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Stabilized Stokes Elements and Local Mass Conservation

D. BOFFI - N. CAVALLINI - F. GARDINI - L.. GASTALDI

Dedicated to Enrico Magenes

Abstract. — In this paper we discuss lowest order stabilizations of Stokes finite elements.
We study the behavior of the constants in front of the error estimates in terms of the
stabilization parameters and confirm with numerical tests that the bounds are sharp.
Moreover, we investigate the local mass conservation properties of the considered
schemes and analyze new schemes with enhanced pressure approximation, which
guarantee a better local discretization of the divergence free constraint.

1. — Introduction

Finite element simulations of fluid-dynamic phenomena require a good un-
derstanding of the approximation of Stokes problem. Several mixed finite ele-
ment schemes are known for the solution of Stokes problem (see, e.g., [2] and the
references therein) and a large amount of literature deals with the study of finite
element choices satisfying the appropriate compatibility conditions for a correct
approximation (the famous inf-sup condition). Similarly, numerous authors have
discussed the use of non compatible finite element spaces combined with suitable
stabilization techniques.

In this paper we present in a unified approach stabilized schemes originated
by the addition of a term like (Vp, Vq) and/or of a term involving the pressure
jumps across the interelement boundaries. A stabilization technique of this kind
was first proposed by Brezzi and Pitkéranta in [8] for the P; — P; triangular
element. Then Hughes et al in [15, 14, 13] generalized this stabilization to deal
with any pair of velocity and pressure approximations (see also [12] for a review
on stabilized schemes).

In doing so, we recall the main steps of the convergence analysis. Particular
care is paid to the identification of the constants in front of the error estimates as
functions of the stabilization parameters. The aim is to see if it is possible to tune
such parameters in order to maximize the rate of convergence in presence of
non-smooth pressure solutions.

Another important feature of Stokes finite element schemes is their cap-
abilities to enforce the divergence free condition in a robust way. This issue is
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strictly related to the mass conservation property which is of fundamental im-
portance for applications, in particular for transient problems when coupled with
other equations, like in fluid-structure interactions or in free-surface problems
(see, for instance, [16, 19, 20, 11, 21, 22]). We have faced this problem, for in-
stance, when dealing with the approximation of fluid-structure interaction pro-
blems and using the Immersed Boundary Method [6, 5, 3]. In particular, we have
shown that a suitable modification of commonly used Stokes finite elements can
prove very useful in order to enhance the local mass conservation [4]. The
modification consists in adding piecewise constant functions to the space ap-
proximating the pressures. This has the natural effect of enforcing an averaged
version of the divergence free condition locally on each element.

In this paper we analyze the pressure enhancement modification in the fra-
mework of stabilized finite elements.

The main consequence of the analysis is that the enhancement is poorly ef-
fective in the case of low order elements and non smooth data. In particular, if the
polynomial order of the velocity space is not high enough (quadratic in 2D or
cubic in 3D), then the pressure enhancement requires an appropriate stabiliza-
tion involving the pressure jumps along the interelements. First of all, we ob-
serve that such stabilization destroys the local nature of the mass conservation
property. Moreover, the stabilization term introduces a consistency error with
reduced rate of convergence in case of non-smooth pressure solutions. This
drawback applies, for instance, to the stabilized P; — Py element or to the en-
hanced version of the popular P; — P; stabilized element. In order to circumvent
this phenomena we introduce a new finite element that combines the feasible
characteristics of the P; — P; stabilized element and mass conservation prop-
erties of the Bercovier-Pironneau element.

In the next section we briefly recall the problem we are dealing with. Section
3 provides the analysis for the stabilized schemes and Section 4 discusses the
local mass conservation properties of the proposed schemes, together with their
enhanced counterpart. Several numerical tests are reported in Section 5.

2. — Problem setting

We consider the stationary Stokes problem
—Mu+Vp=fFf in Q,
(1) dive =0 in Q,
u=>0 on 0Q,

where u is the fluid velocity, p the pressure, f the external force, and
Q c R" (n = 2,3) a polygonal or polyhedral domain.
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Let V =H\(Q)" and Q = Li(Q) = {q € L*(Q) : [ gdx = 0}, then the weak
formulation of problem (1) reads: Q

find (u,p) € V x @ such that

2) {a(u,v)+b(v,p) =(f,v) WwEeV,
bu,q) =0 Vg € Q,

where (-,-) denotes the L?-inner product, and a(-,-) and b(-,-) are the bilinear
forms

a(u,v) :fVu : Vo dx,
Q

bu,p) = —fp divu dx.
Q

Let 7, denote a shape-regular family (i.e., satisfying the minimum angle con-
dition, see [9]) of simplicial decompositions of Q. As usual, we require that any
two elements in 7, share at most a common face, edge, or vertex. We denote
respectively by &, hk, and & the length of the edge (face in three dimensions) e,
the diameter of the element K, and the mesh size. Finally, &' is the set of interior
edges (faces in three dimensions) of the mesh.

Let V;, and @), be two conforming finite element subspaces of V and @, re-
spectively. The mixed approximation of problem (2) is given by:

find (uy,pp) € Vi, x ), such that
3) {a(uhavh) + by, pr) = (F,vy) Yo, €V,
by, qn) =0 Van € Q-
It is well known (see [7]) that, since a(-,-) is coercive on V, for the discrete
problem to be well-posed it is sufficient that the pair (V;,Q;) satisfies the so
called “inf-sup stability condition”. Conversely, conforming low order elements

such as Py — Py (linear velocity, constant pressure) and Py — P (linear velocity,
continuous linear pressure) are known to be unstable.

3. — Stabilized formulations

We consider the stabilized formulation presented in [12] which, in an abstract
setting, reads as follows:

find (u;,,ps) € V), x Q) such that

(4) {a(uhavh) + by, pr) = (F,v3) Yo, €V,
by, q1) — c1(pr,qn) =0 vaq, € Qu,
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where c,(+,-) is the stabilization term, which is a symmetric continuous semi-
positive definite bilinear form on Q%L. The stabilization term has the general
form

n(Pur i) = o Y W (Vpi, Vg + B hepal, 1gaDe,

KeT), ece!

where o and f§ are two non-negative stabilization parameters and [ - ] denotes the
jump operator across the internal edges (faces in three dimensions).

REMARK 1. — A more general form of the stabilization term reads

G, i Ony @n) = 0> Wi (= Ay + Vpy, —Avy, + Vg )g + Y kel [gaDe-
KeT, ece!

However, since we are planning to use low order elements, the term involving
Auj, and Avj, vanishes.
In matrix form Eq. (4) reads

A B u,\ _(f
® (& %)) -©)
where the matrices A, B, and C correspond to the bilinear form a(-, -), b(-, -), and
¢ (-, -) respectively.

We consider the following low order pairs of approximation spaces, commonly
known as P; — Py and P; — P{ methods, respectively:

Vh = {Uh = H(I)(Q)" N U}’L‘K < PI(K)%7 K S T}'L}

(6)

Qn={qn € L%(.Q) 1qu, € Po(K), K € T},
and
o V,={v, € H(l)(Q)” Uy, € Pi(K)', Ke Ty}

Qn=A{q € L NHY Q) : qi, € Pi(K), K € T}},

where P, (K) denotes the space of polynomials of the degree at most k on K. The
degrees of freedom for the P; — Py and P — P{ elements in 2D are depicted in
Figures 1, 2, respectively.

Fig. 1. — Degrees of freedom for the P; — Py element in 2D: velocity left, pressure right.
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Fig. 2. — Degrees of freedom for the P; — P{ element in 2D: velocity left, pressure right.

We denote by By, : (V}, x Qh,)2 — R the continuous bilinear form associate to
the stabilized problem (4), namely

By, (wy, pg;vn, qn) = a(uy,vy,) + b(vy, pr) + b(wn, q1) — ci(pr, qn)
Vuy, v, € Vi, Ypu, @i € Qu,

where for low order schemes, like those considered in (6) and (7), the stabilization
term is reduced to

(8) cn(Pusqn) = Y W (Vpu, Vax + B hepal, 1gaDe-

KeT,, ece!

In the sequel we denote by C a constant independent of %, possibly different
at each occurrence and by S), the following space:

S,={veV:y, cP,K)" KeT},

being n the space dimension.

In order to have a well-posed discrete problem, the stabilization parameter 5
can vanish in the case of continuous pressure approximations, whereas for dis-
continuous pressure approximations either f is positive or S, C V..

The next stability theorem indeed holds true (see [13, 12]).

THEOREM 3.1. — Assume that one of the following conditions is fulfilled:
1) S, C Vi,

@) Qi c C'Q),

@) >0

Then for o > 0 the bilinear form By, (-;-) satisfies

) < By, pr;vn, qn)

2 241/2
oo (oally +laalo)”

> K, plunlls + pnlDY? Yn, pr) € Viox Qu,

with K, g constant depending on the stabilization parameters o and f, but in-
dependent of the mesh size h.

The proof of the stability relies on the following key result: the arguments
presented here are partially different from [13].
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LeMMA 3.1. — There exist non-negative constants Cy and Co, independent of
h, such that

1/2
(divoy, qi)
Sk (2 clnqhno—cz(E : h%||th||%,K>

vpEV), ||U||1 KeT),

vy, #0

1/2
—Cy ( > he”[[qh]]lg‘e> Y € Qp.

ecé!

ProOF. — Let q;, € @), be fixed. Then, by the continuous inf-sup condition,
there exists w € V such that
(divew, gn) > Collgnllolwll;-

Let w! € V), be the Clément interpolant of w (see [10]). Then it holds

-2 12 -1 12 2
Dl —w'log + Y kgt lw —w'lg, < C'ljwlf;

KeT,, ece!
and
lw"]l, < C"|lw]],.
Then
(divoy, qn) S (divw!, q;) S 1 (div w', q)
wev, ol T el T el
(10) o
1 (div@w!' —w),qy) + (divw,q;) _ 1 (divw' —w),q,) Co
= 2 = + = 1 llo-
C [wl[y C w4 C
We then take into account that
(div @' —w),q) = > ~(Vgy, 0" —w)g +f @' —w)-n
KET;L 5]
=> (Vgw-whg+> (gl w' —w),
KeT), ece!
> = > IVaulloxlw —w'llox =D landllo.llw — w'lo,,
KeT,, ece!
(11) 1/2 1/2
> —(Z h?lehlﬁx) <Z hi|w _wIH3,K>
KeT), KeT),
1/2 1/2
— > Relllanllls, > bt w — w5,
ece! ecE!

12 1/2
2_C/Hle(Zh%{”vqhng,l{) _C,”w”l(Zheﬂq}l]]”(Z),e) :

KeTy ecé!
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By choosing C; = Cyp/C” and Cy = C'/C” we obtain the desired result. [

REMARK 2. — If Q;, C C°(Q) or S, C V), then the result of the previous lemma
reduces to

1/2
(divvy, q1)
sup w9 > Crlally - Co ( > h%{|VQh|§,K> vgi € Q.

"3}?’& ”v Hl KeT,
This is obvious if @;, € C%(Q). For the case S;, C V},, we refer to [13, Lemma 3.3].

Although the proof of the Theorem 3.1 is quite standard, we sketch it in order
to highlight the dependence of the stability constant on the stabilization para-
meters.

ProoF. — Let (u;,,p;,) € V;, x @, be fixed. We look for (vy, q;) € V), x @, such
that

) By, p; v, q) > Clllunl® + [pal?)
Ulonll} + llgul§)? < Clunllf + llpallp)".

By Lemma 3.1 there exists w;, € V), such that:

1/2 1/2
(divwy,, pp)
TIPS Cullpally—Co | S 1Vl | —Co[ S RelllpallZ,
(13) ||whH1 KeT, veel
lwrlly = [Ipallo-
Then
By, pp; —wy, 0) = — (Vuy, Vwy,) + (py, divwy,)
> — || Valol| Vewn |y + Callpalls
1/2
- Cz||10h||o< > h?gllvmllﬁ,x)
KET/L
1/2
(14) - CZHPhHO(Zhe||[[ph]]”(2),e>
ece!

2 2
> C<—||Vuh||o + [Ipnllo

- > Wl Vonlis g - Zhe||[[ph]]”(2),e>7

KeT,, ece!

where the last inequality stems from Eq. (13) and Young’s inequality.



550 D. BOFFI - N. CAVALLINI - F. GARDINI - L. GASTALDI

Moreover,

By, pusun, —pi) = [IVullg + 2 > Wl Voullo  + 8D helllpalllg.-
KeT), ece!

Taking vy, q,) = W), — owy,, —py) we get
By, pu;vn, qn) = By, py;wy, —pp) + 0By, pp; —wy, 0)

> Va2 +a S IEIVPlE g+ B Relllpal2,
KeTy, eegl

+ 00— Va5 + Il

= > BVl g = helllpallly)-

KeT,, ec&l

Using again Young’s inequality and choosing ¢ = min (1/C,a/C, /C)/2, we
obtain

By(n, pi; vn, n) > COu(| VI + il

16) + 3 R IVels g+ S helllpallls)

KeT,, ecé!

1 2 2
> CO (Va5 + lpally),

with CS}; =min (1, «, f§)/2. Moreover, it is clear that
1/2 1/2
2 2 2 2
(ol +lgnly) < €2 (lunl + Ipaly)

where Ciz)ﬁ = 1/max (2,1 + 26%).
The inf-sup constant K, ; thus results

min (1, o, f5)
—~-
21/max (2,1 + 26%) 0

We observe that the stabilized schemes are not consistent. Let HX(7),) =
{geQ:qx < HYK) VK € T,}. If p € H'(T},) the consistency error is given by

(18) sup ¢ (p, qn) = sup {oc > WP, Vak + B hepl, [[qh,]])e}-

qnEQn qnEQn KeT,, ece!

Nevertheless, if p € H/?*4(Q) (for some ¢ > 0) then, the trace along each edge
of the mesh is well-defined, so that the jumps along the interelement edges
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vanish. Therefore the consistency error given in (18) reduces to the first sum. On
the other hand, if @, c C%(Q) or S), C V), then f can be chosen equal to zero.

In the case of higher order elements, c;, takes the more general form given in
Remark 1; in this case f can be taken equal to zero and the consistency term
becomes

Cn@, v, @) = o Y hg(— du + Vp, —4v, + V).
KGT}L

However, in this case, the consistency can be restored by adding at the right
hand side of the second equation of problem (4) a suitable term which is given by:

(19) o Y Wg(f,—4v, + V).
KET},

As usual for non-consistent schemes, the error is estimated by the sum of two
different contributions related to the approximation and the consistency errors.
Indeed from the stability Theorem 3.1, we get by standard techniques the fol-
lowing Strang type result.

THEOREM 3.2. — Assume that p € H'(T},) and that one of the following con-
ditions s satisfied:

@ S, Vi,
@ Qn c @),
®) >0

Then for o > 0 there exists a constant C, independent of h, such that

1/2
2 2
(e = walff + o = pully)

C
<(1+ inf u—wy|;+|p-—mn
o ( Ka,/)’) (Wi r)EVLXQ), (H ol + 1l h”O

(20) , 1/2 ) 1/2
+a(§jh§{|v<p—m>||w) +ﬁ(Zhellﬂp—mﬂHo,e> )

KeT,, ec&l

C
X sup  Buw —up;p — pu;vn; qu),
o, fi @9V, %Q),
(o |3+lap 1212 =1

+

where K, g is the inf-sup constant given in Eq. (17).

ProOOF. — As usual, we first estimate the error by triangle inequality
2 2 2 2 2 2
@1)  u—uplli+llp = pullo < llw — wally + [[wn — wnlly + [lp —7allo + [ — pallo

V(wy, 1) € Vi, x Q.
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By the discrete inf-sup condition (9) there exists (vy,q;) € V), x @), such that
(22) Byl — wi,pn — 10500, @) > Ko gy, — wi|[ + o — mal§)'

(23)  (oullf + l@allp™ = 1.

where K, ; is the inf-sup constant given in Eq. (17). Thus

(24) sup  Bu(uy— wy, pr— ;01 @) > Ky gy, — wi | + [lpn — 7]

W)€V Q)
Ulog 12+l 121/2=1

It holds
By, (wy, —wy, pr, — 1301, ) = B, (wy, —w,py, — 03Uy, qi) +Br(w —wy, p — 13505, q1),
where the second term is estimated as follows:

Bu@—wy, p —71;0n,q1) < V@ = wp)llo[[Voullo + 2 = rallol[vnll

1/2 1/2
+ ||u—wh||1||qh||o+o<< > h%||V<p—rh>||3,K> ( > h%(nw%,;{)

KeT,, KeT,,

(25)

1/2 1/2
+ﬁ<§jhe|np—mm|3,e> (Zhanqhm%ﬁe) :

ece! ecé!

By standard scaling argument it holds (see [13])
(26) S 1lIValisx + Y hellaallise < Cllanlls Van € Qi

KeT), 6651

Then since |[v][; + [|gxl/§ = 1

27) By(u —wy,,p — 1505, qn) < C<||u —wy| + |lp -l

1/2
o Y RV —m)li + 8D kelllp — mallls,
KeT,, ecé!

We get the thesis combining Eq. (21), (24), and (27) and taking the inf over
(wh,rh) S Vh X Qh- Il

An estimate of the consistency error is given in the next theorem.

THEOREM 3.3. — Assume that p € H(T ). Then there exists a constant C,
mdependent of h, such that

1/2
(28) sup By —up;p—pn;vn;qn) < C(och|p|1,h + ph}/? <Z ||[[10]]|§.e) ) ,

(y,.ap)€V], %Qy,

4
ect
(o 15-+lp 13)Y/2=1
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where

1/2
|P|1,h = <Z |VP||§,K> .

KETh

ProoF. — The consistency error is estimated as follows:

By —wy;p — privniqn) = o Y hx(Vp, Vg + 8 he(pl.IgDe

KeT,, ece!

<a Y WElIVPlloxIVarllox + B> helllpllo,lllgull

KeT,, ecé!

1/2 1/2
< oc( > h§(||Vp|3K> ( > h§<|V(1h||§,K>

KeTy, KeT,,

1/2 1/2
+ﬂ<zhennpnnﬁ,e> (Zhe|nqhu||3e>

ece! ece!

0,e

1/2
< Cllgnllo(ahlply +/>’<Z hell[[p]lllg,e> g € Qu,

ece!

where the last inequality stems from Eq. (26). Hence we get the result by taking
the sup and observing that ||g;||, < 1. d

REMARK 3. — Notice that if p € H'(Q), we have [p] = 0 and the second term in
the right hand side of (28) is vanishing. Moreover, [pl[; , = [pl;.

For smooth solution to (2), the following optimal error estimates hold (see
[18, 12]).

THEOREM 3.4. — Assume that the solution (u,p) to (2) satisfies u € H*(Q)"
and p € HHY(Q) with 0 <1 < 1 and that one of the following conditions is sa-
tisfied:

1 S, CVy,
@) Q) c C'Q),
@3) p>N0.

Then for o > 0 the discrete problem (4) has a unique solution. Moreover,
there exists a constant C, z depending on the stabilization parameters but in-
dependent of h, such that

(30) e —wnlly + llp = Pullo < Cophluly + B [plyy + Riply),

being I = 0 for Py — Py and | =1 for P, — F%.
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Furthermore, if Q is convex, we have the following L?-error estimate
(31) e — uplly < Co g [ualy + B2 [plyyy + P |ply),

with C’a_, s constant depending on the stabilization parameters but independent

of h.

PRroOOF. — Let u! and p! denote the interpolants of u and p, respectively. We
can take the Clément interpolant of u and the L?-projection onto piecewise con-
stants or the Clément interpolant of p for Py and P pressure approximations,
respectively.

From Theorems 3.2 and 3.3 we have

1/2 C
(=l + 11 = pull;) §(1+ z ><||U—u1|1+||p—pl||o
% f

1/2 1/2
+a( )3 h%||v<p—pl>||%,K) +ﬁ(zhe||ﬂp—plﬂ||§,e) )

KeT, ecé!

C 1/2 2 v
+ m oh|ply + ph / (Z “Ip]]“O.e) ‘

ecé!

Since p € H*1(Q) then [p] = 0 and the following well-known interpolation
estimate holds

1/2 1/2
(Zh%w—pl)nﬁ,K) +(Zhemp—plmﬁe) <CHply,, Vpe HH@.

KeTy ece!

From the last two inequalities we get the result of Eq. (30).
Under the convexity assumption, the L?-error estimate (31) follows as usual
from an Aubin-Nitsche argument. O

Let us consider the case of non smooth pressure solutions, that is
pE Lg(Q) N HY(T,). We have to analyze separately the two finite element choi-
ces (6) and (7). Let us start with the P; — P, element. In this case we have that
the interpolation error estimate is of optimal order 1, but the stabilized scheme
requires f > 0, so that the stabilization term is (« = 0)

(P @) = By hepal, [gaDe-

ece!

As a consequence we have that the rate of the consistency error is one half, more
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precisely the error estimate reads

172 C
(1 =l = pulf)" < (14 - )y + Rl
% f

c 1/2 2 \"?
Al (Znnpmme) -

ece!

(32)

REMARK 4. — The lack of consistency in the case of non smooth pres-
sures produces a suboptimal error bound. Unfortunately, the optimal con-
vergence cannot be restored with a suitable choice of the parameter f (for
instance, as a function of the mesh size). Indeed, if f<1 then K, s =~ f and
it results

e = wnlly + llp = pally < CB o+ 1),
On the other hand, if # > 1 then K, sy = C independent of % and it results

e = aslly + P = pallo < CACh -+ V%).

Hence the rate of convergence is always 1/2.

Concerning the Py — P{ scheme, the rate of convergence is reduced to 1/2
as well in presence of non-smooth pressure solution. In this case we are al-
lowed to take f = 0 in the consistency term, so that the consistency error is of
order 1. The suboptimal rate is now due to the estimate of the interpolation
error.

4. — Local mass conservation

In the previous sections we studied the convergence properties of stabilized
elements. In the application we have in mind, the local mass conservation of the
used schemes is a fundamental property. It is clear that mass conservation and
convergence are related, but a higher convergence rate does not necessarily
mean a better mass conservation.

In this section we consider the issue of mass conservation and discuss
possible enhancements of some of the stabilized elements introduced above in
the spirit of [4, 3]. The stabilized methods present the drawback that the di-
vergence free constraint is further weakened by the stabilization term which
adds a diffusive contribution to the pressure. In [4] the local mass conservation
property was obtained by the enrichment of the pressure space with piecewise
constants. Obviously, this idea could not help in the case of the P; — Py ele-
ment; therefore we start by considering the enhanced version of the Py — P
element.
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We consider the following pair of approximation spaces, which we refer to as
the Py — (P{ + Py) scheme:

Vi, ={v, € H(Q)" : vy, € PK)", K €T}

33) Qu={g €Ly :q=aq +q,
q1 € C°Q), q, € P1(K), qo, € Po(K), K € T},}.

The degrees of freedom for this element in 2D are depicted in Figure 3.

Fig. 3. — Degrees of freedom for the P, — (P{ + P) element in 2D: velocity left, pressure right.

Notice that contrary to the original stabilized scheme both parameters o and
S need to be greater than zero: the first one gives the correct stabilization term
for the P; part of the discrete pressure while the second one takes into account
the Py part.

We explicitly observe that the result of Lemma 3.1 holds true for the aug-
mented space as well. This is trivial, since the augmented pressure space is still a
conforming approximation of the pressure space Q.

As for original stabilized schemes, the stability of the augmented spaces
stems from Lemma 3.1.

THEOREM 4.1. — For o, f§ > 0 the bilinear form By(-; ) satisfies
By, pr;on, qn) 2 2
> Ky p([[unlly + llpnllp)

e, (ol + a2~

(v},.q,)#(0.0)

(34) i

Yy, pr) € Vi, xQn,

with K, g constant depending on the stabilization parameters o and p, but in-
dependent of the mesh size h.

PrOOF. — The proof is the same as for Theorem 3.1. O

Then from the stability result we get the following optimal order error esti-
mates.

THEOREM 4.2. — Assume that the solution (u,p) to (2) is such that u € (H*(Q)"
and p € H**H(Q) with 0 < s < 1. Then for o, B > 0 the discrete problem (4) has a
unique solution.
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Moreover, theve exists a constant C, g depending on the stabilization para-
meters but independent of h, such that

(35) e = wnlly + 1P = Pally < Cophluly + 1 ply + hiply).

Furthermore, if Q is convex, we have the following L?-error estimate
(36) e —willg < Cop®®luly + B[l 1 + 1¥[ply),

with C'a‘ﬁ constant depending on the stabilization parameters but inde-
pendent of h.

Proor. — The proof is the same as for Theorem 3.4. d

In case of non-smooth pressure solutions, considerations on the reduced rate
of convergence similar to those presented in Remark 4 hold for the augmented
spaces as well.

REMARK 5. — In Eq. (33) the pressure space @), is defined as the sum of two
finite element spaces, namely P{ + Py. However, it can be easily observed that
the sum is not direct, since globally constant functions can be represented exactly
by means of piecewise Py or continuous P; elements.

Concerning the implementation of the method, we avoid the computation of
the basis functions of such a finite element by testing the discrete problem (3)
with the basis functions of the two subspaces separately. By the above discussion
it turns out that matrix B in (5) is rank-deficient, with kernel of dimension 1. On
the other hand the matrix C in (5) is positive definite and hence invertible. Thus
the global matrix in (5) is invertible.

REMARK 6. — The previous stability and error analysis generalize to higher
order stabilized schemes. Thus one might consider the consistent formulation of
the Py — P‘li element (quadratic velocity, discontinuous linear pressure) in 2D
(with corresponding P3 — Pg element in 3D) stabilized with

Cr(@n, Pu; U, qn) = 0 Y g (— Awy, + Vpy, —Avy, + Vau)k.
KeT,,

The advantage of this scheme is twofold. Since there is no jump term in the
stabilization, the scheme is consistent. Moreover, thanks to the fact that we
consider discontinuous pressure approximations we obtain an element which is
locally mass conservative.

As we have seen stability is not an issue for stabilized augmented scheme (33).
On the other hand, contrary to Hood-Taylor and Bercovier-Pironneau elements
(see [4]), the enhancement with piecewise constant functions does not yield local
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mass conservative spaces. This is due to the presence of the jump stabilization
term (8). In fact, Theorem 3.1 requires f > 0 for discontinuous pressure ap-
proximations and low order velocity spaces.

The presence of the jumps in the stabilization term results in a method which
becomes computationally more involved whitout any advantage from the point of
view of the mass conservation. Working in two dimensions, in [17, 23, 18] a re-
medy is proposed for the P; — P, scheme by stabilizing it with local jumps. Let
us consider a disjoint partition of the mesh M), into triangular macroelements
M. Each macroelement M is composed by four triangles with vertices at the
midpoints of the edges of M. Clearly, it turns out that one of such triangles is
completely in the interior of the macroelement. The local stabilized formulation
is then based on the introduction of the following discrete bilinear form

37) g =8> Y helpal IgiDe,

MeMy, el

where &/, is the set of the edges which lie in the interior of each M € M,

In [18] the inf-sup condition has been proved. In fact, with this approach we
are essentially considering a P;isoPs velocity space. The pressure function on a
macroelement can be decomposed into the sum of a constant plus a piecewise
constant. Therefore to get the stability of the scheme we can observe that the
constant on the macroelement is controlled by the P1isoPs velocity space, while
for the piecewise constant inside the macroelement the local stabilization term
works. This local stabilization procedure has the advantage that the local mass
conservation is preserved at the macroelement level. Infact choosing ¢, to be the
characteristic function of M € M into the second equation of (4) we have that
cn(pr,qr) = 0 so that

by, qp) = f divaydx = 0.
M

Hence the average of the divergence vanishes on each macroelement.

Indeed, a more general element has been considered in [17, 23, 18]: the
macroelement M does not need to be a triangle; the vertices of the subtriangles
can be moved and the macroelement M deformed as long as the topology of the
mesh does not change. Such element may become important, for instance, when
evolution problems involve mesh deformations.

In order to achieve local mass conservation for the choice (7), we introduce the
following stabilized element which, up to the authors knowledge, is new and is
closely related to the idea of enhancing the pressure space using piecewise
constants [4]. We denote by 7, > the mesh obtained by 7, joining the midpoints
of the internal edges. We consider the following augmented approximation
spaces in 2D, which we name PjisoPs — (P1isoPy + Py):
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Vi = {v), € HY(Q : vy, € PiKY, K € Ty}
38) Qu={g€L{D:q=q+q, q1€CQ), q, € Pr(K) K € Typs,

(]0|K S Po(K), Ke Th}.

Both the velocity and the pressure spaces are of Bercovier-Pironneau type (see
[1]). Moreover, the pressure space is enriched by adding piecewise constant
functions on the coarse mesh 7. The degrees of freedom for this element in 2D
are depicted in Figure 4.

Fig. 4. — Degrees of freedom for the P1isoP2 — (P1isoP2 + Py) element in 2D: velocity
left, pressure right.

In this case the stabilization term is given by

pngn) = o Y hE(Vp, Vauk.,
KGT;Z/Z

which stabilizes the piecewise linear part of the pressure. On the other hand,
since the PiisoP; velocity element is closely related to the Py element on the
coarse mesh, there is no need to consider jump stabilization. This is one of the
advantages of this method since the absence of jump terms allows to use a
standard assembling process.

As for the schemes previously considered, the stability of this method is a
consequence of Lemma 3.1, which in this case reads: there exist non-negative
constants C; and Cy, independent of &, such that

1/2
(divoy, q1)
sup o Qi > C1|‘Ih||0_cz< Z h%{|VQh|37K> :

ach ol o

We notice that the term with the jumps in this case is not necessary because
the space P1isoP; has the same degrees of freedom as Ps, so that the proof of [13]
works also in the present situation.

Then following the same lines of the proof of Theorem 3.1, we obtain the next
stability theorem:
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THEOREM 4.3. — The bilinear form B),(-; -) satisfies

Bb 9 L; bl
(39)  sup W@, Pr; Uny qr)

@41V *Qy, thHl + ”q}ZHO
©),.0)£0.0)

> K,(|lus |} + ||Ph\|(2))1/2, Yy, pn) € Vi x Qp

with K, constant depending on o but independent of h.

Finally, from the stability result we get as before the following optimal order
error estimates.

THEOREM 4.4. — Assume that the solution (u,p) to (2) satisfies the following
reqularity assumptions u € HX(Q)* and p € HSTH(Q) with 0 < s < 1. Then for
o > 0 the discrete problem (4) has a unique solution.

Moreover, there exists a constant C, depending on the stabilization para-
meter but independent of h, such that

(40) e —wplly + llp = pullo < Callluly + 1" pl,q + Riply)-
Furthermore, if Q is convex, we have the following L?-error estimate
(41) e —wnlly < Coll®luly + 12 |pl, s + K [ply),

with C, constant depending on o but independent of h.

We observe that even if the pressure is not smooth p € Lg(Q) NHYT,), we
obtain the optimal rate 1. In fact, referring to the discussion at the end of Sect. 3,
we observe that despite the presence of discontinuities in the pressure there is
no need to add a stabilization term containing the interelement jumps. This term
inthe P — Py and in the P; — (P§ + Po) cases caused a consistency error of order
1/2. On the other hand the piecewise constant contribution to the pressure space
allows us to get the optimal interpolation error which could not be achieved for
the P; — P{ element.

REMARK 7. — As for the P; — (P{ + Py) element (see Remark 5), the pres-
sure space @ in (38) is defined as the sum of two finite element spaces,
namely P;isoPs + Pj. Also in this case the sum is not direct, since globally
constant functions can be represented exactly by means of piecewise P or
continuous PiisoPs elements. Concerning the implementation of the method,
we still avoid the computation of the basis functions of such a finite element by
testing the discrete problem (3) with the basis functions of the two subspaces
separately. However in this case, both the matrices B and C in (5) are rank-
deficient. As for the Py — (P{ + Py) element, the kernel of the matrix B has
dimension one, whilst in this case the matrix C is only positive semidefinite
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and has the following form:

('_r ) ()\-
PRy

The square diagonal block X is the contribution to C of the basis functions of the
P1isoPs pressure element, while the square null block 0 is that of the P, element.
By the above discussion it turns out that the global matrix in (5) is rank-deficient,
with kernel of dimension 1. We shall give precise details on the way we deal with
this issue in the solution of the linear system (5) in the next section.

Let us consider the issue of the mass conservation. As before let us take g
the characteristic function of an element K € 7, in the second equation of (4).
Since ¢;,(pr, 1) = 0 we obtain again that the average of divergence of the velocity
vanishes on each element of the coarse mesh 7.

Concluding, this element shows very appealing properties: it is easy to im-
plement, it enjoys the stability, optimal order convergence and local mass con-
servation properties.

5. — Numerical experiments

This section is devoted to numerical experiments. In particular the following
schemes will be tested:

e P; — P{.Thisis areference stabilized low order finite element (see Figure 2).

e P; — Py. It is here considered as the simplest possible stabilized element
(see Figure 1).

e Py — P{+ P,. It is studied in order to explore a Py enrichment of the
P — P4, in the same manner as we intended enriching Bercovier-Pironneau and
Hood-Taylor finite elements in [4] (see Figure 3).

e PyiisoPs — P1isoPs + Py. We introduce this finite element in order to cir-
cumvent the pressure jump stabilization term and preserve the mass con-
servation properties of piecewise P, functions (see Figure 4).

e PyisoPy — P + Py The augmented Bercovier-Pironneau finite element is
stable and mass preserving, then it is here considered as a performance standard
(see Figure 5).

¢ 9

Fig. 5. — Degrees of freedom for the PiisoPy — (P1 + Py) element in 2D: velocity left,
pressure right.
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For each scheme we will evaluate the convergence properties, the approx-
imation results, and the mass conservation results. A first set of experiments will
involve a continuous solution for the pressure:

Uy = cos(2nx)sin 2ry) + sin 2ny),

(42) uy = sin@nx)cos (2ry) — sin 2nx),
p = 2z(cos (@nx)) + 2n(cos 2ny)),
f = —Au 4 Vp.

A second set of experiments will be carried out considering a discontinuous
pressure solution, which has the following form:

B 27(cos (2nx)) + 2r(cos 2ny)) + 5 for x > 1/2
| 2n(cos (2rx)) + 2n(cos @2ny)) — 5 for x<1/2.

5.1 — Convergence properties

Table 1 represents the convergence error for the Py — P{ finite element
tested on the continuous solution case. Convergence orders for velocity, both in
L? and H' norms, are optimal, and so is the order for the divergence. The L?
norm of the pressure error shows a super-convergent behavior in a similar way
as noticed in [4], for the Bercovier-Pironneau finite element. It is remarkable and
would deserve further investigation the fact that indeed this behavior has been
noticed on non structured meshes as well. Tables 2 and 3 report the orders of
convergence for Py — Py and P; — (P§ + Po) finite elements, which, as expected,
are optimal. The comparison between P; — P{ and P; + (P§ + Py) shows that the
enhancement to the pressure space prevents the super-convergence for the
pressure. An analogous behavior was observed in [4] for the Bercovier-
Pironneau finite element, in the sense that, when we add the piecewise constant
functions, the superconvergence is not showing up anymore. However, even if we

TABLE 1. —Spatial convergence for the P; — P finite element, « = 0.1. Continuous solution
test case.

P, - P
hey > = pallze llw — wpll V@ —w,)l| ([ div | 2
Error Rate Error Rate Error Rate Error Rate
1/8 8.374e-01 1.328e-01 2.791e+00 - 1.617e+00

1/16 2.915e-01 15 3.521e-02 19 1421e+00 1.0 8.590e-01 0.9
1/32 9.200e-02 1.7  8952e-03 2.0 7.127e-01 1.0 4.355e-01 1.0
1/64 2.853e-02 1.7 2249e-03 2.0 3.564e-01 1.0 2.183e-01 1.0
1/128 9.003e-03 1.7  5.630e-04 2.0 1.781e-01 1.0 1.091e-01 1.0
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TABLE 2. —Spatial convergence for the P; — Py finite element, f = 0.1. Continuous
solution test case.

P —-Py
B I — pallze llw —upll V@ —up)l| (| div ap | >
Error  Rate Error  Rate Error  Rate Error Rate
1/8 2.163e+00 - 1.675e-01 2.820e+00 - 1.571e+00 -

1/16 1.003e+00 1.1  4.527e-02 1.9 1.424e+00 1.0 8507e-01 0.9
1/32 4.823e-01 1.1  1.155e-02 2.0 7.125e-01 1.0 4.339e-01 1.0
1/64 2375e-01 1.0 2901e-03 2.0 3.562e-01 1.0 217901 1.0
1/128 1.180e-01 1.0 7.261e-04 2.0 1.781e-01 1.0 1.090e-01 1.0

TABLE 3. — Spatial convergence for the Py — (P{ + Py) finite element, « = 0.1, f =0.1.
Continuous solution test case.

Py — (P +Py)

hy lp — pallze llee —wpllfe V@ —up)ll. lldivae| 7.
Error Rate Error Rate Error Rate Error Rate
1/8 1.852e+00 - 1.655e-01 - 2.807e+00 - 1.555e+00 -

1/16 8.242e-01 1.2  4.406e-02 1.9 1.421e+00 1.0 8485e-01 0.9
1/32 3.856e-01 1.1  1.116e-02 2.0 7.122e-01 1.0 4.336e-01 1.0
1/64 1.872e-01 1.0 2.797e-03 2.0 3.562e-01 1.0 2.179e-01 1.0
1/128 9.239e-02 1.0 6.991e-04 2.0 1.78le-01 1.0 1.090e-01 1.0

are loosing the superconvergence for the pressure, the enhancement to the
pressure space has been introduced in order to improve the local mass con-
servation properties of the finite elements. We shall discuss this aspect later on
in this section.

We now discuss the convergence properties for the discontinuous
pressure test case. We first consider Table 4, and notice that the discon-

TABLE 4. — Spatial convergence for the P; — P4 finite element, « = 0.1. Discontinuous
solution test case.

Py —P§
ha P — palle [l — wpllpe V@ — w2 ([ div aen|| 2
Error  Rate Error  Rate Error  Rate Error Rate
1/8 1.505e+00 - 1.431e-01 - 2.926e+00 - 1.824e+00 -

1/16 9.735e-01 0.6  3.969e-02 1.8 1.570e+00 0.9 1.081e+00 0.8
1/32 6.771e-01 0.5 1.108e-02 1.8 8.628¢-01 0.9 6.496e-01 0.7
1/64 4.770e-01 0.5 3.237e-03 1.8 4.981e-01 0.8 4.094e-01 0.7
1/128 3.369e-01 0.5  1.001e-03 1.7 3.048e-01 0.7 2.698e-01 0.6
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TABLE 5. — Spatial convergence for the P; — P, finite element with respect to f/[p].
Discontinuous pressure test case.

V@ —up)l| 2
Convergence Rate
R =10 p=1 =01 =002  p=001
1/16 1/32 0.81 0.92 0.98 1.03 -28.14
1/32 1/64 0.93 0.76 0.96 1.01 -131.78
1/64 1/128 0.72 0.65 0.92 1.00 -10.83
1/128 1/256 0.56 0.58 0.87 0.99 —84.56
1/256 1/512 0.52 0.54 0.79 0.98 NaN
[l — |2
Convergence Rate
foy £=10 p=1 f=01 f=10.02 £ =0.01
1/16 1/32 1.03 1.68 1.95 1.94 -26.00
1/32 1/64 1.50 1.78 1.94 1.99 -130.82
1/64 1/128 1.74 1.75 1.91 2.00 -9.78
1/128 1/256 1.77 1.69 1.85 2.00 -83.34
1/256 1/512 1.72 1.62 1.77 1.99 NaN
P — pallz
Convergence Rate
h p=10 p=1 =01 £ =0.02 £ =0.01
1/16 1/32 0.79 1.03 0.97 0.98 -30.80
1/32 1/64 1.04 0.76 0.88 1.00 -130.36
1/64 1/128 0.87 0.59 0.79 0.99 -12.25
1/128 1/256 0.61 0.54 0.70 0.96 -82.56
1/256 1/512 0.53 0.52 0.62 0.93 NaN

tinuity of the pressure solution prevents the P; — P{ from performing op-
timal rates. Tables 5 and 6 represent the rate of convergence for various
choices of the stabilization parameter f for P; — Py, and P; — (P{+ Py)
elements. Where the stabilization parameter is not large enough to guar-
antee the stability of the element we filled the corresponding entry of the
table with a NaN. For non smooth solution we proved that the error de-
creases as h!/2. Table 5, 6 numerically demonstrate the error estimates. In
order to comment on the results we first focus on Table 5 where the results
for the P; — Py element are reported. These numerical results could be
misleading, in fact a superficial interpretation of Table 5 could suggest that
there exists a value for f that recovers the optimal convergence rate. In
Section 3 we proved that this is not the case (see Remark 4). Figure 7(a)
makes the situation clearer. We can see that when £ is relatively large the
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TABLE 6. — Spatial convergence for the P; — (P{ + Py) finite element with respect to £/[p]
and o = 0.1. Discontinuous pressure test case.

V@ —up)l| 2
Convergence Rate
Iy p=10 p=1 =01 £ =0.02 £ =0.01
1/16 1/32 0.87 0.90 0.98 1.03 1.09
1/32 1/64 0.80 0.84 0.97 1.01 -18.60
1/64 1/128 0.71 0.76 0.94 1.00 -53.82
1/128 1/256 0.64 0.67 0.89 1.00 -73.11
1/256 1/512 0.58 0.61 0.82 1.00 NaN
llee —upllze
Convergence Rate
Ny p=10 p=1 =01 £ =0.02 £ =0.01
1/16 1/32 1.86 1.89 1.97 1.95 1.90
1/32 1/64 1.80 1.84 1.97 1.99 -15.42
1/64 1/128 1.72 1.76 1.94 2.00 -52.84
1/128 1/256 1.64 1.67 1.90 2.00 -72.29
1/256 1/512 1.58 1.61 1.83 2.00 NaN
P = pallz:
Convergence Rate
Iy p=10 p=1 =01 £ =0.02 £ =0.01
1/16 1/32 0.56 0.59 0.92 0.99 0.94
1/32 1/64 0.51 0.52 0.79 1.01 -18.56
1/64 1/128 0.50 0.51 0.69 1.01 -53.78
1/128 1/256 0.50 0.50 0.61 1.00 -73.04
1/256 1/512 0.50 0.50 0.56 1.00 NaN

convergence error is of first order and this is compatible with the error
estimate (32): in this case the first term

C
(12 )l + I

is dominant with respect to

1/2
C
ol i D Vo

ece!

The opposite situation occurs as & decreases where the second term prevails and
the rate of convergence turns to 1/2. As a consequence, we can state, that the
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Fig. 6. — Pressure error for the finite elements, discontinuous test case.
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TABLE 7. — Spatial convergence for the PyisoPy — (P1isoPs + Py) finite element, o = 0.1.
Continuous solution test case.

PqisoPs — (P1tsoPsy + Py)

hy lp — pallze llee —wpllge V@ —up)ll. lldivae| 7.
Error Rate Error Rate Error Rate Error Rate
1/8 1.154e+00 - 3.495e-02 - 2.387e+00 - 1.236e+00 -

1/16 5.744e-01 1.0  9.436e-03 19 1214e4+00 1.0 6.440e-01 0.9
1/32 2.858¢e-01 1.0 2467e-03 1.9 6.104e-01 1.0 3.263e-01 1.0
1/64 1.425e-01 1.0 6.382e-04 2.0 3.057e-01 1.0 1.639e-01 1.0
1/128 7.117e-02 1.0  1.643e-04 2.0 1.530e-01 1.0 8.210e-02 1.0

error for lowest-order, f-stabilized finite elements goes to zero only as /'/2 when
the solution is characterized by a discontinuity. The same observations apply to
the Py — (P{ + Py) element; Table 6 shows the convergence rate with respect to
p. Figure 7(b)demonstrates, that, no matter the choice of f5, as & decreases the
rate of convergence is dominated by A'/2.

Since we just demonstrated that the the pressure jump stabilization term af-
fects the convergence characteristics of the scheme, we introduced the PyisoPs—
(P1isoPs + Py) finite element. In this case the Py component of the pressure is
controlled by the interelement velocity degree of freedom and does not need the
pressure jump stabilization term. This is the reason why it can recover optimal
convergence rates for discontinuous pressure solution. In fact the convergence
rates are the same as for the continuous case, see Tables 7 and 8, respectively.

TABLE 8. — Spatial convergence for the P1isoPy — (P1isoPsz + Py) finite element, o = 0.1.
Discontinuous solution test case.

PqisoPs — (P1tsoPs + Py)

h o — ol llw — w2 V@ —up)| 2 ([div |
Error Rate Error Rate Error Rate Error Rate
1/8 1.154e+00 - 3.495e-02 - 2.387e+00 - 1.236e+00 -

1/16 5.744e-01 1.0 9.436e-03 1.9 1.214e+00 1.0 6.440e-01 0.9
1/32 2.858¢-01 1.0 2467e-03 19  6.104e-01 1.0 3.263e-01 1.0
1/64 1425e-01 1.0 6.382e-04 2.0 3.067e-01 1.0 1.639e-01 1.0
1/128 7.114e-02 1.0  1.644e-04 2.0 1.530e-01 1.0 8.210e-02 1.0

5.2 — Approximation of pressure discontinuities

On the other hand, fluid-structure interaction problems arising in biological
models are often characterized by fluid domains separated by thin membranes,
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resulting in a discontinuous solution for the pressure. This is the reason why
Figure 6 represents the relative error for the pressure ||p — py||;2/ max (p) for
different finite elements for the discontinuous solution test case. The errors in
Figure 6(e) at (0,0) and (1, 1) are due the mesh requirement we explored in [4]
that is not satisfied by the used mesh.

The P; — P{ finite element in Figure 6(a) is affected by a Gibbs phe-
nomenon. If we only look at the approximation properties of the involved
spaces, the P; — Py element (see Figure 6(b)) is expected to capture such a
discontinuity, but the stabilization term, involving the pressure jump be-
tween two elements, is a continuity factor, causing the Gibbs phenomenon
to appear. This is also related to the consistency error that has been dis-
cussed in the previous sections and we shall confirm numerically later in
this section.

Figure 6(c) suggests that the behavior of the P; — (P{ + Py) element is
mostly driven by the continuous component of the pressure space. The last
finite element we implemented, the PiisoPs — (P1isoPs + Py), finally shows
good performance and no Gibbs phenomenon. We believe it is important to
remark that this scheme is characterized by the same mesh for the velocity
and the pressure, which we consider a nice feature from the applicative
perspective, and by a piecewise constant function that has no need for the
stabilization term involving the parameter f. Since we do not need a sta-
bilization term for the piecewise constant function, the discontinuity in the
solution for the pressure is reconstructed with an error comparable to the
one observed for the augmented Bercovier-Pironneau finite element.
Moreover the PiisoPs — (P1isoPs + Py) element shows no restriction on the
mesh.
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Fig. 7. — Convergence rates for P; — Py and P; — (P§ + P,) with respect to f. Notice
that the consistency error is causing the convergence rate to deteriorate.
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5.3 — Mass conservation performances

We now turn to the fundamental question of local mass conservation of the
element we have implemented. In order to do so, we would like to plot the
divergence of the discrete velocity vectorfield, averaged on suitably chosen
(local) subdomains. It is opinion of the authors that a fair comparison between
P; velocity elements and PiisoPg velocity elements is performed with the
same degrees of freedom for the velocity, and not considering the same value
of k. In order to do so, we will plot the macroelementwise averaged diver-
gence:

. 1 .
(43) avgy,(divu,) = Mﬂ!dlvuh dx VM e My,

for the P; velocity elements (where M is composed of four triangles as in the
mesh for the PiisoPs element). For the PyisoPs velocity elements we plot the
elementwise averaged divergence:

avey(divay,) = Il{ f divu, dx VK € T,
K

It should be noticed that equation (43) plays the role of a smoothing proce-
dure. In this way, we are giving the P; velocity elements a little advantage in
our mass conservation competition. Results are represented in Figure 8. As
proved by Figures 8(a), 8(b), and 8(c), the corresponding P; — P, P; — Py and
P1— (P§{ + Py), finite elements are characterized by a non zero value of the
real divergence, moreover they are affected by higher divergence values
nearby the discontinuity. Nevertheless the little advantage we gave these
elements, the resulting schemes are not mass preserving. On the other hand
PiisoPe— (PyisoPs + Py), as expected, shows numerically zero value for the
averaged divergence for each K € 7, see Figure 8(d). For the sake of com-
pleteness, we report in Figure 8(e) similar conservation results obtained with
the augmented Bercovier-Pironneau finite element, which has been analyzed
in [4]. In consideration of this result, in combination with the convergence
results previously presented, we are reassured in defining as mass preserving
the PiisoPo— (P1isoPs + Py) finite element.

We conclude the section devoted to numerical experiments with a final
remark. The intersection between PiisoPs and P, spaces is the global con-
stant function over Q, the resulting B’ matrix is not full rank, and C cannot
compensate this deficiency, as explained in Remark 7, Section 4. In [4] we
tackled this issue with a QR factorization for rank deficient matrices. Here we
show that it is sufficient to set one Py basis function to zero to set the in-
tersection to the null element.
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Fig. 8. — Divergence for the finite elements, discontinuous test case.
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6. — Conclusions

As mentioned in the preceding lines, our interest in studying pressure dis-
continuous finite elements is motivated by the necessity of approximating phe-
nomena driven by mass conservation properties of the finite element, and by
their capabilities of interpolating discontinuous pressure solutions. With the
stability analysis and the numerical experiments, we demonstrated that both the
Py — Py and P; — (P§ + Py) do not represent feasible choice for the numerical
representation of phenomena characterized by discontinuous pressure. On the
one hand, the plot of the error, Figure 6, suggests that the stabilization term
involving the interelement pressure jump introduces some continuity in between
elements which can produce a Gibbs phenomenon in the approximation of non-
smooth pressures. One the other hand, the performance of these elements is also
affected by a consistency error that prevents to recover optimal rate of con-
vergence, see Tables 5, 6, and Figure 7.

A newly implemented scheme, the PyisoPy — (P1isoPs + Py) element, allows
us to avoid the suboptimal convergence arising from the consistency term, to
obtain very satisfactory local conservation properties, and to optimally approx-
imate jumping pressures.

This element is characterized by several feasible properties. First, we de-
monstrated, it provides satisfactory results in the approximation of dis-
continuous pressure solution, and it is mass preserving, see Figures 6(d), and
8(d). It relies on the same mesh for the velocity and the pressure. It is easy to
implement since it does not need a stabilization term of the form:

cn(Pus i) = B hepil [gnD

ece!

which is characterized by a non standard assembling procedure. Moreover the
implementation of PjisoPs — (P1isoPz + Py) can be achieved simply acting on
the numbering of the equations for the Py functions. This means adding a pie-
cewise constant to every k; € 7)» and setting the same equation number
Vk; C K € T}. Numerical experiments demonstrate that this element recover
optimal rates of convergence in approximating discontinuous pressure solutions.
The interpolation of the discontinuity in the pressure is sharp and the averaged
divergence of the discrete velocity is numerically zero.
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