f) = v € 0”Ch(Jf), VieR,
ensures that the Laplacian (and so the gradient flow of Ch) is 1-homogenous. O
We can now write

d
=

for gradient flows f; of Ch, the derivative being understood in L2(X,m), in ac-
cordance with the classical case. The classical Hilbertian theory of gradient flows
also ensures that

. d
(44) lim Ch(f)=0  and &Ch(ﬁ):ﬂmﬁﬂiz(xﬁm), for a.e. t € (0,00 ).

PropPosITION 4.8 (Integration by parts). — For all f € D(4), g € D(Ch) it
holds

(4.5)

f gA4f dm
b

< [ IDgl.IDf). am.
X

Also, let f € D(4) and ¢ € CL(R) with bounded derivative on an interval con-
taining the image of f. Then

(4.6) [enar am=—[1DrPg(pdm.
X X
ProOF. — Since —4f € 9~ Ch(f) it holds

Ch(f) — f cgAf dim < Ch(f +¢9), Vg e LAX,m), ¢ € R.
X
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For ¢ > 0, |Df|, + ¢|Dg|, is a relaxed slope of f + ¢g (possibly not minimal). Thus
it holds 2Ch(f + ¢g) < [ (|Df|, + &[Dg|,)* dm and therefore
X

1
- f agf dm < f (IDf]. + €lDg|.)* — D2 dm = ¢ f IDf|.|Dg|. dm + o).
X X X

Dividing by ¢, letting ¢ | 0 and then repeating the argument with — g in place of ¢
we get (4.5).

For the second part we recall that, by the chain rule, |D(f + e(f))|, =
(1 + ed ()| Df|, for |¢| small enough. Hence

CR(F +83(7) ~ CN() = 5 [ IDFE( -+ (PP 1) dm=e [ IDF S () dm+ 0(e),
X X

which implies that for any v € 9-Ch(f) it holds fv¢(f) dm = | IDfI?¢'(f) dm,
and gives the thesis with v = —4f. X

ProposITION 4.9 (Some properties of the gradient flow of Ch). — Let
fo € LA(X, m) and let (f;) be the gradient flow of Ch starting from fy. Then the
Sfollowing properties hold.

Mass preservation. [f,dm = [ fodm for any t > 0.

Maximum principle. If fy < C (resp. fo > ¢) m-a.e. in X, then f; < C (vesp f; > ¢)
m-a.e. in X for any t > 0.

Entropy dissipation. Suppose 0<c < fo < C<oo m-a.e. Then t— [ filog fidm
1s absolutely continuous in [0, c0) and it holds

DAk
fi

dm, ae. te (0,00).

d
&fﬁlogﬁdm:—
X X

Proor. —
Mass preservation. Just notice that from (4.5) we get

%fﬁdm‘:‘fl-z!ftdm
X X

where 1is the function identically equal to 1, which has minimal relaxed gradient
equal to 0.

gf ID1),|Dfi], dm =0,  for a.e. t € (0,00),
X

Maximum principle. Fix f € L2(X, m), > 0 and, according to the implicit Euler
scheme, let f* be the unique minimizer of

1 :
g~  Chg+s }[ g —fI* dm.
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Assume that f < C. We claim that in this case f* < C as well. Indeed, if this is not
the case we can consider the competitor g := min{f*,C} in the above mini-
mization problem. By (a) of Proposition 4.5 we get Ch(g) < Ch(f?) and the L?
distance of f and g is strictly smaller than the one of f and f* as soon as
m({f* > C}) > 0, which is a contradiction.

Starting from fj, iterating this procedure, and using the fact that the implicit
Euler scheme converges as 7 | 0 (see [8], [3] for details) to the gradient flow we
get the conclusion.

The same arguments applies to uniform bounds from below.

Entropy dissipation. The map z+— zlogz is Lipschitz on [c, C] which, together
with the maximum principle and the fact that t— f; € L?(X, m) is locally abso-
lutely continuous, yields the claimed absolute continuity statement. Now notice

that we have %fft log fidm = [ (logf; + 1)4f; dm for a.e. t. Since by the max-

imum principle f; > ¢ m-a.e., the function logz + 1 is Lipschitz and C' on the
image of f; for any ¢ > 0, thus from (4.6) we get the conclusion. O

4.2 — The “horizontal” approach: weak upper gradients

In this subsection, following the approach of [4, 5], we introduce a different
notion of “weak norm of gradient” in a compact and normalized metric measure
space (X, d, m). This notion of gradient is Lagrangian in spirit, it does not require
arelaxation procedure, it will provide a new estimate of entropy dissipation along
the gradient flow of Ch, and it will also be useful in the analysis of the derivative
of the entropy along Wasserstein geodesics.

While the definition of minimal relaxed slope was taken from Cheeger’s work
[9], the notion we are going to introduce is inspired by the work of Koskela-
MacManus [20] and Shanmugalingam [30], the only difference being that we
consider a different notion of null set of curves.

42.1 — Negligible sets of curves and functions Sobolev along a.e. curve

Recall that the evaluation maps e; : C([0,1],X) — X are defined by e;(y) := 7.
We also introduce the restriction maps restr; : C([0,1],X) — C([0,1],X),
0<t<s<1,given by

(47) I‘estr‘f(y)y = VA =r)ttrs)

so that restr} restricts the curve y to the interval [¢, s] and then “stretches” it on
the whole of [0, 1].

DEFINITION 4.10 (Test plans and negligible sets of curves). — We say that a
probability measure m € 7(C([0,1],X)) is a test plan if it is concentrated on
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1

AC([0,1;X), [ [ |7'/t|2dt dr < oo, and there exists a constant C(r) such that
0

(4.8) (e < C(m)m for every t € [0,1].

A Borel set A C AC%([0,1],X) is said negligible if #(A) = 0 for any test plan . A
property which holds for every y € AC%([0,1], X), except possibly a negligible set,
18 said to hold for almost every curve.

REMARK 4.11. — An easy consequence of condition (4.8) is that if two m-
measurable functionsf, g : X — R coincide up to a m-negligible set and 7 is an at
most countable subset of [0, 1], then the functions f o y and g o y coincide in 7 for
almost every curve 7.

Moreover, choosing an arbitrary test plan = and applying Fubini’s Theorem
to the product measure Y in (0,1) x C([0,1];X) we also obtain that
foy=goy Ztae.in (0,1) for n-a.e. curve y; since = is arbitrary, the same
property holds for almost every curve.

Coupled with the definition of negligible set of curves, there are the defini-
tions of weak upper gradient and of functions which are Sobolev along a.e. curve.

DEFINITION 4.12 (Weak upper gradients). — A Bovel function g : X — [0, o]
1s a weak upper gradient of f : X — R if

(4.9)

ff‘gfg<oo for a.e. y.
dy Y

DEFINITION 4.13 (Sobolev functions along a.e. curve). — A functionf : X — R
s Sobolev along a.e. curve if for a.e. curve y the function f oy coincides a.e. in
[0,1] and in {0,1} with an absolutely continuous map f, : [0,1] — R.

By Remark 4.11 applied to 7 := {0, 1}, (4.9) does not depend on the particular
representative of f in the class of m-measurable function coinciding with f up to a
m-negligible set. The same Remark also shows that the property of being
Sobolev along almost every curve y is independent of the representative in the
class of m-measurable functions coinciding with f m-a.e. in X.

In the following remarks we will make use of this basie calculus lemma:

LEMMA 4.14. — Let f : (0,1) — R Lebesgue measurable, q € [1, 0], g € L9(0,1)
nonnegative be satisfying

|f(s) — ()] < for #2-a.e. (s,t) € (0,1)%.

ft gr)dr

Then f € WH9(0,1) and |f'| < g a.e. in (0,1).



596 LUIGI AMBROSIO - NICOLA GIGLI - GIUSEPPE SAVARE

ProOOF. — It is immediate to check that f € L>(0,1). Let N C (0, 1)% be the
7" -negligible subset where the above inequality fails. By Fubini’s theorem, also
the set {(t,h) € (0,1)* : (t,t+h) € N n(0,1)*}is #Z-negligible. In particular, by
Fubini’s theorem, for a.e. » we have (£,t + k) ¢ N for a.e.t € (0,1). Let 2; | 0 with
this property and use the identities

1 1
pE+h)—¢@®) .. [fE—h)—f©
Of f@® — dt = 6[ — &(t) dt

with ¢ € CCI(O, 1) and & = h; sufficiently small to get

1 1
[rawo dt' < [ gwlew| at.
0 0

It follows that the distributional derivative of f is a signed measure » with finite
total variation which satisfies

—ff¢’dt:fl¢dn,
0 0

therefore 7 is absolutely continuous with respect to the Lebesgue measure with
In| < g.#". This gives the W'1(0,1) regularity and, at the same time, the in-
equality | f| < g a.e.in (0, 1). The case ¢ > 1 immediately follows by applying this
inequality when g € L%(0,1). |

1 1
f¢dn‘ < [glglat for every ¢ € €10, 1);
0 0

With the aid of this lemma, we can prove that the existence of a weak upper
gradient implies Sobolev regularity along a.e. curve.

REMARK 4.15 (Restriction and equivalent formulation). — Notice that if = is a
test plan, so is (restr;);z. Hence if g is a weak upper gradient of f* then for every
t<sin [0,1] it holds

G =Gl < [ 9@l ar for ae. .
t

Let 7 be a test plan: by Fubini’s theorem applied to the product measure 2% x
in (0, 1% x C([0,1]; X), it follows that for =-a.e. y the function f satisfies

|f() —fO)] < for #%-a.e. (t,s) € (0,17

[ 96olslar
t
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An analogous argument shows that

G0 =Gl < [ gl ar
(4.10) 0 for #1-ae. se (0,1).

1
|f D) —fGy) ng(w)lhld?”

Since g o y|j| € L'(0,1) for n-a.e. y, by Lemma 4.14 it follows that f o y € W1(0, 1)
for r-a.e. y, and

(4.11) ‘%(f o y)‘ <goylj| ae.in (0,1), for m-a.e. y.

Since = is arbitrary, we conclude that f o y € W1(0, 1) for a.e. y, and therefore it
admits an absolutely continuous representative f,; moreover, by (4.10), it is im-
mediate to check that f(y(t)) = f,(t) for ¢t € {0,1} and a.e. y. O

REMARK 4.16 (An approach with a non explicit use of negligible set of
curves). — The previous remark could be used to introduce the notion of weak
upper gradients without speaking (explicitly) of Borel sets at all. One can simply
say that g € L?(X, m) is a weak upper gradient of f : X — R provided it holds

1
J1r60 = £l dan) < [ [ gG15.] dsdztn.
0

(this has been the approach followed in [13]). O

ProposiTiON 4.17 (Locality). — Let f : X — R be Sobolev along almost all
absolutely continuous curves, and let G1, Gz be weak upper gradients of f. Then
min{G1, Gz} is a weak upper gradient of f.

Proor. — It is a direct consequence of (4.11). O

DEFINITION 4.18 (Minimal weak upper gradient). — Let f : X — R be Sobolev
along almost all curves. The minimal weak wpper gradient |Df|,, of f is the weak
upper gradient characterized, up to m-negligible sets, by the property

(4.12) |Df], <G m-a.e. i X, for every weak upper gradient G of f.

Uniqueness of the minimal weak upper gradient is obvious. For existence, we
take |Df|,, :=inf, G,, where G, are weak upper gradients which provide a
minimizing sequence in

inf { f tan"!Gdm : G is a weak upper gradient of f }
X
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We immediately see, thanks to Proposition 4.17, that we can assume with no loss
of generality that G,.; < G,. Hence, by monotone convergence, the function
|Df|,, is a weak upper gradient of f and [tan'G dm is minimal at G = |Df|,,.

X
This minimality, in conjunction with Proposition 4.17, gives (4.12).

THEOREM 4.19 (Stability w.r.t. m-a.e. convergence). — Assume that f,, are m-
measurable, Sobolev along almost all curves and that G,, are weak upper gra-
dients of f,. Assume furthermore that f,(x) — f(x) € R for m-a.e. x € X and that
(Gy) weakly converges to G in L>(X, m). Then G is a weak upper gradient of f.

ProOF. — Fix a test plan . By Mazur’s theorem we can find convex combi-
nations

Nh+1 Nh+1
H, = Z o;G; with o; > 0, Z o =1, N, — oo
i:Nh+1 ’i:Nh+1

converging strongly to G in L2(X,m). Denoting by f, the corresponding

convex combinations of f,, H, are weak upper gradients of fn and still fn —f
m-a.e. in X.

Since for every nonnegative Borel function ¢ : X — [0, 00] it holds (with
C =Cn)

f( )d,, f( 1{p(yt)mdt>dn§f<fl(p2(yt)dt>1/2<fll?tIZdt>1/2dn
0 0

<f1f(/,2d(et)tndt>l/2 (ff?tﬁdtdﬂ:)

0 0

1/2

(Cf(pzdni)l/z(fj|yt|2dtdn> ,

B 1 1/2
we obtain, for C := \/a(f [ 17,7 dtdn) ,
0

1/2

—
=~
—
(©M]

~—

IA

IA

J( it~ mint1f, 1,13 dm < C (1 ~ Gl + [ min(1 . ~ F.1) — 0.
Y

By a diagonal argument we can find a subsequence n(k) such that
[ |H g — G|+ min{| fuy — f],1} — 0 as k — oo for m-a.e. . Since f, converge

m-a.e. to J and the marginals of = are absolutely continuous w.r.t. m we have
also that for m-a.e. y it holds f,(y,) — f(yy) and f,(y;) — f(y1).
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If we fix a curve y satisfying these convergence properties, since ()N”,?/(k))}, are
equi-absolutely continuous (being their derivatives bounded by H ¢ o 7|7|) and a
further subsequence of f,, converges a.e. in [0,1] and in {0,1} to f(7,), we can
pass to the limit to obtain an absolutely continuous function f; equal to f(y,) a.e. in
[0,1] and in {0,1} with derivative bounded by G(y,)|j,|- Since = is arbitrary we
conclude that f is Sobolev along almost all curves and that G is a weak upper
gradient of f. O

REMARK 4.20 (|Df],, < |Df],). — An immediate consequence of the previous
proposition is that any f € D(Ch) is Sobolev along a.e. curve and satisfies
|Df,, < |Df|,. Indeed, for such f just pick a sequence of Lipschitz functions
converging to f in L2(X, m) such that |Df,,| — |Df|, in L?(X, m) (as in Proposition
4.3) and recall that for Lipschitz functions the local Lipschitz constant is an upper
gradient. O

422 — A bound from below on weak gradients

In this short subsection we show how, using test plans and the very defi-
nition of minimal weak gradients, it is possible to use |Df,, to bound from below
the increments of the relative entropy. We start with the following result,
proved - in a more general setting - by Lisini in [22]: it shows how to associate to
a curve u € AC%([0,1];(2(X), W»)) a plan = € /(C([0,1],X)) concentrated on
AC?([0,1]; X) representing the curve itself (see also Theorem 8.2.1 of [3] for the
Euclidean case). We will only sketch the proof.

PrOPOSITION 4.21 (Superposition principle). — Let (X, d) be a compact space
and let u e AC?([0,1]; (X(X), Wy)). Then there exists m= € 7(C([0,1],X)) con-
centrated on AC2(0,11:X) such that (eym =y, for any te<[0,1] and
[ 3 dn(y) = |ig [ for a.e. t € [0,1].

Proor. — If = € C([0,1],X) is any plan concentrated on AC?([0,1],X) such
that (e;);m = y, for any ¢ € [0,1], since (e, e)ym € ADM(1, 1), for any t <sit holds

2

Wit < [ i dnG) < [ ( J 1w dr) an() < G = Of [ 13, drday),
t t

which shows that |j,[* < | |%:* dz(y) for a.e. t. Hence, to conclude it is sufficient to
find a plan = € 2/(C([0, 1], X)), concentrated on ACZ([0, 1], X), with (ep)ym = p; for
1

any t € [0,1] such that [ |i[*dt > [ [ [5,[* dt d=(y).
0

To build such a = we make the simplifying assumption that (X, d) is geodesic
(the proof for the general case is similar, but rather than interpolating with
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piecewise geodesic curves one uses piecewise constant ones, this leads to some
technical complications that we want to avoid here - see [22] for the complete
argument). Fix » € N and use a gluing argument to find " € 22(X"*1) such that

(', n”l) Yt e OPT(,uz ,utﬂ)for@ =0,. — 1. By standard measurable selection
arguments, there ‘exists a Borel map T : X"+ - C([0,1],X) such that
y:=T"(xp,...,x,) is a constant speed geodesic on each of the intervals

[i/n, (@ + 1)/n] and Vi = Tis 1=0,...,n. Define n" := T”y". It holds

n—1 n 1

1
(4.14) f f 15, 2dt dn" () = f Zd i) dm(y) = ZWZ i, piz) < f iy dt.
0

Now notice that the map E : C([0,1],X) — [0, co] given by E(y) := f |j/t|2 dt if
y € AC%([0,1],X) and + oo otherwise, is lower semicontinuous and, V?& a simple
equicontinuity argument, with compact sublevels. Therefore by Prokorov’s
theorem we get that (") C 22(C([0, 1], X)) is a tight sequence, hence for any limit
measure =« the uniform bound (4.14) gives the thesis. |

PROPOSITION 4.22. — Let [0,1]1 2 t+—pu, = fim be a curve in AC?([0,1],
(P(X), W)). Assume that for some 0 <c<C< oo it holds ¢ < f; < C m-a.e. for
any t € [0,1], and that f, is Sobolev along a.e. curve with |Dfy|,, € L*(X, m).
Then

ffOIngodm fﬁlogﬁdm<2f IDfol

ﬁdsdm+2f\ﬂs| ds, vt > 0.

Proor. — Let = € 22(C([0,1],X)) be a plan associated to the curve (x,) as
in Proposition 4.21. The assumption f; <C m-a.e. and the fact that
1

[ [ [P dtdn(y) = [|jy|? dt< oo guarantee that = is a test plan. Now notice that
0

it holds |Dlog fi|,, = |Dfil,,/fi (because z— logz is C! in [¢, C1)), thus we get

l

ffologﬁ)dm—fﬁlogﬁdmgflogfo(fo—ft)dmzf<10gfooe0—logfooet)dn
X X X

DAl
gfo ey il dsdn)

¢ 9 ;
1 r(1Dfol,0y) L(f. s
Sé”w dsdﬂ<y>+§ff|ys| ds dn()

|Df0|w
zf ﬁdsdm+2f|ué| ds.
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4.3 — The two notions of gradient coincide

Here we prove that the two notions of “norm of weak gradient” we introduced
coincide. We already noticed in Remark 4.20 that |Df|,, < |Df|,, so that to con-
clude we need to show that |Df|,, > |Df]..

The key argument to achieve this is the following lemma, which gives a sharp
bound on the Ws-speed of the L2-gradient flow of Ch. This lemma has been in-
troduced in [15] to study the heat flow on Alexandrov spaces, see also Section 6.

LEMMA 4.23 (Kuwada’s lemma). — Let fy € L2(X, m) and let (f;) be the Lo-
gradient flow of Ch starting from fy. Assume that for some 0<c < C< oo it holds
¢ <fo <C m-ae in X, and that [fodm =1 Then the curve t— u, = fym is

X

absolutely continuous w.r.t. We and it holds

2
i < [P dm for ae.te 0.0
t
X

Proor. — We start from the duality formula (2.5) with ¢ = —y: taking into
account the factor 2 and using the identity Q:( — ) = y° we get

W3 (i, )

(4.15) g = Sl;p)[dev —!(ﬂdﬂ

where the supremum runs among all Lipschitz functions ¢.

Fix such a ¢ and recall (Proposition 3.3) that the map ¢ — Q¢ is Lipschitz with
values in L>(X, m), and a fortiori in L2(X, m).

Fix also 0 < t<s, set £ = (s — t) and recall that since (f;) is the Gradient Flow
of Ch in L?, the map [0, 4] > 7+ f;. is absolutely continuous with values in L2.
Therefore the map [0, 4] > 7 Q:¢ fi, is absolutely continuous with values in L2,
The equality

Qe friein — Qs P iy Quup — Qs Qo frvein —fioe
h T h T hoo
together with the uniform continuity of (x, t) — Q%(o(x) shows that the derivative

of 7+ Q:¢fi.. can be computed via the Leibniz rule.
We have:

le(ﬂdﬂs—f(ﬂdﬂtZfQ1$ﬁ+edm—f(/)ﬁdm =ff (Qofi-) drdm
(4.16) * X X0

<ff ( ft+r + @ (Mfm) drdm,
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having used Theorem 3.5. Observe that by inequalities (4.5) and (4.1) we have

[ Qo dficdm < f IDQygl. IDfio] dm < f IDQ:g] D dm

@i X

|Dﬁ+‘r|*
ﬁ+7:

IDQ o%fi . dm +

Plugging this inequality in (4.16), we obtain

!Q1¢dﬂs —Sl-(od,ut gsffoJ:t:L dim

This latter bound does not depend on ¢, so from (4.15) we deduce
* (Dfisf
W3y, 1) < Effﬂ dm.
0 X ﬁ+r

Since f,. > ¢ for any r > 0 and r— Ch(f,) is nonincreasing and finite for every
r > 0, we immediately get that ¢ g, is locally Lipschitz in (0, co). At Lebesgue
points of t— [|Dfi|?/f; dmt we obtain the stated pointwise bound on the metric
speed. X O

THEOREM 4.24. — Let f € L2(X, m). Assume that f is Sobolev along a.e. curve
and that |Df|,, € L*(X, m). Then f € D(Ch) and |Df|, = |Df|,, m-a.e. in X.

Proor. — Up to a truncation argument and addition of a constant, we can

assume that 0<c < f < C <oo m-a.e. in X for some ¢, C. Let (f;) be the Ls-gra-
dient flow of Ch starting from f and recall that from Proposition 4.9 we have

DS [
f

— = dsdm<oo for every t > 0.

fflogfdm —fﬁlogftdln _f
X X

On the other hand, from Proposition 4.22 and Lemma 4.23 we have

(4.18) fflogfdm—fﬁlogﬁdm<2ff| f'Wde dm +2f | fs*d dm.

Hence we deduce

f40h(f)ds_2ff|Dﬁ‘*d dm <2ff|Df|Wfsdsdm

Letting ¢ | 0, taking into account the L2-lower semicontinuity of Ch and the fact —
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easy to check from the maximum principle — that \/f; — \/f ass | 0in L3(X, m),

we get Ch(f) <lim- fCh(\/_) ds. On the other hand, the bound f > ¢ >0
t10

\Df |w

I*

ensures € LY(X, m) and the maximum principle again together with the

convergence of f; to f in L2(X, m) when s | 0 g’rants that the convergence is also
IDf &

weak” in L>°(X, m), therefore f| Dfl dm = 71 ff

7 £, dmds.

In summary, we pI'OVGd
1 r|Df2 1 r|DfI?
il N <> | Hlw
2f f dm < zf f du,

which, together with the inequality |Df|,, < |Df|, m-a.e. in X, gives the con-

clusion. O

We are now in the position of defining the Sobolev space W'2(X,d, m). We
start with the following simple and general lemma.

LEMMA 4.25. — Let (B, || - ||) be a Banach space and let E : B — [0,00] be a
1-homogeneous, convex and lower semicontinuous map. Then the vector
space {E <oo} endowed with the norm

[v)lz = /Il + E2(),

1s a Banach space.

Proor. — It is clear that (D(E), || - ||z) is a normed space, so we only need to
prove completeness. Pick a sequence (v,,) C D(E) which is Cauchy w.r.t. || - | 5.
Then, since || - || <| - ||z we also get that (v,) is Cauchy w.r.t. || - ||, and hence
there exists v € B such that ||v,, — v|| — 0. The lower semicontinuity of £ grants
that F(v) < lim F(v,) <oo and also that it holds

n

nhm v — 0|l < hm [vn — vmllg =0,

which is the thesis. O

Therefore, if we want to build the space W'2(X,d, m) c L*(X, m), the only
thing that we need is an L?-lower semicontinuous functional playing the role
which on R? is played by the LZnorm of the distributional gradient of
Sobolev functions. We certainly have this functional, namely the map
= lIDf]. ||L2(Xm) 11Dl 2 - Hence the lemma above provides the
Banach space 12(X,d, m). Notice that in general W'2(X,d,m) is not
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Hilbert: this is not surprising, as already the Sobolev space W2 built over
R |- I, £% is not Hilbert if the underlying norm | - || does not come from a
scalar product.

4.4 — Comparison with previous approaches

It is now time to underline that the one proposed here is certainly not the first
definition of Sobolev space over a metric measure space (we refer to [17] for a
much broader overview on the subject). Here we confine the discussion only to
weak notions of (modulus of) gradient, and in particular to [9] and [20, 30]. Also,
we discuss only the quadratic case, referring to [5] for general power functions p
and the independence (in a suitable sense) of p of minimal gradients.

In [9] Cheeger proposed a relaxation procedure similar to the one used in
Subsection 4.1, but rather than relaxing the local Lipschitz constant of Lipschitz
functions, he relaxed upper gradients of arbitrary functions. More precisely, he
defined

E(f) = infnli_m 1G22t >
where the infimum is taken among all sequences (f;,) converging to f in L?(X, m)
such that G,, is an upper gradient for f,,. Then, with the same computations done
in Subsection 4.1 (actually and obviously, the story goes the other way around:
we closely followed his arguments) he showed that for f € D(E) there is an un-
derlying notion of weak gradient |Df|., called minimal generalized upper gra-
dient, such that E(f) = [||Df ¢ || 2x ) and

IDflc <G m-a.e. in X,

for any G weak limit of a sequence (G,,) as in the definition of E(f).
Notice that since the local Lipschitz constant is always an upper gradient for
Lipschitz functions, one certainly has

(4.19) |Df | < |Df. m-a.e. in X, for any f € D(Ch).
Koskela and MacManus [20] introduced and Shanmugalingam [30] further stu-
died a procedure close to ours (again: actually we have been inspired by them) to

produce a notion of “norm of weak gradient” which does not require a relaxation
procedure. Recall that for I” ¢ AC([0, 1], X) the 2-Modulus Modg(I") is defined by

(4.20) Modo(I) := inf{|p||iz(Xm) :fpz 1Vye F} for every I' c AC([0,1],X).

It is possible to show that the 2-Modulus is an outer measure on AC([0, 1], X).
Building on this notion, Koskela and MacManus [20] considered the class of fune-
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tions f which satisfy the upper gradient inequality not necessarily along all curves,
but only out of a Mody-negligible set of curves. In order to compare more properly
this concept to Sobolev classes, Shanmugalingam said that G : X — [0, o] is a weak
upper gradient for f if there exists f = f m-a.e. such that

|7G0) —FOp)| < f G for every y € AC([0,1],X)\ N with Mods(\) = 0.
d

Then, she defined the energy E : L2(X, m) — [0, c0] by putting

E'(f) := inf ||G||iZ(X‘llI)7

where the infimum is taken among all weak upper gradient G of f according to
the previous condition. Thanks to the properties of the 2-modulus (a stability
property of weak upper gradients analogous to ours), it is possible to show that &
is indeed L2-lower semicontinuous, so that it leads to a good definition of the
Sobolev space. Also, using a key lemma due to Fuglede, Shanmugalingam proved
that E = E on L?(X,m), so that they produce the same definition of Sobolev
space W2(X,d, m) and the underlying gradient |Df|g which gives a pointwise
representation to E(f) is the same |Df |- behind the energy E.

Observe now that for a Borel set I' ¢ AC%([0,1],X) and a test plan =,
integrating w.r.t. z the inequality [p > 1 Vy € I" and then minimizing over p,
we get 7

1
[(D))? < C(n)Modg(F)f f 1512 ds dn(),
0

which shows that any Mod,-negligible set of curves is also negligible according to
Definition 4.10. This fact easily yields that any f € D(¥) is Sobolev along a.e.
curve and satisfies

(4.21) IDf|, < |Dfle,  m-ae. inX.

Given that we proved in Theorem 4.24 that |Df|, = |Df|,,, inequalities (4.19) and
(4.21) also give that |Df|, = |Df|,, = |Df| = |Df|g (the smallest one among the
four notions coincides with the largest one).

What we get by the new approach to Sobolev spaces on metric measure
spaces is the following result.

THEOREM 4.26 (Density in energy of Lipschitz functions). — Let (X, d, m) be a
compact normalized metric measure space. Then for any f € LA(X, m) with weak
upper gradient in L*(X, m) there exists a sequence (f,) of Lipschitz functions
converging to f in L*(X, m) such that both |Df, | and |Df,|, converge to |Df|,, in
L2(X, m) as n — oo.

l
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ProOOF. — Straightforward consequence of the identity of weak and relaxed
gradients and of Proposition 4.3. O

Let us point out a few aspects behind the strategy of the proof of Theorem
4.26, which of course strongly relies on Lemma 4.23 and Proposition 4.22. First of
all, let us notice that the stated existence of a sequence of Lipschitz function f,,
converging to f with |Df,,| — |Df],, in L*(X, m) is equivalent to show that

(4.22) lim Y;,,(f) < f IDf dm,
X

where, for 7 > 0, Y, denotes the Yosida regularization

— 1 2 1 e
Y(f) = heirilpf(x){zxfwm dm+2T!|h 1l dm}.

In fact, the sequence f,, can be chosen by a simple diagonal argument among the
approximate minimizers of Y7 ,,(f). On the other hand, it is well known that the
relaxation procedure we used to define the Cheeger energy yields

— mi n _ 2
(4.23) Yl/n(f)_hmD%gh){Ch(hH . ! h— £ dm},

S

and therefore (4.22) could be achieved by trying to estimate the Cheeger energy
of the unique minimizer fn of (4.23) in terms of |Df,,.

Instead of using the Yosida regularization Y ,, in the proof of Theorem 4.24
we obtained a better approximation of f by flowing it (for a small time step, say
t, | 0) through the L?-gradient flow f; of the Cheeger energy. This flow is strictly
related to Y., since it can be obtained as the limit of suitably rescaled iterated
minimizers of Y, (the so called Minimizing Movement scheme, see e.g. [3]), but
has the great advantage to provide a continuous curve of probability densities f;,
which can be represented as the image of a test plan, through Lisini’s Theorem.
Thanks to this representation and Kuwada’s Lemma, we were allowed to use the
weak upper gradient |Df|,, instead of |Df|, to estimate the Entropy dissipation
along f; (see (4.18)) and to obtain the desired sharp bound of |Df;|, at least for
some time s € (0, t,). In any case, a posteriori we recovered the validity of (4.22).

This density result was previously known (via the use of maximal functions
and covering arguments) under the assumption that the space was doubling and
supported a local Poincaré inequality for weak upper gradients, see [9, Theorem
4.14, Theorem 4.24]. Actually, Cheeger proved more, namely that under these
hypotheses Lipschitz functions are dense in the W2 norm, a result which is still
unknown in the general case. Also, notice that another byproduct of our density
in energy result is the equivalence of local Poincaré inequality stated for
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Lipschitz functions on the left hand side and slope on the right hand side, and
local Poincaré inequality stated for general functions on the left hand side and
upper gradients on the right hand side; this result was previously known [19]
under much more restrictive assumptions on the metric measure structure.

5. — The relative entropy and its W,-gradient flow

In this section we study the Ws-gradient flow of the relative entropy on
spaces with Ricei curvature bounded below (in short: CD(K, co) spaces). The
content is essentially extracted from [12]. As before the space (X, d, m) is com-
pact and normalized (i.e. m(X) = 1).

Recall that the relative entropy functional Ent,, : 22(X) — [0, cc] is defined
by

fflogfdm if = fm,
X

+ 00 otherwise.

Ent, (@) :=

DEFINITION 5.1 (Weak bound from below on the Ricci curvature). — We say
that (X, d, m) has Ricci curvature bounded from below by K for some K € R ifthe
Relative Entropy functional Ent,, is K-convex along geodesics in (F(X), Wo).
More precisely, if for any 1y, 1; € D(Enty,) there exists a constant speed geodesic
1+ 10,1] — 2(X) between u, and py satisfying

K
Entu (1) < (1 = OEntu (1) + tEntu (p) — 511 — OWe(uy, 1) VE€[0,1].

This definition was introduced in [23] and [31]. Its two basic features are:
compatibility with the Riemannian case (i.e. a compact Riemannian manifold
endowed with the normalized volume measure has Ricci curvature bounded
below by K in the classical pointwise sense if and only if Ent,, is K-geodesically
convex in (2’(X),Ws)) and stability w.r.t. measured Gromov-Hausdorff con-
vergence.

We also recall that Finsler geometries are included in the class of metric
measure spaces with Rieci curvature bounded below. This means that if we have a
smooth compact Finsler manifold (that is: a differentiable manifold endowed with
anorm — possibly not coming from an inner product — on each tangent space which
varies smoothly on the base point) endowed with an arbitrary positive C*> mea-
sure, then this space has Ricci curvature bounded below by some K € R (see the
theorem stated at page 926 of [32] for the flat case and [24] for the general one).

The goal now is to study the Ws-gradient flow of Ent,,. Notice that the general
theory of gradient flows of K-convex functionals ensures the following existence
result (see the representation formula for the slope (2.7) and Theorem 2.2).
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THEOREM 5.2 (Consequences of the general theory of gradient flows). — Let
(X,d,m) be a CD(K, 00) space. Then the slope |D~Ent,,| is lower semicontinuous
w.r.t. weak convergence and for any u € D(Ent,,) there exists a gradient flow (in
the EDE sense of Definition 2.1) of Ent,, starting from u

Thus, existence is granted. The problem is then to show uniqueness of the
gradient flow. To this aim, we need to introduce the concept of push forward via
a plan.

DEFINITION 5.3 (Push forward via a plan). — Let i € (X) and lety € 7/(X?) be
such that u < n,} y- The measures y, € A(X?) and 731t € 7(X) are defined as:

d
dy, (2, y) :== F/fy(x)dy(x,y), Vibl = TV
#

Observe that, since y, <y, we have y,u < 7[?)). We will say that y has bounded
deformation if there exist 0<c¢ < C<oo such that cm < ngy <Cm, 1=1,2.
Writing u = f 7}y, the definition gives that

(5.1) yu =nmy with g given by n(y) = f fx)dy, (v),

where {y,},.x is the disintegration of y w.r.t. its second marginal.
The operation of push forward via a plan has interesting properties in con-
nection with the relative entropy functional.

PRrROPOSITION 5.4. — The following properties hold:
G) Forany u, ve 2X), y € AX?) such that i, v < néy it holds
Entytv(yﬁ:u) S Entv(ﬂ)~

(i) For u € D(Enty) and y € 2(X?) with bounded deformation, it holds
ETURS D(Ent,).
(iii) Given y € 2(X?) with bounded deformation, the map

D(Ent,;) > u — Enty, (1) — Entm(]’tﬂ)a
1s convex (w.r.t. linear interpolation of measures).
Proor. — (i). We can assume ¢ < v, otherwise there is nothing to prove. Then

it is immediate to check from the definition that y,u < p,v. Let u = fv, v = anly,
Y = ny,v, and u(z) := zlog z. By disintegrating y as in (5.1), we have that

-1
W)= [ @@, 7= ( [0dw) o,
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The convexity of u and Jensen’s inequality with the probability measures y, yield

un) < [ u(f@) aj, @).

Since {7,},cx is the disintegration of y = (0o nt)y with respect to its second
marginal y,v and the first marginal of y is v, by integration of both sides with
respect to y,v we get

Ent, 0 = [ wtn) arp) < [ (7@ a0 ) aro

< [ur@) ase, y) = [ u(f@) dvw) = Ent, (.

(ii). Taking into account the identity

(5.2) Ent, (1) — Ent, (1) + f log (%) du,

valid for any p, v,o € 2(X) with ¢ having bounded density w.r.t. v, the fact that
7:(nly) = nfy and the fact that cm < n}y, 7Zy < Cm, the conclusion follows from

Enty (0 < Entnfy(yﬁ,u) +logC < Entn}y(,u) +log C < Ent,,(u) + log C — logec.

@iii). Let uy, 1y € D(Enty,) and define g, := (1 — )py + tpy and vy := puy. A
direct computation shows that

(1 = HEntn(¢p) + tEnty (1) — Enty () = (1 — HEnt,, (1) + tEnt,, (1),
(1 — DEntw(vo) + tEnty(v1) — Entw(ve) = (1 — )Ent,,(vo) + tEnt,,(v),
and from (i) we have that
Ent,, (1;) > Ent, , (y,1;) = Ent,, (v)), vt €[0,1], 1 =0,1,

which gives the conclusion. d

In the next lemma and in the sequel we use the short notation

€)= [ o, dote ).
XxX

LEMMA 5.5 (Approximability in Entropy and distance). — Let u, v € D(Ent,,).
Then there exists a sequence (y") of plans with bounded deformation such that
Enty, (/) — Enty,(v) and C()) — W2(p,v) as n — oc.
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ProoF. — Let f and g respectively be the densities of i and v w.r.t. n; pick
y € OPT(u,v) and, for every n € N, let A,, := {(x,y) : f(x) + g(y) < n} and

1
Yn = Cn <y| LT %(Id, Id)tm)

where ¢, — 1is the normalization constant. It is immediate to check that p, is of
bounded deformation and that this sequence satisfies the thesis (see [12] for
further details). O

ProposITION 5.6 (Convexity of the squared slope). — Let (X,d,m) be a
CD(K, o) space. Then the map

D(Enty,) > u — |D7Ent1n|2(,u)

s convex (w.r.t. linear interpolation of measures).

Notice that the only assumption that we make is the K-convexity of the en-
tropy w.r.t. W, and from this we deduce the convexity w.r.t. the classical linear
interpolation of measures of the squared slope.

Proor. — Recall that from (2.7) we know that

_ Enty (1) — Entyn () — £ Wa(g,v)] "
D E t _ [ m 2 2 ) )
| n m|(,u) ‘EBZ(I))Q AT

VU

We claim that it also holds

[Entu (1) — Entu(ru) — & 0]

\/C() ’

where the supremum is taken among all plans with bounded deformation (where
the right hand side is taken 0 by definition if C(yﬂ) > 0).

Indeed, Lemma 5.5 gives that the first expression is not larger than the
second. For the converse inequality we can assume C(y,) > 0, v = y,u # u, and
K <0. Then it is sufficient to apply the simple inequality

|D”Enty |(1) = sup
b

_ + _
a,b,celR, 0<b<c = (@-b >(a 2 ,

VR

. K- K-
with @ := Enty, () — Enty, (p,0, b := 7W§(u7 Y1) and ¢ := 70(7;1).
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Thus, to prove the thesis it is enough to show that for every y with bounded
deformation the map
[(Entu(0) — Entw(p0 - £-C6,) )

D(Entm) > M = C(J’ﬂ) ’

is convex w.r.t. linear interpolation of measures.
Clearly the map

DEntwou  —  Co=[ ( i dz(x,y)dyx(y)> du(@)

where {y,} is the disintegration of y w.r.t. its first marginal, is linear. Thus, from
(iii) of Proposition 5.4 we know that the map

K-
M = Enty () — Ent]u(?ﬁﬂ) - 70(7,1);

is convex w.r.t. linear interpolation of measures. Hence the same is true for
its positive part. The conclusion follows from the fact that the function
¥ :[0,00 — R U {+ oo} defined by

2
%3 if b >0,
v'd =
@h=9 o it b=0,0>0
0 ifa=0=0,
is convex and it is nondecreasing w.r.t. a. O

The convexity of the squared slope allows to prove uniqueness of the gradient
flow of the entropy:

THEOREM 5.7 (Uniqueness of the gradient flow of Ent,,). — Let (X,d, m) be a
CD(K, oo) space and let u € D(Ent,,). Then there exists a unique gradient flow of
Ent,, starting from u in (#(X), Wa).

ProoOF. — We recall (inequality (2.4)) that the squared Wasserstein distance is
convex w.r.t. linear interpolation of measures. Therefore, given two absolutely

1, 2
continuous curves (x}) and (x2), the curve ¢+, = Al ;—,u L is absolutely con-

tinuous as well and its metric speed can be bounded from above by

.112 .92
it " + ||

-2
. <
(53) e

for a.e. t € (0,00).
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Let (1) and (1) be gradient flows of Ent,, starting from x € D(Ent,,). Then we
have

T T
1 [ 1
Ento(0) = Entu(d) +5 [ dPat+5 [ 1D Entufodat, vr>o,
2 0 2 0
1 f 1 [
Entu(0 = Entu() +5 [ i#Pat+5 [ 1D EntuP(d)at, v >0,
0 0

Adding up these two equalities, using the convexity of the squared slope guar-
anteed by Proposition 5.6, the convexity of the squared metric speed given by
(5.3) and the strict convexity of the relative entropy, we deduce that for the curve
t — 1, it holds

T T
1 . 1 _
Entu () > Entu(ir) + Of i dt + Of D~ Enty[2(g) dt,

for every T such that . # (2. This contradicts inequality (2.9). O

6. — The heat flow as gradient flow

It is well known that on R? the heat flow can be seen both as gradient flow of
the Dirichlet energy in L? and as gradient flow of the relative entropy in
(:?z(Rd), Ws). Tt is therefore natural to ask whether this identification between
the two a priori different gradient flows persists or not in a general compact and
normalized metric measure space (X, d, m).

The strategy consists in considering a gradient flow (f;) of Ch with non-
negative initial data and in proving that the curve ¢ — p, := fin is a gradient flow
of Enty,( ) in (2(X), Wy): by the uniqueness result of Theorem 5.7 this will be
sufficient to conclude.

We already built most of the ingredients needed for the proof to work, the
only thing that we should add is the following lemma, where the slope of Ent,, is
bounded from above in terms of the notions of “norm of weak gradient” that we
discussed in Chapter 4. Notice that the bound (6.3) for Lipschitz functions was
already known to Lott-Villani ([23]), so that our added value here is the use of the
density in energy of Lipschitz functions to get the correct, sharp inequality (6.1)
(sharpness will be seen in (6.4)).

LEMMA 6.1 (Fisher bounds slope). — Let (X,d, m) be a compact and nor-
malized CD(K,oco) metric-measure space and let f be a probability density



HEAT FLOW AND CALCULUS ON METRIC MEASURE SPACES ETC. 613

which is Sobolev along a.e. curve. Then

2
6.1) D~ Enty X(fm) < }[ %'w dm =4 ! IDVF dm.

PRrOOF. — Assume at first that f is Lipschitz with 0<c¢ < f, and let (f,,) be a
sequence of probability densities such that We(f,,m, fm) — 0 and where the slope
of Ent,, at fm is attained. Choose y, € Op1(fm,f,m) and notice that

[ f1og £ am [ fi10g fdm < [ (£ - f)1og f dm
X X X

:f@ym—mﬂwwmw

62
(62) | louse_toes )’
= d*(x,y)

m%mwdffmemmw)

1/2
- (f (fm(x,?/) dyn,m(y))f(x) dm(x)> Wo(fm, fm),

where y, , is the disintegration of y, with respect to fm, and L is the bounded
Borel function

log f(x) — log f(y)|
d(,y) ’
|\Df | ()
Dlo xr) =
|Dlog f1() o)
Notice that for every x € X the map y — L(x,y) is upper-semicontinuous; since

J ([ P@,y)dy,,) f@dm — 0 as n — oo, we can assume without loss of gen-
erality that

if « # v,
L(x,y) :=

if x=1y.

lim fd2(ac, ydy,.y) =0 for fm-a.e xe X.
Nn—00 ’

Fatou’s Lemma then yields

2
DJJ: " dm,

Tm [ L3,y dy, @) < f L2, 2)f () dm(a) — f
X X

hence (6.2) gives

2
47(Enmxfno——Eanﬁﬂn»*§ ]ﬂDﬂ

(63) D Enty|(fm) = Tim TR - din

X
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We now turn to the general case. Let f be any probability density Sobolev along
a.e. curve such that \/f € D(Ch) (otherwise is nothing to prove). We use
Theorem 4.26 to find a sequence of Lipschitz functions (/f;,) converging to \/f in
L*(X,m) and such that |D\/f,| — |D+/f|,, in L*(X, m) and m-a.e. Up to summing
up positive and vanishing constants and multiplying for suitable normalization
factors, we can assume that 0<c, <f, and [f,dm =1, for any n € N. The

X
conclusion follows passing to the limit in (6.3) by taking into account the weak
lower semicontinuity of [D~Ent,,| (formula (2.7) and discussion thereafter). O

THEOREM 6.2 (The heat flow as gradient flow). — Let fy € L*(X, m) be such that
U = fom € 2(X) and denote by (f;) the gradient flow of Ch in L2(X, m) starting
Sfrom fo and by (y;) the gradient flow of Ent,y, in ((X), W) starting from 1. Then
W =fim forany t > 0.

Proor. — Thanks to the uniqueness result of Theorem 5.7, it is sufficient to
prove that (fym) satisfies the Energy Dissipation Equality for Ent, in
(7(X), W3). We assume first that 0<c < fy < C<oo m-a.e. in X, so that the
maximum principle (Proposition 4.9) ensures 0 <c¢ < f; < C<ooforanyt > 0. By
Proposition 4.9 we know that ¢ — Ent,,(f;im) is absolutely continuous with deri-

flft

|w dm. Lemma 4.23 ensures that ¢ — fim is absolutely

DS,

t

vative equal to —

continuous w.r.t. W2 Wlth squared metric speed bounded by f dm, so that

taking into account Lemma 6.1 we get

t t
14 1
Entu(fom) > Entu(fmn) + f i ds + f \D~Enty[2(f,m) ds,
0 0

which, together with (2.9), ensures the thesis.

For the general case we argue by approximation, considering fi' :=
¢, min{n, max{ fo,1/n}}, ¢, being the normalizing constant, and the corre-
sponding gradient flow (f/*) of Ch. The fact that f' — fy in L2(X,m) and the
convexity of Ch implies that f/* — f; in L*(X, m) for any ¢ > 0. In particular,
Wo(fi'm,fim) — 0 as n — oo for every ¢ (because convergence w.r.t. Wy is
equivalent to weak convergence of measures).

Now notice that we know that

t t
1 . 1
Entm(ﬁm)zEntm(ft”)+§ f | fsnm|2ds+§ f \D~Ent,, [*(f") ds, Vi > 0.
0 0

Furthermore, it is immediate to check that Ent,,(f;'m) — Ent,(fom) asn — oo.
The pointwise convergence of f;m to fym w.r.t. W; easily yields that the terms on



HEAT FLOW AND CALCULUS ON METRIC MEASURE SPACES ETC. 615

the right hand side of the last equation are lower semicontinuous when n — oo
(recall Theorem 5.2 for the slope). Thus it holds

t t
14 1
Ent, (fom) > Entu(f) + f (fonf? ds + f D Entw((f)ds,  Vi>0,
0 0

which, by (2.11), is the thesis.

We know, by Theorem 5.7, that there is at most a gradient flow starting from
Uy We also know that a gradient flow f; of Ch starting from f; exists, and part (i)
gives that u; := f{m is a gradient flow of Ent,,. The uniqueness of gradient flows
gives u; =y for all ¢t > 0. O

As a consequence of the previous Theorem 6.2 it would not be difficult to
prove that the inequality (6.1) is in fact an identity: if (X, d, m) is a compact and
normalized CD(K, co) space, then |D~Ent, |(fn1) <oco if and only if the prob-
ability density f is Sobolev along a.e. curve and \/f € D(Ch); in this case

Df o o —
7 dm = 43[ IDV/F2 dm.

(6.4) D~ Enty [2(fm) = f
X

7. — A metric Brenier theorem

In this section we state and prove the metric Brenier theorem in CD(K, oo)
spaces we announced in the introduction. It was recently proven in [14] that
under an additional non-branching assumption one can really recover an optimal
transport map, see also [7] for related results, obtained under stronger non-
branching assumptions and weaker convexity assumptions.

DEFINITION 7.1 (Strong CD(K, co) spaces). — We say that a compact nor-
malized metric measure space (X,d, m) is a strong CD(K, co) space if for any
Lo, 1 € D(Enty,) there exists m € GeoOpt(uy, 1) with the following property. For
any bounded Borel function F : Geo(X) — [0, 0o) such that f Fdr =1, it holds

K
Entm(ﬂf) <1- t)Entm(ﬂg) + tEl’ltm(ﬂ{’) - gt(l - t)WZZ(ﬂg#f),
where pf = (ep)y(Fm), for any t € [0,1].

Thus, the difference between strong CD(K, 0o) spaces and standard CD(K, oo)
onesis the fact that geodesic convexity is required along all geodesics induced by the
weighted plans F'z, rather than the one induced by = only. Notice that the necessary
and sufficient optimality conditions ensure that (e, e;);x is concentrated on a c-
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monotone set, hence (eg, e1);(#'7) has the same property and it is optimal, relative to
its marginals. (We remark that recent results of Rajala [28] suggest that it is not
necessary to assume this stronger convexity to get the metric Brenier theorem — and
hence not even a treatable notion of spaces with Riemannian Ricci curvature
bounded from below — see [2] for progresses in this direction)

Itis not clear to us whether the notion of being strong CD(K, c0) is stable or not
w.r.t. measured Gromov-Hausdorff convergence and, as such, it should be handled
with care. The importance of strong CD(K, o) bounds relies on the fact that on
these spaces geodesic interpolation between bounded probability densities is
made of bounded densities as well, thus granting the existence of many test plans.

Notice that non-branching CD(K, cc) spaces are always strong CD(K, oo)
spaces, indeed let 1, 1; € D(Enty,) and pick = € GeoOpt(yy, 1;) such that Ent,,
is K-convex along ((ey);m). From the non-branching hypothesis it follows that for
F asin Definition 7.1 there exists a unique element in GeoOpt(xf, 1f) (resp. in
GeoOpt( ,ut Mo 7). Also, since F is bounded, from € D(Ent,,) we deduce
i« € D(Enty,). Hence the map ¢ — Enty, (1)) is K-convex and bounded on [e, 1]
and on [0,1 — ¢] for all ¢ € (0, 1), and therefore it is K-convex on [0, 1].

PRrOPOSITION 7.2 (Bound on geodesic interpolant). — Let (X, d, m) be a strong
CD(K, ) space and let uy, u; € 7(X) be with bounded densities. Then theve
exists a test plan m € GeoOpt(uy, 1y) so that the induced geodesic u; = (e));m
connecting u, to u; is made of measures with uniformly bounded densities.

ProoF. — Let M be an upper bound on the densities of gy, 1y, ®€
GeoOpt(uy, 11;) be a plan which satisfies the assumptions of Definition 7.1 and
4y := (eg)ym. We claim that the measures 4, have uniformly bounded densities. The
fact that i, < mis obvious by geodesie convexity, so let f; be the density of y; and
assume by contradiction that for some t, € [0, 1] it holds

(7.1) fu@) > MeE D8 wpeA,

where m(A4) > 0 and D is the diameter of X. Define 7 := cn|eil<A), where c is the
1,

normalizing constant (notice that # is well defined, beocause (e, 1(4)) =
4,(A) > 0) and observe that the density of # w.r.t. z is bounded. Let i, := (e;);m
andﬁ its density w.r.t. nt. From (7.1) we getﬁ0 =cf;, onA andftO =0onX\A4,
hence

- K-
(7.2) Ent,, (i) :flog (fi, o ey,)dmr > logc +log M + ?Dz.
On the other hand, we have fy < ¢fy < ¢M and f; < ¢f; < c¢M and thus

(73) Entu (@) = f log (f; o)) dz < logc+logM,  i=0,1.
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Finally, it certainly holds Wg(ﬁo, ) < Dz, so that (7.2) and (7.3) contradict the
K-convexity of Ent,, along (i,). Hence (7.1) is false and the f;’s are uniformly
bounded. O

An important consequence of this uniform bound is the following metric
version of Brenier’s theorem.

THEOREM 7.3 (A metric Brenier theorem). — Let (X,d,m) be a strong
CD(K, c0) space, let fo, fi be probability densities and ¢ any Kantorovich po-
tential for the couple (fym, fim). Then for every = € GeoOpt(fom, fim) it holds

(7.4) d(yy, 71) = [Do|,, (7o) = [D*0|(), for m-a.e. .

In particular,

Wi (fom, fim) :f\D(pﬁfodm.
X

If moreover fy,f1 € L*(X, m) and = is a test plan (such a plan exists thanks to
Proposition 7.2) then

(75) %W = ID*g|(y)  in LAGeo(X), 7).

PROOF. — ¢ is Lipschitz, therefore |D"¢| is an upper gradient of ¢, and hence
|Dy|,, < |D*¢| m-a.e. Now fix € X and pick any y € 9°¢p(x). From the c-con-
cavity of ¢ we get

v < dz(;’ Yy veex.
Therefore
o0 — gy < TEV_FCD g, Ay +d@y)

2 2 2

Dividing by d(«, 2) and letting z — x, by the arbitrariness of y € 9°¢p(x) and the
fact that supp((eo, e1);m) C 0°p we get

ID*9|(79) < min d(yy,%) < d(,71) for m-a.e. y.
Y€ 9(y0)
Since

[ Dot sydm < [ID*oPGpan and [ dGy, ) dnt) = WECom, fum),
X
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to conclude it is sufficient to prove that
(7.6) WE(fom, fim) < [ Dol fy dm.
b

Now assume that fj and f; are bounded from above and let # € GeoOpt(fou1, fin)
be a test plan (such 7 exists thanks to Proposition 7.2). Since ¢ is a Kantorovich
potential and (e, e1);7 is optimal, it holds y; € 9°¢(y,) for any y € supp(z). Hence
arguing as before we get

d2(707 1) _ dz(%&v 1)
2 2

(1.7) o) — p(y) > = (. 7)) (t - £/2).

Dividing by d(y,, ) = td(yy, 71), squaring and integrating w.r.t. # we obtain

2
a8t (Y= ax) > [0 dit) = Wim. i)
0> 7t

Using Remark 4.15 and the fact that 7 is a test plan we have

¢ 2 t
P00 =0\ - 1 oo 1 2 ~
. J (0= ann < [ t—z(f |wa<ys>ds> ) < [ [ Dol sy

0
¢ t
1 1
:fff IDw\fO dsd(et)unzsz |D¢|?,,fs dsdm,
0 0

where f; is the density of (ey);7. Since (e;),m weakly converges to (eg);z ast | 0
and Enty,((ey);7) is uniformly bounded (by the K-geodesic convexity), we con-
clude that f; — fy weakly in L}(X, m) and since |Dg|,, € L>(X, m) we have

t
.1 2 _ 2
(7.10) lim - f f IDol%.f, ds din = f Dol2.fy din.
0 X
Equations (7.8), (7.9) and (7.10) yield (7.6).
In order to prove (7.6) in the general case of possibly unbounded densities,
let us fix a Kantorovich potential ¢, = € GeoOpt(fynt,fin1) and for n € N de-

fine =" := % , ¢, — 1 being the normalization constant. Then
{rfoGo) +AiG) <n}

7" € GeoOpt(fy'm,f{'m), where f" := (e;);n", ¢ is a Kantorovich potential for
(fgm, fi'm) and f',f{" € L>(X, m). Thus from what we just proved we know
that it holds

d(o, 1) = Dol ,,(70) = ID* 0| (o), for n"-a.e. y.

Letting n — oo we conclude.
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Concerning (7.5), we can choose # = = and obtain by (7.7) and (7.4)

> |D%g|(y,) for m-a.e. y.

(o) — () >0, liming 700 — 901

d(g, 71 t10 d(yg, 70)
On the other hand (7.9) and (7.10) yield

. 9(0) — o)\ Lo
hrrtll%ur) (7«]}0%) ) dn(y) §f|D )" (y) dm(y),

so that, by expanding the square and applying Fatou’s Lemma, we obtain

: 900 — 00D 1y )2
h%up (7«%,%) ID*9|(y9) | da(y) < 0.

8. — More on calculus on compact CD(K, co) spaces
8.1 — On horizontal and vertical derivatives again

Aim of this subsection is to prove another deep relation between “horizontal”
and “vertical” derivation, which will allow to compare the derivative of the
squared Wasserstein distance along the heat flow with the derivative of the
relative entropy along a geodesic (see the next subsection). This will be key in
order to understand the properties of spaces with Riemannian Ricci curvature
bounded from below, illustrated in the last section.

In order to understand the geometric point, consider the following simple
example.

ExaMPLE 8.1. — Let | - || be a smooth, strictly convex norm on R? and let
|| - |, be the dual norm. Denoting by (-, -) the canonical duality from (R%)* x R
into R, let £ be the duality map from (R?, | 1) to (R, Il - 1), characterized by

(), = L@ ] and L@, = Jul  Vue R,
and let £* be its inverse, equally characterized by
0, L) = oL@ and L) =],  Vve R

Using the fact that e— ||u||||u + ev'|| — (Lu,u + eu’) attains its minimum at
¢ = 0 and the analogous relation for £*, one obtains the useful relations

1
(8.1) (L. w) =5du - @), (@, L'w) = %dvn ).

For a smooth map f : RY — R its differential d,.f at any point « is intrinsically
defined as cotangent vector, namely as an element of (R%*. To define the
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gradient Vf(x) € R? (which is a tangent vector), the norm comes into play via
the formula Vf(x) := £*(d,f). Now, given two smooth functions f, g, the real
number d, f(Vg(x)) is well defined as the application of the cotangent vector d, f
to the tangent vector Vg(x).

What we want to point out, is that there are two very different ways of ob-
taining d,, f(Vg(x)) from a derivation. The first one, which is usually taken as the
definition of d, f(Vg(x)), is the “horizontal derivative”:

52 (Aef. V) = d.f(Vgla) = lim VIS

—

The second one is the “vertical derivative”:

Sdatg + NI — §lldag3@)
&

(8.3) Df (Vg)(@) = lim

It is not difficult to check that (8.3) is consistent with (8.2): indeed (omitting the x
dependence), recalling the second identity of (8.1), we have

g + edf || = [|dg||* + 2¢(L*(dg), df) + o(e) = [|[Vg|* + 26(Vg, df) + o(e).

The point is that the equality between the right hand sides of formulas (8.3) and
(8.2) extends to a genuine metric setting. In the following lemma (where the plan =
plays the role of —Vg) we prove one inequality, but we remark that “playing with
signs” it is possible to obtain an analogous inequality with < in place of >.

LemMA 8.2 (Horizontal and vertical derivatives). — Let f be a Sobolev func-
tion along a.e. curve with |Df|,, € L*(X, m), let g : X — R be Lipschitz and let n
be a test plan concentrated on Geo(X). Assume that

(8.4) 1}$W = |Dg|,(n)  in LE(Geo(X), ).

Then

Ve > 0.

2 2
(85) lim Mdnm% f|Dg|w<yo>f|D<g+ef>|w<yo> i)

t10 &

ProOF. — Define the functions F, G; : Geo(X) — R U {£ oo} by

fOo) —f(y)
Ft(V) — d(y(), yt) )

g(yo) - g(Vt)
Gi(y) i = ——2
) d(yp, 7¢)
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By (8.4) it holds

(8.6) f Dy, o e dn() = lim f G2 dn.

Since the measures (e;);m — (eg);xr weakly in duality with C(X) as ¢ | 0 and
their densities with respect to m are uniformly bounded, we obtain that the
densities are weakly* convergent in L*>°(X, m). Therefore, using the fact that
|D(g + 8f)|2w € L1(X, m) and taking into account Remark 4.15 we obtain

t
1
J10G+ s oedn = [ 1D + % denrm=1im [ [ 1D + ehfidenymas
0X

2

(o) — (9 + &)
td(yp, 71)

dz(y)

t
RT 1 2 — (g+8f)
~lim j Of DG + f)is(3,) ds dny) > T f ‘
> T [ G2+ 2:GiF .
t10

Subtracting this inequality from (8.6) and dividing by 2¢ we get

1 (|Dgl: () — |D . .
5 [P BOEDLOY 4ny) < tim — [ G.)Pi) an)

We know that G; — |Dgl|,, o e in L?(Geo(X), z) and that [Dgl|,,(7,) = d(yy, y;) for
n-a.e. y. Also, by Remark 4.15 and the fact that = is a test plan we easily get
suPseio.1) |1Ftll2¢r) < 00. Thus it holds

tim — [ GiO)F) dx() = lim — [ d, 3R dn) = lim [T =S g
t10 t10 t10

which is the thesis. O

8.2 — Two important formulas

PRrOPOSITION 8.3 (Derivative of 1W5 along the heat flow). — Let (f;) C
L2(X,m) be a heat flow made of probability densities. Then for every
o € 7’(X), for a.e. t € (0,00) it holds:

d1

(8.7) 2

WE2(fim, o) = f o Af; dm,  for any Kantorovich potential ¢ from f; to o.
X

PRrOOF. — Since ¢+ fim is an absolutely continuous curve w.r.t. Wy (recall
Theorem 6.2), the derivative at the left hand side of (8.7) exists for a.e. t € (0, c0).
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1
Also, for a.e. t € (0, 00) it holds lim —(f;,;, — f;) = 4f, the limit being understood
. 1o h—0 h
in LA(X, m).
Fix ty such that the derivative of the Wasserstein distance exists and the
above limit holds and choose any Kantorovich potential ¢, for (f; 11, o). We have

WE(fi,m, o) .
% Xf¢to.ﬁo dm JF] ¢y, do

W2( m, o)
Zf% > f 1, Srorn A + f ¢ do.
X
Therefore, since ¢, € L>(X,m) we get

W3(fiysn1, ) _ Wa(fi,m, o)
2 2

> [0 Fuen = fi) dm = [ gy, 4f; + o).
X X

Dividing by 2 <0 and & > 0 and letting 7 — 0 we get the thesis. O

PRrOPOSITION 8.4 (Derivative of the Entropy along a geodesic). — Let (X, d, m)
be a strong CD(K,oc0) space. Let gy, 1y € 7(X), © € GeoOpt(uy, ;) and ¢ a
Kantorovich potential for (1, 1) Assume that = is a test plan and that u, > cm
Sfrom some ¢ > 0 and denote by h; the density of y; := (e)ym. Then
im Entln(ﬂt) - Entln(ﬂo) > lim Ch(p) — Ch(p + ¢hy)

8.8 1
(8:8) tlTo t £l0 e

Proor. — The convexity of Ch ensures that the limit at the right hand side
exists. From the fact that ¢ is Lipschitz, it is not hard to see that hy¢ D(Ch)
implies Ch(p + ehy) = + oo for any ¢ > 0 and in this case there is nothing to prove.
Thus, we assume that 2y € D(Ch).

The convexity of z— zlog z gives

Ent,, (,ut) - Entm(llo) I —ho . 10g (hooer)— log (hooeop)
: >!loghoT dm 7] : dn.

Using the trivial inequality given by Taylor’s formula

(8.9)

b—a |b—af

1 -1 >
ogb—loga > 52

valid for any a, b € [¢, 00), we obtain

(8.10) flOg (ho o €) ; log (kg o ep) dr

>

fhooet—h()oe()

1 2
thy o e dﬂ*ﬁfﬂbooetihooed dr.
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Taking into account Remark 4.15 and the fact that |j;| = d(y,, y;) < diam(X) for
a.e. t € (0,1) and m-a.e. y, the last term in this expression can be bounded from
above by

(8.11) 2t—2f<fd1am(X)|Dho|woes> dsdr < dlam(X) ff IDhol%, o e ds dr,

which goes to 0 as ¢ — 0.

Now let S : Geo(X) — R be the Borel function defined by S(y) := k¢ o y, and
define 7 := %n. It is easy to check that (eg);# = m, so that in particular 7 is a
probability measure. Also, the bound %y > ¢ > 0 ensures that  is a test plan. By
definition we have

hooetfhgoeo . hgoet*hooeo -
f thoOEO d”_f t d.

The latter equality and inequalities (8.9), (8.10) and (8.11) ensure that to conclude
it is sufficient to show that

(8.12) tm [[102 = 1020 g5y, OO = ONp ),
t10 t 210 A

Here we apply the key Lemma 8.2. Observe that Theorem 7.3 ensures that

40(})0) ; (p(yt) _ d()’g, V1)

Do) = lim
where the convergence is understood in L?(z). Thus the same holds for L?(#) and
the hypotheses of Lemma 8.2 are satisfied with 7 as test plan, g := ¢ and f := hy.
Equation (8.5) then gives

2 2
lim f fooei=looe 4z s oy 1 [1D0LG0) = 1D + eh0)ln(0) 4z
t10 t |0 2 &
2 2
‘D(p‘w(.’)ﬁ) |l)8((p + €h0)|w(9€) dm(x),
which concludes the proof. O

9. — Riemannian Ricci bounds

We say that (X, d, m) has Riemannian Ricci curvature bounded below by
K € R (in short, it is a RCD(K, o) space) if any of the 3 equivalent conditions
stated in the following theorem is true.
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THEOREM 9.1. — Let (X, d, m) be a compact and normalized metric measure
space and K € R. The following three properties are equivalent.
() (X,d,m) is a strong CD(K, o) space (Definition 7.1) and the L?-gra-
dient flow of Ch s linear.
(i) (X,d,m) is a strong CD(K, o) space (Definition 7.1) and Cheeger’s
energy 1is quadratic, i.e.

(9.1)  2(Ch(f) +Ch(g)) =Ch(f +¢) +Ch(f —g),  Yf,geL*X,m).

(iii) supp(m) is geodesic and for any u € D(Ent,,) C 7 (X) there exists an
EVIg-gradient flow for Ent,, starting from p.

PROOF. — (i) = (ii). Since the heat semigroup P; in L*(X, m) is linear we obtain
that 4 is a linear operator (i.e. its domain D(4) is a subspace of L*(X,m) and
A: D(4) — LA(X, m) is linear). Since t — Ch(P;(f)) is locally Lipschitz, tends to 0
as t — oo and 9;,Ch(Py(f)) = —HAPt(f)”iz for a.e. t > 0 (see (4.4)), we have

ch() = [ 4Pz At
0

Therefore Ch, being an integral of quadratic forms, is a quadratic form.
Specifically, for any f, g € L*(X, m) it holds

Ch(f +9)+CN(f ~g) = [ 114PF + 9 Esceamy + [4APAS = 9oy
0
= [ 14PUFY+ APty + 1 APUE) = APAO |y
0

= [ 204PU sy + 21 AP e
0
= 2Ch(f) + 2Ch(g).

(ii) = (iii). By [31, Remark 4.6(iii)] (supp(in), d) is a length space and there-
fore it is also geodesic, since X is compact.

Thanks to Remark 2.6 it is sufficient to prove that a gradient flow in the EVIg
sense exists for an initial datum z, < m with density bounded away from 0 and
infinity. Let fy be this density, (f;) the heat flow starting from it and recall that
from the maximum principle 4.9 we know that the f;’s are far from 0 and infinity
as well for any ¢ > 0. Fix a reference probability measure ¢ with density bounded
away from 0 and infinity as well. For any ¢ > 0 pick a test plan =; optimal for
(fim, o). Define o := (ey);m.
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We claim that for a.e. t € (0, 00) it holds

Ent,,(6f) — Enty,(a?)
2 < m\Uy¢ m\0¢
(9.2) A 2W (fm, om) < 181lo - .

Let ¢; be a Kantorovich potential for f;m, om. By Proposition 8.3 we know that
for a.e. t € (0, c0) it holds

dl
dt2

WE(fim, om) —f(PAft dm < lff}}Ch(ft - E(p;) — Ch(ﬁ)7

X

while from Proposition 8.4 we have that for any ¢ > 0 it holds

lim Ent,,(05) — Enty(a?) > lim Ch(g,) — Ch(g; + Sft).
510 S €l0 &

Here we use the fact that Ch is quadratic. Indeed in this case simple algebraic
manipulations show that

Ch(f; — ep,) — Ch(f}) _ Ch(g;) — Ch(g; + ¢ft)
P

&

+ O(e), vt > 0,

and therefore (9.2) is proved.
Now notice that the K-convexity of the entropy yields

I Entm(af) — Entlu(ag)
am
510 S

< Entu(0) — Entu(fn) — ngz(ftm, o),

and therefore we have

d1

T 2W2( fim, om) + Enty,( ﬁm)+ WZ( fim, o) < Enty (o), forae. te (0,00).

By Proposition 2.3 we conclude.

(iii) = (i). Since (supp(m), d) is geodesic, so is (D(Ent,,), W), which together
with existence of EVIg-gradient flows for Ent,, yields, via Proposition 2.7, K-
geodesic convexity of Ent, along all geodesics in D(Ent,,). In particular,
(X,d,m) is a strong CD(K, co) space.

We turn to the linearity. Let (u)), (1) be two EVIk-gradient flows of the
relative entropy and, for 1 € (0,1) fixed, define 1 := (1 — Al + .

We claim that (y,) is an EVIg-gradient flow of Ent,,. To prove this, fix
v € ZX), t>0 and an optimal plan y € Opr(yf,v). Since ui < uf = nuy for
1=0,1 we can define, as in Definition 5.3, the plans Vi € P(X?) and the mea-
sures V' := yt,ut, 1 =10, 1. Since supp(yﬂ ) C supp(y), we have that Vi € Opr(1dt, v,
therefore fromy=(~1— /l)yﬂ? + /lyﬂ} we deduce

(9.3) Wi (uf,v) = (L= DW3(u) ) + AW5 (i V1),
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On the other hand, from the convexity of the squared Wasserstein distance we
immediately get that

(9.4) W5t ) < (U= DWEGE 00 + W5 (g VD), VR >0,

Furthermore, recalling (iii) of Proposition 5.4, we get
(9.5) Entm(ﬂ?) —Ent,, () <1-4) (Entm(ﬂ?) - Entm(VO)) + /I(Entm(/ltl) - Entlu(vl)) .

The fact that (1)) and (1) are EVIg-gradient flows for Ent,, (see in particular
the characterization (iii) given in Proposition 2.3) in conjunction with (9.3), (9.4)
and (9.5) yield

o WEGg ) = Wit v K

(9.6) 1]%1 5 +3 WE(ut,v) 4 Enty (1)) < Enty,(v).

Since ¢ > 0 and v € 7/(X) were arbitrary, we proved that (x}) is a EVIg-gradient
flow of Ent,, (see again (iii) of Proposition 2.3).

Thus, recalling the identification of gradient flows, we proved that the L?-heat
flow is additive in D(Ent,,). Since the heat flow in L2(X, m) commutes with ad-
ditive and multiplicative constants, it is easy to get from this linearity in the class
of bounded functions. By L? contractivity, linearity extends to the whole of
LA(X, m). O

We conclude by discussing some basic properties of the spaces with
Riemannian Ricci curvature bounded from below.

We start observing that Riemannian manifolds with Ricci curvature bounded
below by K are RCD(K, oo) spaces, as they are non branching CD(K, co) spaces
and the heat flow is linear on them. Also, from the studies made in [27], [33], [25]
and [16] we also know that finite dimensional Alexandrov spaces with curvature
bounded from below are RCD(K, oc) spaces as well. On the other side, Finsler
manifolds are ruled out, as it is known (see for instance [26]) that the heat flow is
linear on a Finsler manifold if and only if the manifold is Riemannian.

The stability of the RCD(K, c0) notion can be deduced by the stability of
EVIg-gradient flows w.r.t. I'-convergence of functionals, which is an easy con-
sequence of the integral formulation in (ii) of Proposition 2.3.

Hence RCD(K,oc0) spaces have the same basic properties of CD(K, oo)
spaces, which gives to this notion the right of being called a synthetic (or weak)
notion of Ricei curvature bound.

The point is then to understand the additional analytic/geometric properties
of these spaces, which come mainly by the addition of linearity condition. A first
consequence is that the heat flow contracts, up to an exponential factor, the
distance W, i.e.

Walpy, ve) < e KW, vo), vt >0,

whenever (1), (vy) C Z2(X) are gradient flows of the entropy.
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By a duality argument (see [21], [15], [6]), this property implies the Bakry-
Emery gradient estimate

IDh(f) (@) < e Khy(|DfF2)(@),  for m-ae v € X,

for all ¢ > 0, where h; : L2(X, m) — L?(X, m) is the heat flow seen as gradient
flow of Ch. If (X, d, m) is doubling and supports a local Poincaré inequality, then
also the Lipschitz regularity of the heat kernel is deduced (following an argu-
ment described in [15]).

Also, since in RCD(K, co) spaces Ch is a quadratic form, if we define

E(f,9) = Ch(f +g) — Ch(f) - Ch(g),  Vf,g € WH(X,d,m),

we get a closed Dirichlet form on L?(X, m) (closure follows from the L?-lower
semicontinuity of Ch). Hence it is natural to compare the calculus on RCD(K, oo)
spaces with the abstract one available for Dirichlet forms (see [11]). The picture
here is pretty clear and consistent. Recall that to any f € D(€) one can associate
the energy measure [f] defined by

[fNp) := —E(f.fp) + E(f?/2, ).

Then it is possible to show that the energy measure coincides with |Df |fln. Also,
the distance d coincides with the intrinsic distance d¢ induced by the form, de-
fined by

de,) = sup {|g@) — 9| : g € DENCX), [g] < m}.

Taking advantage of these identification and of the locality of £ (which is a
consequence of the locality of the notion |Df|,), one can also see that on
RCD(K, o) spaces a continuous Brownian motion with continuous sample paths
associated to h; exists and is unique.

Finally, for RCD(K, co) spaces it is possible to prove tensorization and glo-
balization properties which are in line with those available for CD(K, co) spaces.
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